File:  [local] / rpl / lapack / lapack / zgges.f
Revision 1.19: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:20 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief <b> ZGGES computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors for GE matrices</b>
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZGGES + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgges.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgges.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgges.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZGGES( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, LDB,
   22: *                         SDIM, ALPHA, BETA, VSL, LDVSL, VSR, LDVSR, WORK,
   23: *                         LWORK, RWORK, BWORK, INFO )
   24: *
   25: *       .. Scalar Arguments ..
   26: *       CHARACTER          JOBVSL, JOBVSR, SORT
   27: *       INTEGER            INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N, SDIM
   28: *       ..
   29: *       .. Array Arguments ..
   30: *       LOGICAL            BWORK( * )
   31: *       DOUBLE PRECISION   RWORK( * )
   32: *       COMPLEX*16         A( LDA, * ), ALPHA( * ), B( LDB, * ),
   33: *      $                   BETA( * ), VSL( LDVSL, * ), VSR( LDVSR, * ),
   34: *      $                   WORK( * )
   35: *       ..
   36: *       .. Function Arguments ..
   37: *       LOGICAL            SELCTG
   38: *       EXTERNAL           SELCTG
   39: *       ..
   40: *
   41: *
   42: *> \par Purpose:
   43: *  =============
   44: *>
   45: *> \verbatim
   46: *>
   47: *> ZGGES computes for a pair of N-by-N complex nonsymmetric matrices
   48: *> (A,B), the generalized eigenvalues, the generalized complex Schur
   49: *> form (S, T), and optionally left and/or right Schur vectors (VSL
   50: *> and VSR). This gives the generalized Schur factorization
   51: *>
   52: *>         (A,B) = ( (VSL)*S*(VSR)**H, (VSL)*T*(VSR)**H )
   53: *>
   54: *> where (VSR)**H is the conjugate-transpose of VSR.
   55: *>
   56: *> Optionally, it also orders the eigenvalues so that a selected cluster
   57: *> of eigenvalues appears in the leading diagonal blocks of the upper
   58: *> triangular matrix S and the upper triangular matrix T. The leading
   59: *> columns of VSL and VSR then form an unitary basis for the
   60: *> corresponding left and right eigenspaces (deflating subspaces).
   61: *>
   62: *> (If only the generalized eigenvalues are needed, use the driver
   63: *> ZGGEV instead, which is faster.)
   64: *>
   65: *> A generalized eigenvalue for a pair of matrices (A,B) is a scalar w
   66: *> or a ratio alpha/beta = w, such that  A - w*B is singular.  It is
   67: *> usually represented as the pair (alpha,beta), as there is a
   68: *> reasonable interpretation for beta=0, and even for both being zero.
   69: *>
   70: *> A pair of matrices (S,T) is in generalized complex Schur form if S
   71: *> and T are upper triangular and, in addition, the diagonal elements
   72: *> of T are non-negative real numbers.
   73: *> \endverbatim
   74: *
   75: *  Arguments:
   76: *  ==========
   77: *
   78: *> \param[in] JOBVSL
   79: *> \verbatim
   80: *>          JOBVSL is CHARACTER*1
   81: *>          = 'N':  do not compute the left Schur vectors;
   82: *>          = 'V':  compute the left Schur vectors.
   83: *> \endverbatim
   84: *>
   85: *> \param[in] JOBVSR
   86: *> \verbatim
   87: *>          JOBVSR is CHARACTER*1
   88: *>          = 'N':  do not compute the right Schur vectors;
   89: *>          = 'V':  compute the right Schur vectors.
   90: *> \endverbatim
   91: *>
   92: *> \param[in] SORT
   93: *> \verbatim
   94: *>          SORT is CHARACTER*1
   95: *>          Specifies whether or not to order the eigenvalues on the
   96: *>          diagonal of the generalized Schur form.
   97: *>          = 'N':  Eigenvalues are not ordered;
   98: *>          = 'S':  Eigenvalues are ordered (see SELCTG).
   99: *> \endverbatim
  100: *>
  101: *> \param[in] SELCTG
  102: *> \verbatim
  103: *>          SELCTG is a LOGICAL FUNCTION of two COMPLEX*16 arguments
  104: *>          SELCTG must be declared EXTERNAL in the calling subroutine.
  105: *>          If SORT = 'N', SELCTG is not referenced.
  106: *>          If SORT = 'S', SELCTG is used to select eigenvalues to sort
  107: *>          to the top left of the Schur form.
