File:  [local] / rpl / lapack / lapack / zgges3.f
Revision 1.6: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:20 2023 UTC (9 months, 1 week ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief <b> ZGGES3 computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors for GE matrices (blocked algorithm)</b>
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZGGES3 + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgges3.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgges3.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgges3.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZGGES3( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B,
   22: *      $                   LDB, SDIM, ALPHA, BETA, VSL, LDVSL, VSR, LDVSR,
   23: *      $                   WORK, LWORK, RWORK, BWORK, INFO )
   24: *
   25: *       .. Scalar Arguments ..
   26: *       CHARACTER          JOBVSL, JOBVSR, SORT
   27: *       INTEGER            INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N, SDIM
   28: *       ..
   29: *       .. Array Arguments ..
   30: *       LOGICAL            BWORK( * )
   31: *       DOUBLE PRECISION   RWORK( * )
   32: *       COMPLEX*16         A( LDA, * ), ALPHA( * ), B( LDB, * ),
   33: *      $                   BETA( * ), VSL( LDVSL, * ), VSR( LDVSR, * ),
   34: *      $                   WORK( * )
   35: *       ..
   36: *       .. Function Arguments ..
   37: *       LOGICAL            SELCTG
   38: *       EXTERNAL           SELCTG
   39: *       ..
   40: *
   41: *
   42: *> \par Purpose:
   43: *  =============
   44: *>
   45: *> \verbatim
   46: *>
   47: *> ZGGES3 computes for a pair of N-by-N complex nonsymmetric matrices
   48: *> (A,B), the generalized eigenvalues, the generalized complex Schur
   49: *> form (S, T), and optionally left and/or right Schur vectors (VSL
   50: *> and VSR). This gives the generalized Schur factorization
   51: *>
   52: *>         (A,B) = ( (VSL)*S*(VSR)**H, (VSL)*T*(VSR)**H )
   53: *>
   54: *> where (VSR)**H is the conjugate-transpose of VSR.
   55: *>
   56: *> Optionally, it also orders the eigenvalues so that a selected cluster
   57: *> of eigenvalues appears in the leading diagonal blocks of the upper
   58: *> triangular matrix S and the upper triangular matrix T. The leading
   59: *> columns of VSL and VSR then form an unitary basis for the
   60: *> corresponding left and right eigenspaces (deflating subspaces).
   61: *>
   62: *> (If only the generalized eigenvalues are needed, use the driver
   63: *> ZGGEV instead, which is faster.)
   64: *>
   65: *> A generalized eigenvalue for a pair of matrices (A,B) is a scalar w
   66: *> or a ratio alpha/beta = w, such that  A - w*B is singular.  It is
   67: *> usually represented as the pair (alpha,beta), as there is a
   68: *> reasonable interpretation for beta=0, and even for both being zero.
   69: *>
   70: *> A pair of matrices (S,T) is in generalized complex Schur form if S
   71: *> and T are upper triangular and, in addition, the diagonal elements
   72: *> of T are non-negative real numbers.
   73: *> \endverbatim
   74: *
   75: *  Arguments:
   76: *  ==========
   77: *
   78: *> \param[in] JOBVSL
   79: *> \verbatim
   80: *>          JOBVSL is CHARACTER*1
   81: *>          = 'N':  do not compute the left Schur vectors;
   82: *>          = 'V':  compute the left Schur vectors.
   83: *> \endverbatim
   84: *>
   85: *> \param[in] JOBVSR
   86: *> \verbatim
   87: *>          JOBVSR is CHARACTER*1
   88: *>          = 'N':  do not compute the right Schur vectors;
   89: *>          = 'V':  compute the right Schur vectors.
   90: *> \endverbatim
   91: *>
   92: *> \param[in] SORT
   93: *> \verbatim
   94: *>          SORT is CHARACTER*1
   95: *>          Specifies whether or not to order the eigenvalues on the
   96: *>          diagonal of the generalized Schur form.
