Annotation of rpl/lapack/lapack/zgges.f, revision 1.7

1.1       bertrand    1:       SUBROUTINE ZGGES( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, LDB,
                      2:      $                  SDIM, ALPHA, BETA, VSL, LDVSL, VSR, LDVSR, WORK,
                      3:      $                  LWORK, RWORK, BWORK, INFO )
                      4: *
                      5: *  -- LAPACK driver routine (version 3.2) --
                      6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      8: *     November 2006
                      9: *
                     10: *     .. Scalar Arguments ..
                     11:       CHARACTER          JOBVSL, JOBVSR, SORT
                     12:       INTEGER            INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N, SDIM
                     13: *     ..
                     14: *     .. Array Arguments ..
                     15:       LOGICAL            BWORK( * )
                     16:       DOUBLE PRECISION   RWORK( * )
                     17:       COMPLEX*16         A( LDA, * ), ALPHA( * ), B( LDB, * ),
                     18:      $                   BETA( * ), VSL( LDVSL, * ), VSR( LDVSR, * ),
                     19:      $                   WORK( * )
                     20: *     ..
                     21: *     .. Function Arguments ..
                     22:       LOGICAL            SELCTG
                     23:       EXTERNAL           SELCTG
                     24: *     ..
                     25: *
                     26: *  Purpose
                     27: *  =======
                     28: *
                     29: *  ZGGES computes for a pair of N-by-N complex nonsymmetric matrices
                     30: *  (A,B), the generalized eigenvalues, the generalized complex Schur
                     31: *  form (S, T), and optionally left and/or right Schur vectors (VSL
                     32: *  and VSR). This gives the generalized Schur factorization
                     33: *
                     34: *          (A,B) = ( (VSL)*S*(VSR)**H, (VSL)*T*(VSR)**H )
                     35: *
                     36: *  where (VSR)**H is the conjugate-transpose of VSR.
                     37: *
                     38: *  Optionally, it also orders the eigenvalues so that a selected cluster
                     39: *  of eigenvalues appears in the leading diagonal blocks of the upper
                     40: *  triangular matrix S and the upper triangular matrix T. The leading
                     41: *  columns of VSL and VSR then form an unitary basis for the
                     42: *  corresponding left and right eigenspaces (deflating subspaces).
                     43: *
                     44: *  (If only the generalized eigenvalues are needed, use the driver
                     45: *  ZGGEV instead, which is faster.)
                     46: *
                     47: *  A generalized eigenvalue for a pair of matrices (A,B) is a scalar w
                     48: *  or a ratio alpha/beta = w, such that  A - w*B is singular.  It is
                     49: *  usually represented as the pair (alpha,beta), as there is a
                     50: *  reasonable interpretation for beta=0, and even for both being zero.
                     51: *
                     52: *  A pair of matrices (S,T) is in generalized complex Schur form if S
                     53: *  and T are upper triangular and, in addition, the diagonal elements
                     54: *  of T are non-negative real numbers.
                     55: *
                     56: *  Arguments
                     57: *  =========
                     58: *
                     59: *  JOBVSL  (input) CHARACTER*1
                     60: *          = 'N':  do not compute the left Schur vectors;
                     61: *          = 'V':  compute the left Schur vectors.
                     62: *
                     63: *  JOBVSR  (input) CHARACTER*1
                     64: *          = 'N':  do not compute the right Schur vectors;
                     65: *          = 'V':  compute the right Schur vectors.
                     66: *
                     67: *  SORT    (input) CHARACTER*1
                     68: *          Specifies whether or not to order the eigenvalues on the
                     69: *          diagonal of the generalized Schur form.
                     70: *          = 'N':  Eigenvalues are not ordered;
                     71: *          = 'S':  Eigenvalues are ordered (see SELCTG).
                     72: *
                     73: *  SELCTG  (external procedure) LOGICAL FUNCTION of two COMPLEX*16 arguments
                     74: *          SELCTG must be declared EXTERNAL in the calling subroutine.
                     75: *          If SORT = 'N', SELCTG is not referenced.
