File:  [local] / rpl / lapack / lapack / zgges3.f
Revision 1.5: download - view: text, annotated - select for diffs - revision graph
Tue May 29 07:18:16 2018 UTC (5 years, 11 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_33, rpl-4_1_32, rpl-4_1_31, rpl-4_1_30, rpl-4_1_29, rpl-4_1_28, HEAD
Mise à jour de Lapack.

    1: *> \brief <b> ZGGES3 computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors for GE matrices (blocked algorithm)</b>
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZGGES3 + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgges3.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgges3.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgges3.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZGGES3( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B,
   22: *      $                   LDB, SDIM, ALPHA, BETA, VSL, LDVSL, VSR, LDVSR,
   23: *      $                   WORK, LWORK, RWORK, BWORK, INFO )
   24: *
   25: *       .. Scalar Arguments ..
   26: *       CHARACTER          JOBVSL, JOBVSR, SORT
   27: *       INTEGER            INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N, SDIM
   28: *       ..
   29: *       .. Array Arguments ..
   30: *       LOGICAL            BWORK( * )
   31: *       DOUBLE PRECISION   RWORK( * )
   32: *       COMPLEX*16         A( LDA, * ), ALPHA( * ), B( LDB, * ),
   33: *      $                   BETA( * ), VSL( LDVSL, * ), VSR( LDVSR, * ),
   34: *      $                   WORK( * )
   35: *       ..
   36: *       .. Function Arguments ..
   37: *       LOGICAL            SELCTG
   38: *       EXTERNAL           SELCTG
   39: *       ..
   40: *
   41: *
   42: *> \par Purpose:
   43: *  =============
   44: *>
   45: *> \verbatim
   46: *>
   47: *> ZGGES3 computes for a pair of N-by-N complex nonsymmetric matrices
   48: *> (A,B), the generalized eigenvalues, the generalized complex Schur
   49: *> form (S, T), and optionally left and/or right Schur vectors (VSL
   50: *> and VSR). This gives the generalized Schur factorization
   51: *>
   52: *>         (A,B) = ( (VSL)*S*(VSR)**H, (VSL)*T*(VSR)**H )
   53: *>
   54: *> where (VSR)**H is the conjugate-transpose of VSR.
   55: *>
   56: *> Optionally, it also orders the eigenvalues so that a selected cluster
   57: *> of eigenvalues appears in the leading diagonal blocks of the upper
   58: *> triangular matrix S and the upper triangular matrix T. The leading
   59: *> columns of VSL and VSR then form an unitary basis for the
   60: *> corresponding left and right eigenspaces (deflating subspaces).
   61: *>
   62: *> (If only the generalized eigenvalues are needed, use the driver
   63: *> ZGGEV instead, which is faster.)
   64: *>
   65: *> A generalized eigenvalue for a pair of matrices (A,B) is a scalar w
   66: *> or a ratio alpha/beta = w, such that  A - w*B is singular.  It is
   67: *> usually represented as the pair (alpha,beta), as there is a
   68: *> reasonable interpretation for beta=0, and even for both being zero.
   69: *>
   70: *> A pair of matrices (S,T) is in generalized complex Schur form if S
   71: *> and T are upper triangular and, in addition, the diagonal elements
   72: *> of T are non-negative real numbers.
   73: *> \endverbatim
   74: *
   75: *  Arguments:
   76: *  ==========
   77: *
   78: *> \param[in] JOBVSL
   79: *> \verbatim
   80: *>          JOBVSL is CHARACTER*1
   81: *>          = 'N':  do not compute the left Schur vectors;
   82: *>          = 'V':  compute the left Schur vectors.
   83: *> \endverbatim
   84: *>
   85: *> \param[in] JOBVSR
   86: *> \verbatim
   87: *>          JOBVSR is CHARACTER*1
   88: *>          = 'N':  do not compute the right Schur vectors;
   89: *>          = 'V':  compute the right Schur vectors.