   97: *>          = 'N':  Eigenvalues are not ordered;
   98: *>          = 'S':  Eigenvalues are ordered (see SELCTG).
   99: *> \endverbatim
  100: *>
  101: *> \param[in] SELCTG
  102: *> \verbatim
  103: *>          SELCTG is a LOGICAL FUNCTION of two COMPLEX*16 arguments
  104: *>          SELCTG must be declared EXTERNAL in the calling subroutine.
  105: *>          If SORT = 'N', SELCTG is not referenced.
  106: *>          If SORT = 'S', SELCTG is used to select eigenvalues to sort
  107: *>          to the top left of the Schur form.
  108: *>          An eigenvalue ALPHA(j)/BETA(j) is selected if
  109: *>          SELCTG(ALPHA(j),BETA(j)) is true.
  110: *>
  111: *>          Note that a selected complex eigenvalue may no longer satisfy
  112: *>          SELCTG(ALPHA(j),BETA(j)) = .TRUE. after ordering, since
  113: *>          ordering may change the value of complex eigenvalues
  114: *>          (especially if the eigenvalue is ill-conditioned), in this
  115: *>          case INFO is set to N+2 (See INFO below).
  116: *> \endverbatim
  117: *>
  118: *> \param[in] N
  119: *> \verbatim
  120: *>          N is INTEGER
  121: *>          The order of the matrices A, B, VSL, and VSR.  N >= 0.
  122: *> \endverbatim
  123: *>
  124: *> \param[in,out] A
  125: *> \verbatim
  126: *>          A is COMPLEX*16 array, dimension (LDA, N)
  127: *>          On entry, the first of the pair of matrices.
  128: *>          On exit, A has been overwritten by its generalized Schur
  129: *>          form S.
  130: *> \endverbatim
  131: *>
  132: *> \param[in] LDA
  133: *> \verbatim
  134: *>          LDA is INTEGER
  135: *>          The leading dimension of A.  LDA >= max(1,N).
  136: *> \endverbatim
  137: *>
  138: *> \param[in,out] B
  139: *> \verbatim
  140: *>          B is COMPLEX*16 array, dimension (LDB, N)
  141: *>          On entry, the second of the pair of matrices.
  142: *>          On exit, B has been overwritten by its generalized Schur
  143: *>          form T.
  144: *> \endverbatim
  145: *>
  146: *> \param[in] LDB
  147: *> \verbatim
  148: *>          LDB is INTEGER
  149: *>          The leading dimension of B.  LDB >= max(1,N).
  150: *> \endverbatim
  151: *>
  152: *> \param[out] SDIM
  153: *> \verbatim
  154: *>          SDIM is INTEGER
  155: *>          If SORT = 'N', SDIM = 0.
  156: *>          If SORT = 'S', SDIM = number of eigenvalues (after sorting)
  157: *>          for which SELCTG is true.
  158: *> \endverbatim
  159: *>
  160: *> \param[out] ALPHA
  161: *> \verbatim
  162: *>          ALPHA is COMPLEX*16 array, dimension (N)
  163: *> \endverbatim
  164: *>
  165: *> \param[out] BETA
  166: *> \verbatim
  167: *>          BETA is COMPLEX*16 array, dimension (N)
  168: *>          On exit,  ALPHA(j)/BETA(j), j=1,...,N, will be the
  169: *>          generalized eigenvalues.  ALPHA(j), j=1,...,N  and  BETA(j),
  170: *>          j=1,...,N  are the diagonals of the complex Schur form (A,B)
  171: *>          output by ZGGES3. The  BETA(j) will be non-negative real.
  172: *>
  173: *>          Note: the quotients ALPHA(j)/BETA(j) may easily over- or
  174: *>          underflow, and BETA(j) may even be zero.  Thus, the user
  175: *>          should avoid naively computing the ratio alpha/beta.
  176: *>          However, ALPHA will be always less than and usually
  177: *>          comparable with norm(A) in magnitude, and BETA always less
  178: *>          than and usually comparable with norm(B).