                     76: *          If SORT = 'S', SELCTG is used to select eigenvalues to sort
                     77: *          to the top left of the Schur form.
                     78: *          An eigenvalue ALPHA(j)/BETA(j) is selected if
                     79: *          SELCTG(ALPHA(j),BETA(j)) is true.
                     80: *
                     81: *          Note that a selected complex eigenvalue may no longer satisfy
                     82: *          SELCTG(ALPHA(j),BETA(j)) = .TRUE. after ordering, since
                     83: *          ordering may change the value of complex eigenvalues
                     84: *          (especially if the eigenvalue is ill-conditioned), in this
                     85: *          case INFO is set to N+2 (See INFO below).
                     86: *
                     87: *  N       (input) INTEGER
                     88: *          The order of the matrices A, B, VSL, and VSR.  N >= 0.
                     89: *
                     90: *  A       (input/output) COMPLEX*16 array, dimension (LDA, N)
                     91: *          On entry, the first of the pair of matrices.
                     92: *          On exit, A has been overwritten by its generalized Schur
                     93: *          form S.
                     94: *
                     95: *  LDA     (input) INTEGER
                     96: *          The leading dimension of A.  LDA >= max(1,N).
                     97: *
                     98: *  B       (input/output) COMPLEX*16 array, dimension (LDB, N)
                     99: *          On entry, the second of the pair of matrices.
                    100: *          On exit, B has been overwritten by its generalized Schur
                    101: *          form T.
                    102: *
                    103: *  LDB     (input) INTEGER
                    104: *          The leading dimension of B.  LDB >= max(1,N).
                    105: *
                    106: *  SDIM    (output) INTEGER
                    107: *          If SORT = 'N', SDIM = 0.
                    108: *          If SORT = 'S', SDIM = number of eigenvalues (after sorting)
                    109: *          for which SELCTG is true.
                    110: *
                    111: *  ALPHA   (output) COMPLEX*16 array, dimension (N)
                    112: *  BETA    (output) COMPLEX*16 array, dimension (N)
                    113: *          On exit,  ALPHA(j)/BETA(j), j=1,...,N, will be the
                    114: *          generalized eigenvalues.  ALPHA(j), j=1,...,N  and  BETA(j),
                    115: *          j=1,...,N  are the diagonals of the complex Schur form (A,B)
                    116: *          output by ZGGES. The  BETA(j) will be non-negative real.
                    117: *
                    118: *          Note: the quotients ALPHA(j)/BETA(j) may easily over- or
                    119: *          underflow, and BETA(j) may even be zero.  Thus, the user
                    120: *          should avoid naively computing the ratio alpha/beta.
                    121: *          However, ALPHA will be always less than and usually
                    122: *          comparable with norm(A) in magnitude, and BETA always less
                    123: *          than and usually comparable with norm(B).
                    124: *
                    125: *  VSL     (output) COMPLEX*16 array, dimension (LDVSL,N)
                    126: *          If JOBVSL = 'V', VSL will contain the left Schur vectors.
                    127: *          Not referenced if JOBVSL = 'N'.
                    128: *
                    129: *  LDVSL   (input) INTEGER
                    130: *          The leading dimension of the matrix VSL. LDVSL >= 1, and
                    131: *          if JOBVSL = 'V', LDVSL >= N.
                    132: *
                    133: *  VSR     (output) COMPLEX*16 array, dimension (LDVSR,N)
                    134: *          If JOBVSR = 'V', VSR will contain the right Schur vectors.
                    135: *          Not referenced if JOBVSR = 'N'.
                    136: *
                    137: *  LDVSR   (input) INTEGER
                    138: *          The leading dimension of the matrix VSR. LDVSR >= 1, and
                    139: *          if JOBVSR = 'V', LDVSR >= N.
                    140: *
                    141: *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
                    142: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    143: *
                    144: *  LWORK   (input) INTEGER
                    145: *          The dimension of the array WORK.  LWORK >= max(1,2*N).
                    146: *          For good performance, LWORK must generally be larger.