   90: *> \endverbatim
   91: *>
   92: *> \param[in] SORT
   93: *> \verbatim
   94: *>          SORT is CHARACTER*1
   95: *>          Specifies whether or not to order the eigenvalues on the
   96: *>          diagonal of the generalized Schur form.
   97: *>          = 'N':  Eigenvalues are not ordered;
   98: *>          = 'S':  Eigenvalues are ordered (see SELCTG).
   99: *> \endverbatim
  100: *>
  101: *> \param[in] SELCTG
  102: *> \verbatim
  103: *>          SELCTG is a LOGICAL FUNCTION of two COMPLEX*16 arguments
  104: *>          SELCTG must be declared EXTERNAL in the calling subroutine.
  105: *>          If SORT = 'N', SELCTG is not referenced.
  106: *>          If SORT = 'S', SELCTG is used to select eigenvalues to sort
  107: *>          to the top left of the Schur form.
  108: *>          An eigenvalue ALPHA(j)/BETA(j) is selected if
  109: *>          SELCTG(ALPHA(j),BETA(j)) is true.
  110: *>
  111: *>          Note that a selected complex eigenvalue may no longer satisfy
  112: *>          SELCTG(ALPHA(j),BETA(j)) = .TRUE. after ordering, since
  113: *>          ordering may change the value of complex eigenvalues
  114: *>          (especially if the eigenvalue is ill-conditioned), in this
  115: *>          case INFO is set to N+2 (See INFO below).
  116: *> \endverbatim
  117: *>
  118: *> \param[in] N
  119: *> \verbatim
  120: *>          N is INTEGER
  121: *>          The order of the matrices A, B, VSL, and VSR.  N >= 0.
  122: *> \endverbatim
  123: *>
  124: *> \param[in,out] A
  125: *> \verbatim
  126: *>          A is COMPLEX*16 array, dimension (LDA, N)
  127: *>          On entry, the first of the pair of matrices.
  128: *>          On exit, A has been overwritten by its generalized Schur
  129: *>          form S.
  130: *> \endverbatim
  131: *>
  132: *> \param[in] LDA
  133: *> \verbatim
  134: *>          LDA is INTEGER
  135: *>          The leading dimension of A.  LDA >= max(1,N).
  136: *> \endverbatim
  137: *>
  138: *> \param[in,out] B
  139: *> \verbatim
  140: *>          B is COMPLEX*16 array, dimension (LDB, N)
  141: *>          On entry, the second of the pair of matrices.
  142: *>          On exit, B has been overwritten by its generalized Schur
  143: *>          form T.
  144: *> \endverbatim
  145: *>
  146: *> \param[in] LDB
  147: *> \verbatim
  148: *>          LDB is INTEGER
  149: *>          The leading dimension of B.  LDB >= max(1,N).
  150: *> \endverbatim
  151: *>
  152: *> \param[out] SDIM
  153: *> \verbatim
  154: *>          SDIM is INTEGER
  155: *>          If SORT = 'N', SDIM = 0.
  156: *>          If SORT = 'S', SDIM = number of eigenvalues (after sorting)
  157: *>          for which SELCTG is true.
  158: *> \endverbatim
  159: *>
  160: *> \param[out] ALPHA
  161: *> \verbatim
  162: *>          ALPHA is COMPLEX*16 array, dimension (N)
  163: *> \endverbatim
  164: *>
  165: *> \param[out] BETA
  166: *> \verbatim
  167: *>          BETA is COMPLEX*16 array, dimension (N)
  168: *>          On exit,  ALPHA(j)/BETA(j), j=1,...,N, will be the
  169: *>          generalized eigenvalues.  ALPHA(j), j=1,...,N  and  BETA(j),
  170: *>          j=1,...,N  are the diagonals of the complex Schur form (A,B)
  171: *>          output by ZGGES3. The  BETA(j) will be non-negative real.
  172: *>
  173: *>          Note: the quotients ALPHA(j)/BETA(j) may easily over- or
  174: *>          underflow, and BETA(j) may even be zero.  Thus, the user
  175: *>          should avoid naively computing the ratio alpha/beta.