  179: *> \endverbatim
  180: *>
  181: *> \param[out] VSL
  182: *> \verbatim
  183: *>          VSL is COMPLEX*16 array, dimension (LDVSL,N)
  184: *>          If JOBVSL = 'V', VSL will contain the left Schur vectors.
  185: *>          Not referenced if JOBVSL = 'N'.
  186: *> \endverbatim
  187: *>
  188: *> \param[in] LDVSL
  189: *> \verbatim
  190: *>          LDVSL is INTEGER
  191: *>          The leading dimension of the matrix VSL. LDVSL >= 1, and
  192: *>          if JOBVSL = 'V', LDVSL >= N.
  193: *> \endverbatim
  194: *>
  195: *> \param[out] VSR
  196: *> \verbatim
  197: *>          VSR is COMPLEX*16 array, dimension (LDVSR,N)
  198: *>          If JOBVSR = 'V', VSR will contain the right Schur vectors.
  199: *>          Not referenced if JOBVSR = 'N'.
  200: *> \endverbatim
  201: *>
  202: *> \param[in] LDVSR
  203: *> \verbatim
  204: *>          LDVSR is INTEGER
  205: *>          The leading dimension of the matrix VSR. LDVSR >= 1, and
  206: *>          if JOBVSR = 'V', LDVSR >= N.
  207: *> \endverbatim
  208: *>
  209: *> \param[out] WORK
  210: *> \verbatim
  211: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
  212: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  213: *> \endverbatim
  214: *>
  215: *> \param[in] LWORK
  216: *> \verbatim
  217: *>          LWORK is INTEGER
  218: *>          The dimension of the array WORK.
  219: *>
  220: *>          If LWORK = -1, then a workspace query is assumed; the routine
  221: *>          only calculates the optimal size of the WORK array, returns
  222: *>          this value as the first entry of the WORK array, and no error
  223: *>          message related to LWORK is issued by XERBLA.
  224: *> \endverbatim
  225: *>
  226: *> \param[out] RWORK
  227: *> \verbatim
  228: *>          RWORK is DOUBLE PRECISION array, dimension (8*N)
  229: *> \endverbatim
  230: *>
  231: *> \param[out] BWORK
  232: *> \verbatim
  233: *>          BWORK is LOGICAL array, dimension (N)
  234: *>          Not referenced if SORT = 'N'.
  235: *> \endverbatim
  236: *>
  237: *> \param[out] INFO
  238: *> \verbatim
  239: *>          INFO is INTEGER
  240: *>          = 0:  successful exit
  241: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
  242: *>          =1,...,N:
  243: *>                The QZ iteration failed.  (A,B) are not in Schur
  244: *>                form, but ALPHA(j) and BETA(j) should be correct for
  245: *>                j=INFO+1,...,N.
  246: *>          > N:  =N+1: other than QZ iteration failed in ZLAQZ0
  247: *>                =N+2: after reordering, roundoff changed values of
  248: *>                      some complex eigenvalues so that leading
  249: *>                      eigenvalues in the Generalized Schur form no
  250: *>                      longer satisfy SELCTG=.TRUE.  This could also
  251: *>                      be caused due to scaling.
  252: *>                =N+3: reordering failed in ZTGSEN.
  253: *> \endverbatim
  254: *
  255: *  Authors:
  256: *  ========
  257: *
  258: *> \author Univ. of Tennessee
  259: *> \author Univ. of California Berkeley
  260: *> \author Univ. of Colorado Denver
  261: *> \author NAG Ltd.
  262: *
  263: *> \ingroup complex16GEeigen
  264: *
  265: *  =====================================================================
  266:       SUBROUTINE ZGGES3( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B,
  267:      $                   LDB, SDIM, ALPHA, BETA, VSL, LDVSL, VSR, LDVSR,
  268:      $                   WORK, LWORK, RWORK, BWORK, INFO )
  269: *
  270: *  -- LAPACK driver routine --
  271: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  272: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  273: *
  274: *     .. Scalar Arguments ..