                    147: *
                    148: *          If LWORK = -1, then a workspace query is assumed; the routine
                    149: *          only calculates the optimal size of the WORK array, returns
                    150: *          this value as the first entry of the WORK array, and no error
                    151: *          message related to LWORK is issued by XERBLA.
                    152: *
                    153: *  RWORK   (workspace) DOUBLE PRECISION array, dimension (8*N)
                    154: *
                    155: *  BWORK   (workspace) LOGICAL array, dimension (N)
                    156: *          Not referenced if SORT = 'N'.
                    157: *
                    158: *  INFO    (output) INTEGER
                    159: *          = 0:  successful exit
                    160: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
                    161: *          =1,...,N:
                    162: *                The QZ iteration failed.  (A,B) are not in Schur
                    163: *                form, but ALPHA(j) and BETA(j) should be correct for
                    164: *                j=INFO+1,...,N.
                    165: *          > N:  =N+1: other than QZ iteration failed in ZHGEQZ
                    166: *                =N+2: after reordering, roundoff changed values of
                    167: *                      some complex eigenvalues so that leading
                    168: *                      eigenvalues in the Generalized Schur form no
                    169: *                      longer satisfy SELCTG=.TRUE.  This could also
                    170: *                      be caused due to scaling.
                    171: *                =N+3: reordering falied in ZTGSEN.
                    172: *
                    173: *  =====================================================================
                    174: *
                    175: *     .. Parameters ..
                    176:       DOUBLE PRECISION   ZERO, ONE
                    177:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
                    178:       COMPLEX*16         CZERO, CONE
                    179:       PARAMETER          ( CZERO = ( 0.0D0, 0.0D0 ),
                    180:      $                   CONE = ( 1.0D0, 0.0D0 ) )
                    181: *     ..
                    182: *     .. Local Scalars ..
                    183:       LOGICAL            CURSL, ILASCL, ILBSCL, ILVSL, ILVSR, LASTSL,
                    184:      $                   LQUERY, WANTST
                    185:       INTEGER            I, ICOLS, IERR, IHI, IJOBVL, IJOBVR, ILEFT,
                    186:      $                   ILO, IRIGHT, IROWS, IRWRK, ITAU, IWRK, LWKMIN,
                    187:      $                   LWKOPT
                    188:       DOUBLE PRECISION   ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS, PVSL,
                    189:      $                   PVSR, SMLNUM
                    190: *     ..
                    191: *     .. Local Arrays ..
                    192:       INTEGER            IDUM( 1 )
                    193:       DOUBLE PRECISION   DIF( 2 )
                    194: *     ..
                    195: *     .. External Subroutines ..
                    196:       EXTERNAL           DLABAD, XERBLA, ZGEQRF, ZGGBAK, ZGGBAL, ZGGHRD,
                    197:      $                   ZHGEQZ, ZLACPY, ZLASCL, ZLASET, ZTGSEN, ZUNGQR,
                    198:      $                   ZUNMQR
                    199: *     ..
                    200: *     .. External Functions ..
                    201:       LOGICAL            LSAME
                    202:       INTEGER            ILAENV
                    203:       DOUBLE PRECISION   DLAMCH, ZLANGE
                    204:       EXTERNAL           LSAME, ILAENV, DLAMCH, ZLANGE
                    205: *     ..
                    206: *     .. Intrinsic Functions ..
                    207:       INTRINSIC          MAX, SQRT
                    208: *     ..
                    209: *     .. Executable Statements ..
                    210: *
                    211: *     Decode the input arguments
                    212: *
                    213:       IF( LSAME( JOBVSL, 'N' ) ) THEN
                    214:          IJOBVL = 1
                    215:          ILVSL = .FALSE.
                    216:       ELSE IF( LSAME( JOBVSL, 'V' ) ) THEN
                    217:          IJOBVL = 2
                    218:          ILVSL = .TRUE.
                    219:       ELSE
                    220:          IJOBVL = -1
                    221:          ILVSL = .FALSE.
                    222:       END IF
                    223: *
                    224:       IF( LSAME( JOBVSR, 'N' ) ) THEN
                    225:          IJOBVR = 1
                    226:          ILVSR = .FALSE.