  176: *>          However, ALPHA will be always less than and usually
  177: *>          comparable with norm(A) in magnitude, and BETA always less
  178: *>          than and usually comparable with norm(B).
  179: *> \endverbatim
  180: *>
  181: *> \param[out] VSL
  182: *> \verbatim
  183: *>          VSL is COMPLEX*16 array, dimension (LDVSL,N)
  184: *>          If JOBVSL = 'V', VSL will contain the left Schur vectors.
  185: *>          Not referenced if JOBVSL = 'N'.
  186: *> \endverbatim
  187: *>
  188: *> \param[in] LDVSL
  189: *> \verbatim
  190: *>          LDVSL is INTEGER
  191: *>          The leading dimension of the matrix VSL. LDVSL >= 1, and
  192: *>          if JOBVSL = 'V', LDVSL >= N.
  193: *> \endverbatim
  194: *>
  195: *> \param[out] VSR
  196: *> \verbatim
  197: *>          VSR is COMPLEX*16 array, dimension (LDVSR,N)
  198: *>          If JOBVSR = 'V', VSR will contain the right Schur vectors.
  199: *>          Not referenced if JOBVSR = 'N'.
  200: *> \endverbatim
  201: *>
  202: *> \param[in] LDVSR
  203: *> \verbatim
  204: *>          LDVSR is INTEGER
  205: *>          The leading dimension of the matrix VSR. LDVSR >= 1, and
  206: *>          if JOBVSR = 'V', LDVSR >= N.
  207: *> \endverbatim
  208: *>
  209: *> \param[out] WORK
  210: *> \verbatim
  211: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
  212: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  213: *> \endverbatim
  214: *>
  215: *> \param[in] LWORK
  216: *> \verbatim
  217: *>          LWORK is INTEGER
  218: *>          The dimension of the array WORK.
  219: *>
  220: *>          If LWORK = -1, then a workspace query is assumed; the routine
  221: *>          only calculates the optimal size of the WORK array, returns
  222: *>          this value as the first entry of the WORK array, and no error
  223: *>          message related to LWORK is issued by XERBLA.
  224: *> \endverbatim
  225: *>
  226: *> \param[out] RWORK
  227: *> \verbatim
  228: *>          RWORK is DOUBLE PRECISION array, dimension (8*N)
  229: *> \endverbatim
  230: *>
  231: *> \param[out] BWORK
  232: *> \verbatim
  233: *>          BWORK is LOGICAL array, dimension (N)
  234: *>          Not referenced if SORT = 'N'.
  235: *> \endverbatim
  236: *>
  237: *> \param[out] INFO
  238: *> \verbatim
  239: *>          INFO is INTEGER
  240: *>          = 0:  successful exit
  241: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
  242: *>          =1,...,N:
  243: *>                The QZ iteration failed.  (A,B) are not in Schur
  244: *>                form, but ALPHA(j) and BETA(j) should be correct for
  245: *>                j=INFO+1,...,N.
  246: *>          > N:  =N+1: other than QZ iteration failed in ZHGEQZ
  247: *>                =N+2: after reordering, roundoff changed values of
  248: *>                      some complex eigenvalues so that leading
  249: *>                      eigenvalues in the Generalized Schur form no
  250: *>                      longer satisfy SELCTG=.TRUE.  This could also
  251: *>                      be caused due to scaling.
  252: *>                =N+3: reordering failed in ZTGSEN.
  253: *> \endverbatim
  254: *
  255: *  Authors:
  256: *  ========
  257: *
  258: *> \author Univ. of Tennessee
  259: *> \author Univ. of California Berkeley
  260: *> \author Univ. of Colorado Denver
  261: *> \author NAG Ltd.