  275:       CHARACTER          JOBVSL, JOBVSR, SORT
  276:       INTEGER            INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N, SDIM
  277: *     ..
  278: *     .. Array Arguments ..
  279:       LOGICAL            BWORK( * )
  280:       DOUBLE PRECISION   RWORK( * )
  281:       COMPLEX*16         A( LDA, * ), ALPHA( * ), B( LDB, * ),
  282:      $                   BETA( * ), VSL( LDVSL, * ), VSR( LDVSR, * ),
  283:      $                   WORK( * )
  284: *     ..
  285: *     .. Function Arguments ..
  286:       LOGICAL            SELCTG
  287:       EXTERNAL           SELCTG
  288: *     ..
  289: *
  290: *  =====================================================================
  291: *
  292: *     .. Parameters ..
  293:       DOUBLE PRECISION   ZERO, ONE
  294:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
  295:       COMPLEX*16         CZERO, CONE
  296:       PARAMETER          ( CZERO = ( 0.0D0, 0.0D0 ),
  297:      $                   CONE = ( 1.0D0, 0.0D0 ) )
  298: *     ..
  299: *     .. Local Scalars ..
  300:       LOGICAL            CURSL, ILASCL, ILBSCL, ILVSL, ILVSR, LASTSL,
  301:      $                   LQUERY, WANTST
  302:       INTEGER            I, ICOLS, IERR, IHI, IJOBVL, IJOBVR, ILEFT,
  303:      $                   ILO, IRIGHT, IROWS, IRWRK, ITAU, IWRK, LWKOPT
  304:       DOUBLE PRECISION   ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS, PVSL,
  305:      $                   PVSR, SMLNUM
  306: *     ..
  307: *     .. Local Arrays ..
  308:       INTEGER            IDUM( 1 )
  309:       DOUBLE PRECISION   DIF( 2 )
  310: *     ..
  311: *     .. External Subroutines ..
  312:       EXTERNAL           DLABAD, XERBLA, ZGEQRF, ZGGBAK, ZGGBAL, ZGGHD3,
  313:      $                   ZLAQZ0, ZLACPY, ZLASCL, ZLASET, ZTGSEN, ZUNGQR,
  314:      $                   ZUNMQR
  315: *     ..
  316: *     .. External Functions ..
  317:       LOGICAL            LSAME
  318:       DOUBLE PRECISION   DLAMCH, ZLANGE
  319:       EXTERNAL           LSAME, DLAMCH, ZLANGE
  320: *     ..
  321: *     .. Intrinsic Functions ..
  322:       INTRINSIC          MAX, SQRT
  323: *     ..
  324: *     .. Executable Statements ..
  325: *
  326: *     Decode the input arguments
  327: *
  328:       IF( LSAME( JOBVSL, 'N' ) ) THEN
  329:          IJOBVL = 1
  330:          ILVSL = .FALSE.
  331:       ELSE IF( LSAME( JOBVSL, 'V' ) ) THEN
  332:          IJOBVL = 2
  333:          ILVSL = .TRUE.
  334:       ELSE
  335:          IJOBVL = -1
  336:          ILVSL = .FALSE.
  337:       END IF
  338: *
  339:       IF( LSAME( JOBVSR, 'N' ) ) THEN
  340:          IJOBVR = 1
  341:          ILVSR = .FALSE.
  342:       ELSE IF( LSAME( JOBVSR, 'V' ) ) THEN
  343:          IJOBVR = 2
  344:          ILVSR = .TRUE.
  345:       ELSE
  346:          IJOBVR = -1
  347:          ILVSR = .FALSE.