  108: *>          An eigenvalue ALPHA(j)/BETA(j) is selected if
  109: *>          SELCTG(ALPHA(j),BETA(j)) is true.
  110: *>
  111: *>          Note that a selected complex eigenvalue may no longer satisfy
  112: *>          SELCTG(ALPHA(j),BETA(j)) = .TRUE. after ordering, since
  113: *>          ordering may change the value of complex eigenvalues
  114: *>          (especially if the eigenvalue is ill-conditioned), in this
  115: *>          case INFO is set to N+2 (See INFO below).
  116: *> \endverbatim
  117: *>
  118: *> \param[in] N
  119: *> \verbatim
  120: *>          N is INTEGER
  121: *>          The order of the matrices A, B, VSL, and VSR.  N >= 0.
  122: *> \endverbatim
  123: *>
  124: *> \param[in,out] A
  125: *> \verbatim
  126: *>          A is COMPLEX*16 array, dimension (LDA, N)
  127: *>          On entry, the first of the pair of matrices.
  128: *>          On exit, A has been overwritten by its generalized Schur
  129: *>          form S.
  130: *> \endverbatim
  131: *>
  132: *> \param[in] LDA
  133: *> \verbatim
  134: *>          LDA is INTEGER
  135: *>          The leading dimension of A.  LDA >= max(1,N).
  136: *> \endverbatim
  137: *>
  138: *> \param[in,out] B
  139: *> \verbatim
  140: *>          B is COMPLEX*16 array, dimension (LDB, N)
  141: *>          On entry, the second of the pair of matrices.
  142: *>          On exit, B has been overwritten by its generalized Schur
  143: *>          form T.
  144: *> \endverbatim
  145: *>
  146: *> \param[in] LDB
  147: *> \verbatim
  148: *>          LDB is INTEGER
  149: *>          The leading dimension of B.  LDB >= max(1,N).
  150: *> \endverbatim
  151: *>
  152: *> \param[out] SDIM
  153: *> \verbatim
  154: *>          SDIM is INTEGER
  155: *>          If SORT = 'N', SDIM = 0.
  156: *>          If SORT = 'S', SDIM = number of eigenvalues (after sorting)
  157: *>          for which SELCTG is true.
  158: *> \endverbatim
  159: *>
  160: *> \param[out] ALPHA
  161: *> \verbatim
  162: *>          ALPHA is COMPLEX*16 array, dimension (N)
  163: *> \endverbatim
  164: *>
  165: *> \param[out] BETA
  166: *> \verbatim
  167: *>          BETA is COMPLEX*16 array, dimension (N)
  168: *>          On exit,  ALPHA(j)/BETA(j), j=1,...,N, will be the
  169: *>          generalized eigenvalues.  ALPHA(j), j=1,...,N  and  BETA(j),
  170: *>          j=1,...,N  are the diagonals of the complex Schur form (A,B)
  171: *>          output by ZGGES. The  BETA(j) will be non-negative real.
  172: *>
  173: *>          Note: the quotients ALPHA(j)/BETA(j) may easily over- or
  174: *>          underflow, and BETA(j) may even be zero.  Thus, the user
  175: *>          should avoid naively computing the ratio alpha/beta.
  176: *>          However, ALPHA will be always less than and usually
  177: *>          comparable with norm(A) in magnitude, and BETA always less
  178: *>          than and usually comparable with norm(B).
  179: *> \endverbatim
  180: *>
  181: *> \param[out] VSL
  182: *> \verbatim
  183: *>          VSL is COMPLEX*16 array, dimension (LDVSL,N)
  184: *>          If JOBVSL = 'V', VSL will contain the left Schur vectors.
  185: *>          Not referenced if JOBVSL = 'N'.
  186: *> \endverbatim
  187: *>
  188: *> \param[in] LDVSL
  189: *> \verbatim
  190: *>          LDVSL is INTEGER
  191: *>          The leading dimension of the matrix VSL. LDVSL >= 1, and
  192: *>          if JOBVSL = 'V', LDVSL >= N.
  193: *> \endverbatim
  194: *>
  195: *> \param[out] VSR
  196: *> \verbatim
  197: *>          VSR is COMPLEX*16 array, dimension (LDVSR,N)
  198: *>          If JOBVSR = 'V', VSR will contain the right Schur vectors.
  199: *>          Not referenced if JOBVSR = 'N'.