  262: *
  263: *> \date January 2015
  264: *
  265: *> \ingroup complex16GEeigen
  266: *
  267: *  =====================================================================
  268:       SUBROUTINE ZGGES3( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B,
  269:      $                   LDB, SDIM, ALPHA, BETA, VSL, LDVSL, VSR, LDVSR,
  270:      $                   WORK, LWORK, RWORK, BWORK, INFO )
  271: *
  272: *  -- LAPACK driver routine (version 3.6.1) --
  273: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  274: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  275: *     January 2015
  276: *
  277: *     .. Scalar Arguments ..
  278:       CHARACTER          JOBVSL, JOBVSR, SORT
  279:       INTEGER            INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N, SDIM
  280: *     ..
  281: *     .. Array Arguments ..
  282:       LOGICAL            BWORK( * )
  283:       DOUBLE PRECISION   RWORK( * )
  284:       COMPLEX*16         A( LDA, * ), ALPHA( * ), B( LDB, * ),
  285:      $                   BETA( * ), VSL( LDVSL, * ), VSR( LDVSR, * ),
  286:      $                   WORK( * )
  287: *     ..
  288: *     .. Function Arguments ..
  289:       LOGICAL            SELCTG
  290:       EXTERNAL           SELCTG
  291: *     ..
  292: *
  293: *  =====================================================================
  294: *
  295: *     .. Parameters ..
  296:       DOUBLE PRECISION   ZERO, ONE
  297:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
  298:       COMPLEX*16         CZERO, CONE
  299:       PARAMETER          ( CZERO = ( 0.0D0, 0.0D0 ),
  300:      $                   CONE = ( 1.0D0, 0.0D0 ) )
  301: *     ..
  302: *     .. Local Scalars ..
  303:       LOGICAL            CURSL, ILASCL, ILBSCL, ILVSL, ILVSR, LASTSL,
  304:      $                   LQUERY, WANTST
  305:       INTEGER            I, ICOLS, IERR, IHI, IJOBVL, IJOBVR, ILEFT,
  306:      $                   ILO, IRIGHT, IROWS, IRWRK, ITAU, IWRK, LWKOPT
  307:       DOUBLE PRECISION   ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS, PVSL,
  308:      $                   PVSR, SMLNUM
  309: *     ..
  310: *     .. Local Arrays ..
  311:       INTEGER            IDUM( 1 )
  312:       DOUBLE PRECISION   DIF( 2 )
  313: *     ..
  314: *     .. External Subroutines ..
  315:       EXTERNAL           DLABAD, XERBLA, ZGEQRF, ZGGBAK, ZGGBAL, ZGGHD3,
  316:      $                   ZHGEQZ, ZLACPY, ZLASCL, ZLASET, ZTGSEN, ZUNGQR,
  317:      $                   ZUNMQR
  318: *     ..
  319: *     .. External Functions ..
  320:       LOGICAL            LSAME
  321:       DOUBLE PRECISION   DLAMCH, ZLANGE
  322:       EXTERNAL           LSAME, DLAMCH, ZLANGE
  323: *     ..
  324: *     .. Intrinsic Functions ..
  325:       INTRINSIC          MAX, SQRT
  326: *     ..
  327: *     .. Executable Statements ..
  328: *
  329: *     Decode the input arguments
  330: *
  331:       IF( LSAME( JOBVSL, 'N' ) ) THEN
  332:          IJOBVL = 1
  333:          ILVSL = .FALSE.
  334:       ELSE IF( LSAME( JOBVSL, 'V' ) ) THEN
  335:          IJOBVL = 2
  336:          ILVSL = .TRUE.
  337:       ELSE
  338:          IJOBVL = -1
  339:          ILVSL = .FALSE.
  340:       END IF
  341: *
  342:       IF( LSAME( JOBVSR, 'N' ) ) THEN
  343:          IJOBVR = 1
  344:          ILVSR = .FALSE.
  345:       ELSE IF( LSAME( JOBVSR, 'V' ) ) THEN
  346:          IJOBVR = 2
  347:          ILVSR = .TRUE.
  348:       ELSE
  349:          IJOBVR = -1
  350:          ILVSR = .FALSE.