  348:       END IF
  349: *
  350:       WANTST = LSAME( SORT, 'S' )
  351: *
  352: *     Test the input arguments
  353: *
  354:       INFO = 0
  355:       LQUERY = ( LWORK.EQ.-1 )
  356:       IF( IJOBVL.LE.0 ) THEN
  357:          INFO = -1
  358:       ELSE IF( IJOBVR.LE.0 ) THEN
  359:          INFO = -2
  360:       ELSE IF( ( .NOT.WANTST ) .AND. ( .NOT.LSAME( SORT, 'N' ) ) ) THEN
  361:          INFO = -3
  362:       ELSE IF( N.LT.0 ) THEN
  363:          INFO = -5
  364:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  365:          INFO = -7
  366:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  367:          INFO = -9
  368:       ELSE IF( LDVSL.LT.1 .OR. ( ILVSL .AND. LDVSL.LT.N ) ) THEN
  369:          INFO = -14
  370:       ELSE IF( LDVSR.LT.1 .OR. ( ILVSR .AND. LDVSR.LT.N ) ) THEN
  371:          INFO = -16
  372:       ELSE IF( LWORK.LT.MAX( 1, 2*N ) .AND. .NOT.LQUERY ) THEN
  373:          INFO = -18
  374:       END IF
  375: *
  376: *     Compute workspace
  377: *
  378:       IF( INFO.EQ.0 ) THEN
  379:          CALL ZGEQRF( N, N, B, LDB, WORK, WORK, -1, IERR )
  380:          LWKOPT = MAX( 1,  N + INT ( WORK( 1 ) ) )
  381:          CALL ZUNMQR( 'L', 'C', N, N, N, B, LDB, WORK, A, LDA, WORK,
  382:      $                -1, IERR )
  383:          LWKOPT = MAX( LWKOPT, N + INT ( WORK( 1 ) ) )
  384:          IF( ILVSL ) THEN
  385:             CALL ZUNGQR( N, N, N, VSL, LDVSL, WORK, WORK, -1, IERR )
  386:             LWKOPT = MAX( LWKOPT, N + INT ( WORK( 1 ) ) )
  387:          END IF
  388:          CALL ZGGHD3( JOBVSL, JOBVSR, N, 1, N, A, LDA, B, LDB, VSL,
  389:      $                LDVSL, VSR, LDVSR, WORK, -1, IERR )
  390:          LWKOPT = MAX( LWKOPT, N + INT ( WORK( 1 ) ) )
  391:          CALL ZLAQZ0( 'S', JOBVSL, JOBVSR, N, 1, N, A, LDA, B, LDB,
  392:      $                ALPHA, BETA, VSL, LDVSL, VSR, LDVSR, WORK, -1,
  393:      $                RWORK, 0, IERR )
  394:          LWKOPT = MAX( LWKOPT, INT ( WORK( 1 ) ) )
  395:          IF( WANTST ) THEN
  396:             CALL ZTGSEN( 0, ILVSL, ILVSR, BWORK, N, A, LDA, B, LDB,
  397:      $                   ALPHA, BETA, VSL, LDVSL, VSR, LDVSR, SDIM,
  398:      $                   PVSL, PVSR, DIF, WORK, -1, IDUM, 1, IERR )
  399:             LWKOPT = MAX( LWKOPT, INT ( WORK( 1 ) ) )
  400:          END IF
  401:          WORK( 1 ) = DCMPLX( LWKOPT )
  402:       END IF
  403: *
  404:       IF( INFO.NE.0 ) THEN
  405:          CALL XERBLA( 'ZGGES3 ', -INFO )
  406:          RETURN
  407:       ELSE IF( LQUERY ) THEN
  408:          RETURN
  409:       END IF
  410: *
  411: *     Quick return if possible
  412: *
  413:       IF( N.EQ.0 ) THEN
  414:          SDIM = 0
  415:          RETURN
  416:       END IF
  417: *
  418: *     Get machine constants
  419: *
  420:       EPS = DLAMCH( 'P' )
  421:       SMLNUM = DLAMCH( 'S' )
  422:       BIGNUM = ONE / SMLNUM
  423:       CALL DLABAD( SMLNUM, BIGNUM )
  424:       SMLNUM = SQRT( SMLNUM ) / EPS
  425:       BIGNUM = ONE / SMLNUM
  426: *
  427: *     Scale A if max element outside range [SMLNUM,BIGNUM]
  428: *
  429:       ANRM = ZLANGE( 'M', N, N, A, LDA, RWORK )
  430:       ILASCL = .FALSE.