                    227:       ELSE IF( LSAME( JOBVSR, 'V' ) ) THEN
                    228:          IJOBVR = 2
                    229:          ILVSR = .TRUE.
                    230:       ELSE
                    231:          IJOBVR = -1
                    232:          ILVSR = .FALSE.
                    233:       END IF
                    234: *
                    235:       WANTST = LSAME( SORT, 'S' )
                    236: *
                    237: *     Test the input arguments
                    238: *
                    239:       INFO = 0
                    240:       LQUERY = ( LWORK.EQ.-1 )
                    241:       IF( IJOBVL.LE.0 ) THEN
                    242:          INFO = -1
                    243:       ELSE IF( IJOBVR.LE.0 ) THEN
                    244:          INFO = -2
                    245:       ELSE IF( ( .NOT.WANTST ) .AND. ( .NOT.LSAME( SORT, 'N' ) ) ) THEN
                    246:          INFO = -3
                    247:       ELSE IF( N.LT.0 ) THEN
                    248:          INFO = -5
                    249:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    250:          INFO = -7
                    251:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    252:          INFO = -9
                    253:       ELSE IF( LDVSL.LT.1 .OR. ( ILVSL .AND. LDVSL.LT.N ) ) THEN
                    254:          INFO = -14
                    255:       ELSE IF( LDVSR.LT.1 .OR. ( ILVSR .AND. LDVSR.LT.N ) ) THEN
                    256:          INFO = -16
                    257:       END IF
                    258: *
                    259: *     Compute workspace
                    260: *      (Note: Comments in the code beginning "Workspace:" describe the
                    261: *       minimal amount of workspace needed at that point in the code,
                    262: *       as well as the preferred amount for good performance.
                    263: *       NB refers to the optimal block size for the immediately
                    264: *       following subroutine, as returned by ILAENV.)
                    265: *
                    266:       IF( INFO.EQ.0 ) THEN
                    267:          LWKMIN = MAX( 1, 2*N )
                    268:          LWKOPT = MAX( 1, N + N*ILAENV( 1, 'ZGEQRF', ' ', N, 1, N, 0 ) )
                    269:          LWKOPT = MAX( LWKOPT, N +
                    270:      $                 N*ILAENV( 1, 'ZUNMQR', ' ', N, 1, N, -1 ) )
                    271:          IF( ILVSL ) THEN
                    272:             LWKOPT = MAX( LWKOPT, N +
                    273:      $                    N*ILAENV( 1, 'ZUNGQR', ' ', N, 1, N, -1 ) )
                    274:          END IF
                    275:          WORK( 1 ) = LWKOPT
                    276: *
                    277:          IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY )
                    278:      $      INFO = -18
                    279:       END IF
                    280: *
                    281:       IF( INFO.NE.0 ) THEN
                    282:          CALL XERBLA( 'ZGGES ', -INFO )
                    283:          RETURN
                    284:       ELSE IF( LQUERY ) THEN
                    285:          RETURN
                    286:       END IF
                    287: *
                    288: *     Quick return if possible
                    289: *
                    290:       IF( N.EQ.0 ) THEN
                    291:          SDIM = 0
                    292:          RETURN
                    293:       END IF
                    294: *
                    295: *     Get machine constants
                    296: *
                    297:       EPS = DLAMCH( 'P' )
                    298:       SMLNUM = DLAMCH( 'S' )
                    299:       BIGNUM = ONE / SMLNUM
                    300:       CALL DLABAD( SMLNUM, BIGNUM )
                    301:       SMLNUM = SQRT( SMLNUM ) / EPS
                    302:       BIGNUM = ONE / SMLNUM
                    303: *
                    304: *     Scale A if max element outside range [SMLNUM,BIGNUM]
                    305: *
                    306:       ANRM = ZLANGE( 'M', N, N, A, LDA, RWORK )
                    307:       ILASCL = .FALSE.
                    308:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
                    309:          ANRMTO = SMLNUM
                    310:          ILASCL = .TRUE.