  200: *> \endverbatim
  201: *>
  202: *> \param[in] LDVSR
  203: *> \verbatim
  204: *>          LDVSR is INTEGER
  205: *>          The leading dimension of the matrix VSR. LDVSR >= 1, and
  206: *>          if JOBVSR = 'V', LDVSR >= N.
  207: *> \endverbatim
  208: *>
  209: *> \param[out] WORK
  210: *> \verbatim
  211: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
  212: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  213: *> \endverbatim
  214: *>
  215: *> \param[in] LWORK
  216: *> \verbatim
  217: *>          LWORK is INTEGER
  218: *>          The dimension of the array WORK.  LWORK >= max(1,2*N).
  219: *>          For good performance, LWORK must generally be larger.
  220: *>
  221: *>          If LWORK = -1, then a workspace query is assumed; the routine
  222: *>          only calculates the optimal size of the WORK array, returns
  223: *>          this value as the first entry of the WORK array, and no error
  224: *>          message related to LWORK is issued by XERBLA.
  225: *> \endverbatim
  226: *>
  227: *> \param[out] RWORK
  228: *> \verbatim
  229: *>          RWORK is DOUBLE PRECISION array, dimension (8*N)
  230: *> \endverbatim
  231: *>
  232: *> \param[out] BWORK
  233: *> \verbatim
  234: *>          BWORK is LOGICAL array, dimension (N)
  235: *>          Not referenced if SORT = 'N'.
  236: *> \endverbatim
  237: *>
  238: *> \param[out] INFO
  239: *> \verbatim
  240: *>          INFO is INTEGER
  241: *>          = 0:  successful exit
  242: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
  243: *>          =1,...,N:
  244: *>                The QZ iteration failed.  (A,B) are not in Schur
  245: *>                form, but ALPHA(j) and BETA(j) should be correct for
  246: *>                j=INFO+1,...,N.
  247: *>          > N:  =N+1: other than QZ iteration failed in ZHGEQZ
  248: *>                =N+2: after reordering, roundoff changed values of
  249: *>                      some complex eigenvalues so that leading
  250: *>                      eigenvalues in the Generalized Schur form no
  251: *>                      longer satisfy SELCTG=.TRUE.  This could also
  252: *>                      be caused due to scaling.
  253: *>                =N+3: reordering failed in ZTGSEN.
  254: *> \endverbatim
  255: *
  256: *  Authors:
  257: *  ========
  258: *
  259: *> \author Univ. of Tennessee
  260: *> \author Univ. of California Berkeley
  261: *> \author Univ. of Colorado Denver
  262: *> \author NAG Ltd.
  263: *
  264: *> \ingroup complex16GEeigen
  265: *
  266: *  =====================================================================
  267:       SUBROUTINE ZGGES( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, LDB,
  268:      $                  SDIM, ALPHA, BETA, VSL, LDVSL, VSR, LDVSR, WORK,
  269:      $                  LWORK, RWORK, BWORK, INFO )
  270: *
  271: *  -- LAPACK driver routine --
  272: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  273: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  274: *
  275: *     .. Scalar Arguments ..
  276:       CHARACTER          JOBVSL, JOBVSR, SORT
  277:       INTEGER            INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N, SDIM
  278: *     ..
  279: *     .. Array Arguments ..
  280:       LOGICAL            BWORK( * )
  281:       DOUBLE PRECISION   RWORK( * )
  282:       COMPLEX*16         A( LDA, * ), ALPHA( * ), B( LDB, * ),
  283:      $                   BETA( * ), VSL( LDVSL, * ), VSR( LDVSR, * ),
  284:      $                   WORK( * )
  285: *     ..
  286: *     .. Function Arguments ..
  287:       LOGICAL            SELCTG
  288:       EXTERNAL           SELCTG
  289: *     ..
  290: *
  291: *  =====================================================================
  292: *
  293: *     .. Parameters ..
  294:       DOUBLE PRECISION   ZERO, ONE
  295:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
  296:       COMPLEX*16         CZERO, CONE
  297:       PARAMETER          ( CZERO = ( 0.0D0, 0.0D0 ),
  298:      $                   CONE = ( 1.0D0, 0.0D0 ) )
  299: *     ..
  300: *     .. Local Scalars ..
  301:       LOGICAL            CURSL, ILASCL, ILBSCL, ILVSL, ILVSR, LASTSL,
  302:      $                   LQUERY, WANTST
  303:       INTEGER            I, ICOLS, IERR, IHI, IJOBVL, IJOBVR, ILEFT,
  304:      $                   ILO, IRIGHT, IROWS, IRWRK, ITAU, IWRK, LWKMIN,
  305:      $                   LWKOPT
  306:       DOUBLE PRECISION   ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS, PVSL,
  307:      $                   PVSR, SMLNUM
  308: *     ..