  351:       END IF
  352: *
  353:       WANTST = LSAME( SORT, 'S' )
  354: *
  355: *     Test the input arguments
  356: *
  357:       INFO = 0
  358:       LQUERY = ( LWORK.EQ.-1 )
  359:       IF( IJOBVL.LE.0 ) THEN
  360:          INFO = -1
  361:       ELSE IF( IJOBVR.LE.0 ) THEN
  362:          INFO = -2
  363:       ELSE IF( ( .NOT.WANTST ) .AND. ( .NOT.LSAME( SORT, 'N' ) ) ) THEN
  364:          INFO = -3
  365:       ELSE IF( N.LT.0 ) THEN
  366:          INFO = -5
  367:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  368:          INFO = -7
  369:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  370:          INFO = -9
  371:       ELSE IF( LDVSL.LT.1 .OR. ( ILVSL .AND. LDVSL.LT.N ) ) THEN
  372:          INFO = -14
  373:       ELSE IF( LDVSR.LT.1 .OR. ( ILVSR .AND. LDVSR.LT.N ) ) THEN
  374:          INFO = -16
  375:       ELSE IF( LWORK.LT.MAX( 1, 2*N ) .AND. .NOT.LQUERY ) THEN
  376:          INFO = -18
  377:       END IF
  378: *
  379: *     Compute workspace
  380: *
  381:       IF( INFO.EQ.0 ) THEN
  382:          CALL ZGEQRF( N, N, B, LDB, WORK, WORK, -1, IERR )
  383:          LWKOPT = MAX( 1,  N + INT ( WORK( 1 ) ) )
  384:          CALL ZUNMQR( 'L', 'C', N, N, N, B, LDB, WORK, A, LDA, WORK,
  385:      $                -1, IERR )
  386:          LWKOPT = MAX( LWKOPT, N + INT ( WORK( 1 ) ) )
  387:          IF( ILVSL ) THEN
  388:             CALL ZUNGQR( N, N, N, VSL, LDVSL, WORK, WORK, -1, IERR )
  389:             LWKOPT = MAX( LWKOPT, N + INT ( WORK( 1 ) ) )
  390:          END IF
  391:          CALL ZGGHD3( JOBVSL, JOBVSR, N, 1, N, A, LDA, B, LDB, VSL,
  392:      $                LDVSL, VSR, LDVSR, WORK, -1, IERR )
  393:          LWKOPT = MAX( LWKOPT, N + INT ( WORK( 1 ) ) )
  394:          CALL ZHGEQZ( 'S', JOBVSL, JOBVSR, N, 1, N, A, LDA, B, LDB,
  395:      $                ALPHA, BETA, VSL, LDVSL, VSR, LDVSR, WORK, -1,
  396:      $                RWORK, IERR )
  397:          LWKOPT = MAX( LWKOPT, INT ( WORK( 1 ) ) )
  398:          IF( WANTST ) THEN
  399:             CALL ZTGSEN( 0, ILVSL, ILVSR, BWORK, N, A, LDA, B, LDB,
  400:      $                   ALPHA, BETA, VSL, LDVSL, VSR, LDVSR, SDIM,
  401:      $                   PVSL, PVSR, DIF, WORK, -1, IDUM, 1, IERR )
  402:             LWKOPT = MAX( LWKOPT, INT ( WORK( 1 ) ) )
  403:          END IF
  404:          WORK( 1 ) = DCMPLX( LWKOPT )
  405:       END IF
  406: *
  407:       IF( INFO.NE.0 ) THEN
  408:          CALL XERBLA( 'ZGGES3 ', -INFO )
  409:          RETURN
  410:       ELSE IF( LQUERY ) THEN
  411:          RETURN
  412:       END IF
  413: *
  414: *     Quick return if possible
  415: *
  416:       IF( N.EQ.0 ) THEN
  417:          SDIM = 0
  418:          RETURN
  419:       END IF
  420: *
  421: *     Get machine constants
  422: *
  423:       EPS = DLAMCH( 'P' )
  424:       SMLNUM = DLAMCH( 'S' )
  425:       BIGNUM = ONE / SMLNUM
  426:       CALL DLABAD( SMLNUM, BIGNUM )
  427:       SMLNUM = SQRT( SMLNUM ) / EPS
  428:       BIGNUM = ONE / SMLNUM
  429: *
  430: *     Scale A if max element outside range [SMLNUM,BIGNUM]
  431: *
  432:       ANRM = ZLANGE( 'M', N, N, A, LDA, RWORK )
  433:       ILASCL = .FALSE.