                    311:       ELSE IF( ANRM.GT.BIGNUM ) THEN
                    312:          ANRMTO = BIGNUM
                    313:          ILASCL = .TRUE.
                    314:       END IF
                    315: *
                    316:       IF( ILASCL )
                    317:      $   CALL ZLASCL( 'G', 0, 0, ANRM, ANRMTO, N, N, A, LDA, IERR )
                    318: *
                    319: *     Scale B if max element outside range [SMLNUM,BIGNUM]
                    320: *
                    321:       BNRM = ZLANGE( 'M', N, N, B, LDB, RWORK )
                    322:       ILBSCL = .FALSE.
                    323:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
                    324:          BNRMTO = SMLNUM
                    325:          ILBSCL = .TRUE.
                    326:       ELSE IF( BNRM.GT.BIGNUM ) THEN
                    327:          BNRMTO = BIGNUM
                    328:          ILBSCL = .TRUE.
                    329:       END IF
                    330: *
                    331:       IF( ILBSCL )
                    332:      $   CALL ZLASCL( 'G', 0, 0, BNRM, BNRMTO, N, N, B, LDB, IERR )
                    333: *
                    334: *     Permute the matrix to make it more nearly triangular
                    335: *     (Real Workspace: need 6*N)
                    336: *
                    337:       ILEFT = 1
                    338:       IRIGHT = N + 1
                    339:       IRWRK = IRIGHT + N
                    340:       CALL ZGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, RWORK( ILEFT ),
                    341:      $             RWORK( IRIGHT ), RWORK( IRWRK ), IERR )
                    342: *
                    343: *     Reduce B to triangular form (QR decomposition of B)
                    344: *     (Complex Workspace: need N, prefer N*NB)
                    345: *
                    346:       IROWS = IHI + 1 - ILO
                    347:       ICOLS = N + 1 - ILO
                    348:       ITAU = 1
                    349:       IWRK = ITAU + IROWS
                    350:       CALL ZGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
                    351:      $             WORK( IWRK ), LWORK+1-IWRK, IERR )
                    352: *
                    353: *     Apply the orthogonal transformation to matrix A
                    354: *     (Complex Workspace: need N, prefer N*NB)
                    355: *
                    356:       CALL ZUNMQR( 'L', 'C', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
                    357:      $             WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWRK ),
                    358:      $             LWORK+1-IWRK, IERR )
                    359: *
                    360: *     Initialize VSL
                    361: *     (Complex Workspace: need N, prefer N*NB)
                    362: *
                    363:       IF( ILVSL ) THEN
                    364:          CALL ZLASET( 'Full', N, N, CZERO, CONE, VSL, LDVSL )
                    365:          IF( IROWS.GT.1 ) THEN
                    366:             CALL ZLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
                    367:      $                   VSL( ILO+1, ILO ), LDVSL )
                    368:          END IF
                    369:          CALL ZUNGQR( IROWS, IROWS, IROWS, VSL( ILO, ILO ), LDVSL,
                    370:      $                WORK( ITAU ), WORK( IWRK ), LWORK+1-IWRK, IERR )
                    371:       END IF
                    372: *
                    373: *     Initialize VSR
                    374: *
                    375:       IF( ILVSR )
                    376:      $   CALL ZLASET( 'Full', N, N, CZERO, CONE, VSR, LDVSR )
                    377: *
                    378: *     Reduce to generalized Hessenberg form
                    379: *     (Workspace: none needed)
                    380: *
                    381:       CALL ZGGHRD( JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB, VSL,
                    382:      $             LDVSL, VSR, LDVSR, IERR )
                    383: *
                    384:       SDIM = 0
                    385: *
                    386: *     Perform QZ algorithm, computing Schur vectors if desired
                    387: *     (Complex Workspace: need N)
                    388: *     (Real Workspace: need N)
                    389: *
                    390:       IWRK = ITAU
                    391:       CALL ZHGEQZ( 'S', JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB,