  309: *     .. Local Arrays ..
  310:       INTEGER            IDUM( 1 )
  311:       DOUBLE PRECISION   DIF( 2 )
  312: *     ..
  313: *     .. External Subroutines ..
  314:       EXTERNAL           DLABAD, XERBLA, ZGEQRF, ZGGBAK, ZGGBAL, ZGGHRD,
  315:      $                   ZHGEQZ, ZLACPY, ZLASCL, ZLASET, ZTGSEN, ZUNGQR,
  316:      $                   ZUNMQR
  317: *     ..
  318: *     .. External Functions ..
  319:       LOGICAL            LSAME
  320:       INTEGER            ILAENV
  321:       DOUBLE PRECISION   DLAMCH, ZLANGE
  322:       EXTERNAL           LSAME, ILAENV, DLAMCH, ZLANGE
  323: *     ..
  324: *     .. Intrinsic Functions ..
  325:       INTRINSIC          MAX, SQRT
  326: *     ..
  327: *     .. Executable Statements ..
  328: *
  329: *     Decode the input arguments
  330: *
  331:       IF( LSAME( JOBVSL, 'N' ) ) THEN
  332:          IJOBVL = 1
  333:          ILVSL = .FALSE.
  334:       ELSE IF( LSAME( JOBVSL, 'V' ) ) THEN
  335:          IJOBVL = 2
  336:          ILVSL = .TRUE.
  337:       ELSE
  338:          IJOBVL = -1
  339:          ILVSL = .FALSE.
  340:       END IF
  341: *
  342:       IF( LSAME( JOBVSR, 'N' ) ) THEN
  343:          IJOBVR = 1
  344:          ILVSR = .FALSE.
  345:       ELSE IF( LSAME( JOBVSR, 'V' ) ) THEN
  346:          IJOBVR = 2
  347:          ILVSR = .TRUE.
  348:       ELSE
  349:          IJOBVR = -1
  350:          ILVSR = .FALSE.
  351:       END IF
  352: *
  353:       WANTST = LSAME( SORT, 'S' )
  354: *
  355: *     Test the input arguments
  356: *
  357:       INFO = 0
  358:       LQUERY = ( LWORK.EQ.-1 )
  359:       IF( IJOBVL.LE.0 ) THEN
  360:          INFO = -1
  361:       ELSE IF( IJOBVR.LE.0 ) THEN
  362:          INFO = -2
  363:       ELSE IF( ( .NOT.WANTST ) .AND. ( .NOT.LSAME( SORT, 'N' ) ) ) THEN
  364:          INFO = -3
  365:       ELSE IF( N.LT.0 ) THEN
  366:          INFO = -5
  367:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  368:          INFO = -7
  369:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  370:          INFO = -9
  371:       ELSE IF( LDVSL.LT.1 .OR. ( ILVSL .AND. LDVSL.LT.N ) ) THEN
  372:          INFO = -14
  373:       ELSE IF( LDVSR.LT.1 .OR. ( ILVSR .AND. LDVSR.LT.N ) ) THEN
  374:          INFO = -16
  375:       END IF
  376: *
  377: *     Compute workspace
  378: *      (Note: Comments in the code beginning "Workspace:" describe the
  379: *       minimal amount of workspace needed at that point in the code,
  380: *       as well as the preferred amount for good performance.
  381: *       NB refers to the optimal block size for the immediately
  382: *       following subroutine, as returned by ILAENV.)