  434:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
  435:          ANRMTO = SMLNUM
  436:          ILASCL = .TRUE.
  437:       ELSE IF( ANRM.GT.BIGNUM ) THEN
  438:          ANRMTO = BIGNUM
  439:          ILASCL = .TRUE.
  440:       END IF
  441: *
  442:       IF( ILASCL )
  443:      $   CALL ZLASCL( 'G', 0, 0, ANRM, ANRMTO, N, N, A, LDA, IERR )
  444: *
  445: *     Scale B if max element outside range [SMLNUM,BIGNUM]
  446: *
  447:       BNRM = ZLANGE( 'M', N, N, B, LDB, RWORK )
  448:       ILBSCL = .FALSE.
  449:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
  450:          BNRMTO = SMLNUM
  451:          ILBSCL = .TRUE.
  452:       ELSE IF( BNRM.GT.BIGNUM ) THEN
  453:          BNRMTO = BIGNUM
  454:          ILBSCL = .TRUE.
  455:       END IF
  456: *
  457:       IF( ILBSCL )
  458:      $   CALL ZLASCL( 'G', 0, 0, BNRM, BNRMTO, N, N, B, LDB, IERR )
  459: *
  460: *     Permute the matrix to make it more nearly triangular
  461: *
  462:       ILEFT = 1
  463:       IRIGHT = N + 1
  464:       IRWRK = IRIGHT + N
  465:       CALL ZGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, RWORK( ILEFT ),
  466:      $             RWORK( IRIGHT ), RWORK( IRWRK ), IERR )
  467: *
  468: *     Reduce B to triangular form (QR decomposition of B)
  469: *
  470:       IROWS = IHI + 1 - ILO
  471:       ICOLS = N + 1 - ILO
  472:       ITAU = 1
  473:       IWRK = ITAU + IROWS
  474:       CALL ZGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
  475:      $             WORK( IWRK ), LWORK+1-IWRK, IERR )
  476: *
  477: *     Apply the orthogonal transformation to matrix A
  478: *
  479:       CALL ZUNMQR( 'L', 'C', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
  480:      $             WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWRK ),
  481:      $             LWORK+1-IWRK, IERR )
  482: *
  483: *     Initialize VSL
  484: *
  485:       IF( ILVSL ) THEN
  486:          CALL ZLASET( 'Full', N, N, CZERO, CONE, VSL, LDVSL )
  487:          IF( IROWS.GT.1 ) THEN
  488:             CALL ZLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
  489:      $                   VSL( ILO+1, ILO ), LDVSL )
  490:          END IF
  491:          CALL ZUNGQR( IROWS, IROWS, IROWS, VSL( ILO, ILO ), LDVSL,
  492:      $                WORK( ITAU ), WORK( IWRK ), LWORK+1-IWRK, IERR )
  493:       END IF
  494: *
  495: *     Initialize VSR
  496: *
  497:       IF( ILVSR )
  498:      $   CALL ZLASET( 'Full', N, N, CZERO, CONE, VSR, LDVSR )
  499: *
  500: *     Reduce to generalized Hessenberg form
  501: *
  502:       CALL ZGGHD3( JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB, VSL,
  503:      $             LDVSL, VSR, LDVSR, WORK( IWRK ), LWORK+1-IWRK, IERR )
  504: *
  505:       SDIM = 0
  506: *
  507: *     Perform QZ algorithm, computing Schur vectors if desired
  508: *
  509:       IWRK = ITAU
  510:       CALL ZHGEQZ( 'S', JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB,