                    392:      $             ALPHA, BETA, VSL, LDVSL, VSR, LDVSR, WORK( IWRK ),
                    393:      $             LWORK+1-IWRK, RWORK( IRWRK ), IERR )
                    394:       IF( IERR.NE.0 ) THEN
                    395:          IF( IERR.GT.0 .AND. IERR.LE.N ) THEN
                    396:             INFO = IERR
                    397:          ELSE IF( IERR.GT.N .AND. IERR.LE.2*N ) THEN
                    398:             INFO = IERR - N
                    399:          ELSE
                    400:             INFO = N + 1
                    401:          END IF
                    402:          GO TO 30
                    403:       END IF
                    404: *
                    405: *     Sort eigenvalues ALPHA/BETA if desired
                    406: *     (Workspace: none needed)
                    407: *
                    408:       IF( WANTST ) THEN
                    409: *
                    410: *        Undo scaling on eigenvalues before selecting
                    411: *
                    412:          IF( ILASCL )
                    413:      $      CALL ZLASCL( 'G', 0, 0, ANRM, ANRMTO, N, 1, ALPHA, N, IERR )
                    414:          IF( ILBSCL )
                    415:      $      CALL ZLASCL( 'G', 0, 0, BNRM, BNRMTO, N, 1, BETA, N, IERR )
                    416: *
                    417: *        Select eigenvalues
                    418: *
                    419:          DO 10 I = 1, N
                    420:             BWORK( I ) = SELCTG( ALPHA( I ), BETA( I ) )
                    421:    10    CONTINUE
                    422: *
                    423:          CALL ZTGSEN( 0, ILVSL, ILVSR, BWORK, N, A, LDA, B, LDB, ALPHA,
                    424:      $                BETA, VSL, LDVSL, VSR, LDVSR, SDIM, PVSL, PVSR,
                    425:      $                DIF, WORK( IWRK ), LWORK-IWRK+1, IDUM, 1, IERR )
                    426:          IF( IERR.EQ.1 )
                    427:      $      INFO = N + 3
                    428: *
                    429:       END IF
                    430: *
                    431: *     Apply back-permutation to VSL and VSR
                    432: *     (Workspace: none needed)
                    433: *
                    434:       IF( ILVSL )
                    435:      $   CALL ZGGBAK( 'P', 'L', N, ILO, IHI, RWORK( ILEFT ),
                    436:      $                RWORK( IRIGHT ), N, VSL, LDVSL, IERR )
                    437:       IF( ILVSR )
                    438:      $   CALL ZGGBAK( 'P', 'R', N, ILO, IHI, RWORK( ILEFT ),
                    439:      $                RWORK( IRIGHT ), N, VSR, LDVSR, IERR )
                    440: *
                    441: *     Undo scaling
                    442: *
                    443:       IF( ILASCL ) THEN
                    444:          CALL ZLASCL( 'U', 0, 0, ANRMTO, ANRM, N, N, A, LDA, IERR )
                    445:          CALL ZLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHA, N, IERR )
                    446:       END IF
                    447: *
                    448:       IF( ILBSCL ) THEN
                    449:          CALL ZLASCL( 'U', 0, 0, BNRMTO, BNRM, N, N, B, LDB, IERR )
                    450:          CALL ZLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
                    451:       END IF
                    452: *
                    453:       IF( WANTST ) THEN
                    454: *
                    455: *        Check if reordering is correct
                    456: *
                    457:          LASTSL = .TRUE.
                    458:          SDIM = 0
                    459:          DO 20 I = 1, N
                    460:             CURSL = SELCTG( ALPHA( I ), BETA( I ) )
                    461:             IF( CURSL )
                    462:      $         SDIM = SDIM + 1
                    463:             IF( CURSL .AND. .NOT.LASTSL )
                    464:      $         INFO = N + 2
                    465:             LASTSL = CURSL
                    466:    20    CONTINUE
                    467: *
                    468:       END IF
                    469: *
                    470:    30 CONTINUE
                    471: *
                    472:       WORK( 1 ) = LWKOPT
                    473: *
                    474:       RETURN
                    475: *
                    476: *     End of ZGGES
                    477: *
                    478:       END

CVSweb interface <joel.bertrand@systella.fr>