  383: *
  384:       IF( INFO.EQ.0 ) THEN
  385:          LWKMIN = MAX( 1, 2*N )
  386:          LWKOPT = MAX( 1, N + N*ILAENV( 1, 'ZGEQRF', ' ', N, 1, N, 0 ) )
  387:          LWKOPT = MAX( LWKOPT, N +
  388:      $                 N*ILAENV( 1, 'ZUNMQR', ' ', N, 1, N, -1 ) )
  389:          IF( ILVSL ) THEN
  390:             LWKOPT = MAX( LWKOPT, N +
  391:      $                    N*ILAENV( 1, 'ZUNGQR', ' ', N, 1, N, -1 ) )
  392:          END IF
  393:          WORK( 1 ) = LWKOPT
  394: *
  395:          IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY )
  396:      $      INFO = -18
  397:       END IF
  398: *
  399:       IF( INFO.NE.0 ) THEN
  400:          CALL XERBLA( 'ZGGES ', -INFO )
  401:          RETURN
  402:       ELSE IF( LQUERY ) THEN
  403:          RETURN
  404:       END IF
  405: *
  406: *     Quick return if possible
  407: *
  408:       IF( N.EQ.0 ) THEN
  409:          SDIM = 0
  410:          RETURN
  411:       END IF
  412: *
  413: *     Get machine constants
  414: *
  415:       EPS = DLAMCH( 'P' )
  416:       SMLNUM = DLAMCH( 'S' )
  417:       BIGNUM = ONE / SMLNUM
  418:       CALL DLABAD( SMLNUM, BIGNUM )
  419:       SMLNUM = SQRT( SMLNUM ) / EPS
  420:       BIGNUM = ONE / SMLNUM
  421: *
  422: *     Scale A if max element outside range [SMLNUM,BIGNUM]
  423: *
  424:       ANRM = ZLANGE( 'M', N, N, A, LDA, RWORK )
  425:       ILASCL = .FALSE.
  426:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
  427:          ANRMTO = SMLNUM
  428:          ILASCL = .TRUE.
  429:       ELSE IF( ANRM.GT.BIGNUM ) THEN
  430:          ANRMTO = BIGNUM
  431:          ILASCL = .TRUE.
  432:       END IF
  433: *
  434:       IF( ILASCL )
  435:      $   CALL ZLASCL( 'G', 0, 0, ANRM, ANRMTO, N, N, A, LDA, IERR )
  436: *
  437: *     Scale B if max element outside range [SMLNUM,BIGNUM]
  438: *
  439:       BNRM = ZLANGE( 'M', N, N, B, LDB, RWORK )
  440:       ILBSCL = .FALSE.
  441:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
  442:          BNRMTO = SMLNUM
  443:          ILBSCL = .TRUE.
  444:       ELSE IF( BNRM.GT.BIGNUM ) THEN
  445:          BNRMTO = BIGNUM
  446:          ILBSCL = .TRUE.
  447:       END IF
  448: *
  449:       IF( ILBSCL )
  450:      $   CALL ZLASCL( 'G', 0, 0, BNRM, BNRMTO, N, N, B, LDB, IERR )
  451: *
  452: *     Permute the matrix to make it more nearly triangular
  453: *     (Real Workspace: need 6*N)
  454: *
  455:       ILEFT = 1
  456:       IRIGHT = N + 1
  457:       IRWRK = IRIGHT + N
  458:       CALL ZGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, RWORK( ILEFT ),
  459:      $             RWORK( IRIGHT ), RWORK( IRWRK ), IERR )
  460: *
  461: *     Reduce B to triangular form (QR decomposition of B)
  462: *     (Complex Workspace: need N, prefer N*NB)
  463: *
  464:       IROWS = IHI + 1 - ILO
  465:       ICOLS = N + 1 - ILO
  466:       ITAU = 1
  467:       IWRK = ITAU + IROWS
  468:       CALL ZGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
  469:      $             WORK( IWRK ), LWORK+1-IWRK, IERR )
  470: *
  471: *     Apply the orthogonal transformation to matrix A
  472: *     (Complex Workspace: need N, prefer N*NB)
  473: *
  474:       CALL ZUNMQR( 'L', 'C', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
  475:      $             WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWRK ),
  476:      $             LWORK+1-IWRK, IERR )
  477: *
  478: *     Initialize VSL
  479: *     (Complex Workspace: need N, prefer N*NB)
  480: *
  481:       IF( ILVSL ) THEN
  482:          CALL ZLASET( 'Full', N, N, CZERO, CONE, VSL, LDVSL )
  483:          IF( IROWS.GT.1 ) THEN
  484:             CALL ZLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
  485:      $                   VSL( ILO+1, ILO ), LDVSL )
  486:          END IF