  511:      $             ALPHA, BETA, VSL, LDVSL, VSR, LDVSR, WORK( IWRK ),
  512:      $             LWORK+1-IWRK, RWORK( IRWRK ), IERR )
  513:       IF( IERR.NE.0 ) THEN
  514:          IF( IERR.GT.0 .AND. IERR.LE.N ) THEN
  515:             INFO = IERR
  516:          ELSE IF( IERR.GT.N .AND. IERR.LE.2*N ) THEN
  517:             INFO = IERR - N
  518:          ELSE
  519:             INFO = N + 1
  520:          END IF
  521:          GO TO 30
  522:       END IF
  523: *
  524: *     Sort eigenvalues ALPHA/BETA if desired
  525: *
  526:       IF( WANTST ) THEN
  527: *
  528: *        Undo scaling on eigenvalues before selecting
  529: *
  530:          IF( ILASCL )
  531:      $      CALL ZLASCL( 'G', 0, 0, ANRM, ANRMTO, N, 1, ALPHA, N, IERR )
  532:          IF( ILBSCL )
  533:      $      CALL ZLASCL( 'G', 0, 0, BNRM, BNRMTO, N, 1, BETA, N, IERR )
  534: *
  535: *        Select eigenvalues
  536: *
  537:          DO 10 I = 1, N
  538:             BWORK( I ) = SELCTG( ALPHA( I ), BETA( I ) )
  539:    10    CONTINUE
  540: *
  541:          CALL ZTGSEN( 0, ILVSL, ILVSR, BWORK, N, A, LDA, B, LDB, ALPHA,
  542:      $                BETA, VSL, LDVSL, VSR, LDVSR, SDIM, PVSL, PVSR,
  543:      $                DIF, WORK( IWRK ), LWORK-IWRK+1, IDUM, 1, IERR )
  544:          IF( IERR.EQ.1 )
  545:      $      INFO = N + 3
  546: *
  547:       END IF
  548: *
  549: *     Apply back-permutation to VSL and VSR
  550: *
  551:       IF( ILVSL )
  552:      $   CALL ZGGBAK( 'P', 'L', N, ILO, IHI, RWORK( ILEFT ),
  553:      $                RWORK( IRIGHT ), N, VSL, LDVSL, IERR )
  554:       IF( ILVSR )
  555:      $   CALL ZGGBAK( 'P', 'R', N, ILO, IHI, RWORK( ILEFT ),
  556:      $                RWORK( IRIGHT ), N, VSR, LDVSR, IERR )
  557: *
  558: *     Undo scaling
  559: *
  560:       IF( ILASCL ) THEN
  561:          CALL ZLASCL( 'U', 0, 0, ANRMTO, ANRM, N, N, A, LDA, IERR )
  562:          CALL ZLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHA, N, IERR )
  563:       END IF
  564: *
  565:       IF( ILBSCL ) THEN
  566:          CALL ZLASCL( 'U', 0, 0, BNRMTO, BNRM, N, N, B, LDB, IERR )
  567:          CALL ZLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
  568:       END IF
  569: *
  570:       IF( WANTST ) THEN
  571: *
  572: *        Check if reordering is correct
  573: *
  574:          LASTSL = .TRUE.
  575:          SDIM = 0
  576:          DO 20 I = 1, N
  577:             CURSL = SELCTG( ALPHA( I ), BETA( I ) )
  578:             IF( CURSL )
  579:      $         SDIM = SDIM + 1
  580:             IF( CURSL .AND. .NOT.LASTSL )
  581:      $         INFO = N + 2
  582:             LASTSL = CURSL
  583:    20    CONTINUE
  584: *
  585:       END IF
  586: *
  587:    30 CONTINUE
  588: *
  589:       WORK( 1 ) = DCMPLX( LWKOPT )
  590: *
  591:       RETURN
  592: *
  593: *     End of ZGGES3
  594: *
  595:       END

CVSweb interface <joel.bertrand@systella.fr>