  431:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
  432:          ANRMTO = SMLNUM
  433:          ILASCL = .TRUE.
  434:       ELSE IF( ANRM.GT.BIGNUM ) THEN
  435:          ANRMTO = BIGNUM
  436:          ILASCL = .TRUE.
  437:       END IF
  438: *
  439:       IF( ILASCL )
  440:      $   CALL ZLASCL( 'G', 0, 0, ANRM, ANRMTO, N, N, A, LDA, IERR )
  441: *
  442: *     Scale B if max element outside range [SMLNUM,BIGNUM]
  443: *
  444:       BNRM = ZLANGE( 'M', N, N, B, LDB, RWORK )
  445:       ILBSCL = .FALSE.
  446:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
  447:          BNRMTO = SMLNUM
  448:          ILBSCL = .TRUE.
  449:       ELSE IF( BNRM.GT.BIGNUM ) THEN
  450:          BNRMTO = BIGNUM
  451:          ILBSCL = .TRUE.
  452:       END IF
  453: *
  454:       IF( ILBSCL )
  455:      $   CALL ZLASCL( 'G', 0, 0, BNRM, BNRMTO, N, N, B, LDB, IERR )
  456: *
  457: *     Permute the matrix to make it more nearly triangular
  458: *
  459:       ILEFT = 1
  460:       IRIGHT = N + 1
  461:       IRWRK = IRIGHT + N
  462:       CALL ZGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, RWORK( ILEFT ),
  463:      $             RWORK( IRIGHT ), RWORK( IRWRK ), IERR )
  464: *
  465: *     Reduce B to triangular form (QR decomposition of B)
  466: *
  467:       IROWS = IHI + 1 - ILO
  468:       ICOLS = N + 1 - ILO
  469:       ITAU = 1
  470:       IWRK = ITAU + IROWS
  471:       CALL ZGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
  472:      $             WORK( IWRK ), LWORK+1-IWRK, IERR )
  473: *
  474: *     Apply the orthogonal transformation to matrix A
  475: *
  476:       CALL ZUNMQR( 'L', 'C', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
  477:      $             WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWRK ),
  478:      $             LWORK+1-IWRK, IERR )
  479: *
  480: *     Initialize VSL
  481: *
  482:       IF( ILVSL ) THEN
  483:          CALL ZLASET( 'Full', N, N, CZERO, CONE, VSL, LDVSL )
  484:          IF( IROWS.GT.1 ) THEN
  485:             CALL ZLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
  486:      $                   VSL( ILO+1, ILO ), LDVSL )
  487:          END IF
  488:          CALL ZUNGQR( IROWS, IROWS, IROWS, VSL( ILO, ILO ), LDVSL,
  489:      $                WORK( ITAU ), WORK( IWRK ), LWORK+1-IWRK, IERR )
  490:       END IF
  491: *
  492: *     Initialize VSR
  493: *
  494:       IF( ILVSR )
  495:      $   CALL ZLASET( 'Full', N, N, CZERO, CONE, VSR, LDVSR )
  496: *
  497: *     Reduce to generalized Hessenberg form
  498: *
  499:       CALL ZGGHD3( JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB, VSL,
  500:      $             LDVSL, VSR, LDVSR, WORK( IWRK ), LWORK+1-IWRK, IERR )
  501: *
  502:       SDIM = 0
  503: *
  504: *     Perform QZ algorithm, computing Schur vectors if desired
  505: *
  506:       IWRK = ITAU
  507:       CALL ZLAQZ0( 'S', JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB,