  487:          CALL ZUNGQR( IROWS, IROWS, IROWS, VSL( ILO, ILO ), LDVSL,
  488:      $                WORK( ITAU ), WORK( IWRK ), LWORK+1-IWRK, IERR )
  489:       END IF
  490: *
  491: *     Initialize VSR
  492: *
  493:       IF( ILVSR )
  494:      $   CALL ZLASET( 'Full', N, N, CZERO, CONE, VSR, LDVSR )
  495: *
  496: *     Reduce to generalized Hessenberg form
  497: *     (Workspace: none needed)
  498: *
  499:       CALL ZGGHRD( JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB, VSL,
  500:      $             LDVSL, VSR, LDVSR, IERR )
  501: *
  502:       SDIM = 0
  503: *
  504: *     Perform QZ algorithm, computing Schur vectors if desired
  505: *     (Complex Workspace: need N)
  506: *     (Real Workspace: need N)
  507: *
  508:       IWRK = ITAU
  509:       CALL ZHGEQZ( 'S', JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB,
  510:      $             ALPHA, BETA, VSL, LDVSL, VSR, LDVSR, WORK( IWRK ),
  511:      $             LWORK+1-IWRK, RWORK( IRWRK ), IERR )
  512:       IF( IERR.NE.0 ) THEN
  513:          IF( IERR.GT.0 .AND. IERR.LE.N ) THEN
  514:             INFO = IERR
  515:          ELSE IF( IERR.GT.N .AND. IERR.LE.2*N ) THEN
  516:             INFO = IERR - N
  517:          ELSE
  518:             INFO = N + 1
  519:          END IF
  520:          GO TO 30
  521:       END IF
  522: *
  523: *     Sort eigenvalues ALPHA/BETA if desired
  524: *     (Workspace: none needed)
  525: *
  526:       IF( WANTST ) THEN
  527: *
  528: *        Undo scaling on eigenvalues before selecting
  529: *
  530:          IF( ILASCL )
  531:      $      CALL ZLASCL( 'G', 0, 0, ANRM, ANRMTO, N, 1, ALPHA, N, IERR )
  532:          IF( ILBSCL )
  533:      $      CALL ZLASCL( 'G', 0, 0, BNRM, BNRMTO, N, 1, BETA, N, IERR )
  534: *
  535: *        Select eigenvalues
  536: *
  537:          DO 10 I = 1, N
  538:             BWORK( I ) = SELCTG( ALPHA( I ), BETA( I ) )
  539:    10    CONTINUE
  540: *
  541:          CALL ZTGSEN( 0, ILVSL, ILVSR, BWORK, N, A, LDA, B, LDB, ALPHA,
  542:      $                BETA, VSL, LDVSL, VSR, LDVSR, SDIM, PVSL, PVSR,
  543:      $                DIF, WORK( IWRK ), LWORK-IWRK+1, IDUM, 1, IERR )
  544:          IF( IERR.EQ.1 )
  545:      $      INFO = N + 3
  546: *
  547:       END IF
  548: *
  549: *     Apply back-permutation to VSL and VSR
  550: *     (Workspace: none needed)
  551: *
  552:       IF( ILVSL )
  553:      $   CALL ZGGBAK( 'P', 'L', N, ILO, IHI, RWORK( ILEFT ),
  554:      $                RWORK( IRIGHT ), N, VSL, LDVSL, IERR )
  555:       IF( ILVSR )
  556:      $   CALL ZGGBAK( 'P', 'R', N, ILO, IHI, RWORK( ILEFT ),
  557:      $                RWORK( IRIGHT ), N, VSR, LDVSR, IERR )
  558: *
  559: *     Undo scaling
  560: *
  561:       IF( ILASCL ) THEN
  562:          CALL ZLASCL( 'U', 0, 0, ANRMTO, ANRM, N, N, A, LDA, IERR )
  563:          CALL ZLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHA, N, IERR )
  564:       END IF
  565: *
  566:       IF( ILBSCL ) THEN
  567:          CALL ZLASCL( 'U', 0, 0, BNRMTO, BNRM, N, N, B, LDB, IERR )
  568:          CALL ZLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
  569:       END IF
  570: *
  571:       IF( WANTST ) THEN
  572: *
  573: *        Check if reordering is correct
  574: *
  575:          LASTSL = .TRUE.
  576:          SDIM = 0
  577:          DO 20 I = 1, N
  578:             CURSL = SELCTG( ALPHA( I ), BETA( I ) )
  579:             IF( CURSL )
  580:      $         SDIM = SDIM + 1
  581:             IF( CURSL .AND. .NOT.LASTSL )
  582:      $         INFO = N + 2
  583:             LASTSL = CURSL
  584:    20    CONTINUE
  585: *
  586:       END IF
  587: *
  588:    30 CONTINUE
  589: *
  590:       WORK( 1 ) = LWKOPT
  591: *
  592:       RETURN
  593: *
  594: *     End of ZGGES
  595: *
  596:       END

CVSweb interface <joel.bertrand@systella.fr>