  508:      $             ALPHA, BETA, VSL, LDVSL, VSR, LDVSR, WORK( IWRK ),
  509:      $             LWORK+1-IWRK, RWORK( IRWRK ), 0, IERR )
  510:       IF( IERR.NE.0 ) THEN
  511:          IF( IERR.GT.0 .AND. IERR.LE.N ) THEN
  512:             INFO = IERR
  513:          ELSE IF( IERR.GT.N .AND. IERR.LE.2*N ) THEN
  514:             INFO = IERR - N
  515:          ELSE
  516:             INFO = N + 1
  517:          END IF
  518:          GO TO 30
  519:       END IF
  520: *
  521: *     Sort eigenvalues ALPHA/BETA if desired
  522: *
  523:       IF( WANTST ) THEN
  524: *
  525: *        Undo scaling on eigenvalues before selecting
  526: *
  527:          IF( ILASCL )
  528:      $      CALL ZLASCL( 'G', 0, 0, ANRM, ANRMTO, N, 1, ALPHA, N, IERR )
  529:          IF( ILBSCL )
  530:      $      CALL ZLASCL( 'G', 0, 0, BNRM, BNRMTO, N, 1, BETA, N, IERR )
  531: *
  532: *        Select eigenvalues
  533: *
  534:          DO 10 I = 1, N
  535:             BWORK( I ) = SELCTG( ALPHA( I ), BETA( I ) )
  536:    10    CONTINUE
  537: *
  538:          CALL ZTGSEN( 0, ILVSL, ILVSR, BWORK, N, A, LDA, B, LDB, ALPHA,
  539:      $                BETA, VSL, LDVSL, VSR, LDVSR, SDIM, PVSL, PVSR,
  540:      $                DIF, WORK( IWRK ), LWORK-IWRK+1, IDUM, 1, IERR )
  541:          IF( IERR.EQ.1 )
  542:      $      INFO = N + 3
  543: *
  544:       END IF
  545: *
  546: *     Apply back-permutation to VSL and VSR
  547: *
  548:       IF( ILVSL )
  549:      $   CALL ZGGBAK( 'P', 'L', N, ILO, IHI, RWORK( ILEFT ),
  550:      $                RWORK( IRIGHT ), N, VSL, LDVSL, IERR )
  551:       IF( ILVSR )
  552:      $   CALL ZGGBAK( 'P', 'R', N, ILO, IHI, RWORK( ILEFT ),
  553:      $                RWORK( IRIGHT ), N, VSR, LDVSR, IERR )
  554: *
  555: *     Undo scaling
  556: *
  557:       IF( ILASCL ) THEN
  558:          CALL ZLASCL( 'U', 0, 0, ANRMTO, ANRM, N, N, A, LDA, IERR )
  559:          CALL ZLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHA, N, IERR )
  560:       END IF
  561: *
  562:       IF( ILBSCL ) THEN
  563:          CALL ZLASCL( 'U', 0, 0, BNRMTO, BNRM, N, N, B, LDB, IERR )
  564:          CALL ZLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
  565:       END IF
  566: *
  567:       IF( WANTST ) THEN
  568: *
  569: *        Check if reordering is correct
  570: *
  571:          LASTSL = .TRUE.
  572:          SDIM = 0
  573:          DO 20 I = 1, N
  574:             CURSL = SELCTG( ALPHA( I ), BETA( I ) )
  575:             IF( CURSL )
  576:      $         SDIM = SDIM + 1
  577:             IF( CURSL .AND. .NOT.LASTSL )
  578:      $         INFO = N + 2
  579:             LASTSL = CURSL
  580:    20    CONTINUE
  581: *
  582:       END IF
  583: *
  584:    30 CONTINUE
  585: *
  586:       WORK( 1 ) = DCMPLX( LWKOPT )
  587: *
  588:       RETURN
  589: *
  590: *     End of ZGGES3
  591: *
  592:       END

CVSweb interface <joel.bertrand@systella.fr>