Annotation of rpl/lapack/lapack/zgges.f, revision 1.13

1.8       bertrand    1: *> \brief <b> ZGGES computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors for GE matrices</b>
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at 
                      6: *            http://www.netlib.org/lapack/explore-html/ 
                      7: *
                      8: *> \htmlonly
                      9: *> Download ZGGES + dependencies 
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgges.f"> 
                     11: *> [TGZ]</a> 
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgges.f"> 
                     13: *> [ZIP]</a> 
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgges.f"> 
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly 
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZGGES( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, LDB,
                     22: *                         SDIM, ALPHA, BETA, VSL, LDVSL, VSR, LDVSR, WORK,
                     23: *                         LWORK, RWORK, BWORK, INFO )
                     24: * 
                     25: *       .. Scalar Arguments ..
                     26: *       CHARACTER          JOBVSL, JOBVSR, SORT
                     27: *       INTEGER            INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N, SDIM
                     28: *       ..
                     29: *       .. Array Arguments ..
                     30: *       LOGICAL            BWORK( * )
                     31: *       DOUBLE PRECISION   RWORK( * )
                     32: *       COMPLEX*16         A( LDA, * ), ALPHA( * ), B( LDB, * ),
                     33: *      $                   BETA( * ), VSL( LDVSL, * ), VSR( LDVSR, * ),
                     34: *      $                   WORK( * )
                     35: *       ..
                     36: *       .. Function Arguments ..
                     37: *       LOGICAL            SELCTG
                     38: *       EXTERNAL           SELCTG
                     39: *       ..
                     40: *  
                     41: *
                     42: *> \par Purpose:
                     43: *  =============
                     44: *>
                     45: *> \verbatim
                     46: *>
                     47: *> ZGGES computes for a pair of N-by-N complex nonsymmetric matrices
                     48: *> (A,B), the generalized eigenvalues, the generalized complex Schur
                     49: *> form (S, T), and optionally left and/or right Schur vectors (VSL
                     50: *> and VSR). This gives the generalized Schur factorization
                     51: *>
                     52: *>         (A,B) = ( (VSL)*S*(VSR)**H, (VSL)*T*(VSR)**H )
                     53: *>
                     54: *> where (VSR)**H is the conjugate-transpose of VSR.
                     55: *>
                     56: *> Optionally, it also orders the eigenvalues so that a selected cluster
                     57: *> of eigenvalues appears in the leading diagonal blocks of the upper
                     58: *> triangular matrix S and the upper triangular matrix T. The leading
                     59: *> columns of VSL and VSR then form an unitary basis for the
                     60: *> corresponding left and right eigenspaces (deflating subspaces).
                     61: *>
                     62: *> (If only the generalized eigenvalues are needed, use the driver
                     63: *> ZGGEV instead, which is faster.)
                     64: *>
                     65: *> A generalized eigenvalue for a pair of matrices (A,B) is a scalar w
                     66: *> or a ratio alpha/beta = w, such that  A - w*B is singular.  It is
                     67: *> usually represented as the pair (alpha,beta), as there is a
                     68: *> reasonable interpretation for beta=0, and even for both being zero.
                     69: *>
                     70: *> A pair of matrices (S,T) is in generalized complex Schur form if S
                     71: *> and T are upper triangular and, in addition, the diagonal elements
                     72: *> of T are non-negative real numbers.
                     73: *> \endverbatim
                     74: *
                     75: *  Arguments:
                     76: *  ==========
                     77: *
                     78: *> \param[in] JOBVSL
                     79: *> \verbatim
                     80: *>          JOBVSL is CHARACTER*1
                     81: *>          = 'N':  do not compute the left Schur vectors;
                     82: *>          = 'V':  compute the left Schur vectors.
                     83: *> \endverbatim
                     84: *>
                     85: *> \param[in] JOBVSR
                     86: *> \verbatim
                     87: *>          JOBVSR is CHARACTER*1
                     88: *>          = 'N':  do not compute the right Schur vectors;
                     89: *>          = 'V':  compute the right Schur vectors.
                     90: *> \endverbatim
                     91: *>
                     92: *> \param[in] SORT
                     93: *> \verbatim
                     94: *>          SORT is CHARACTER*1
                     95: *>          Specifies whether or not to order the eigenvalues on the
                     96: *>          diagonal of the generalized Schur form.
                     97: *>          = 'N':  Eigenvalues are not ordered;
                     98: *>          = 'S':  Eigenvalues are ordered (see SELCTG).
                     99: *> \endverbatim
                    100: *>
                    101: *> \param[in] SELCTG
                    102: *> \verbatim
1.10      bertrand  103: *>          SELCTG is a LOGICAL FUNCTION of two COMPLEX*16 arguments
1.8       bertrand  104: *>          SELCTG must be declared EXTERNAL in the calling subroutine.
                    105: *>          If SORT = 'N', SELCTG is not referenced.
                    106: *>          If SORT = 'S', SELCTG is used to select eigenvalues to sort
                    107: *>          to the top left of the Schur form.
                    108: *>          An eigenvalue ALPHA(j)/BETA(j) is selected if
                    109: *>          SELCTG(ALPHA(j),BETA(j)) is true.
                    110: *>
                    111: *>          Note that a selected complex eigenvalue may no longer satisfy
                    112: *>          SELCTG(ALPHA(j),BETA(j)) = .TRUE. after ordering, since
                    113: *>          ordering may change the value of complex eigenvalues
                    114: *>          (especially if the eigenvalue is ill-conditioned), in this
                    115: *>          case INFO is set to N+2 (See INFO below).
                    116: *> \endverbatim
                    117: *>
                    118: *> \param[in] N
                    119: *> \verbatim
                    120: *>          N is INTEGER
                    121: *>          The order of the matrices A, B, VSL, and VSR.  N >= 0.
                    122: *> \endverbatim
                    123: *>
                    124: *> \param[in,out] A
                    125: *> \verbatim
                    126: *>          A is COMPLEX*16 array, dimension (LDA, N)
                    127: *>          On entry, the first of the pair of matrices.
                    128: *>          On exit, A has been overwritten by its generalized Schur
                    129: *>          form S.
                    130: *> \endverbatim
                    131: *>
                    132: *> \param[in] LDA
                    133: *> \verbatim
                    134: *>          LDA is INTEGER
                    135: *>          The leading dimension of A.  LDA >= max(1,N).
                    136: *> \endverbatim
                    137: *>
                    138: *> \param[in,out] B
                    139: *> \verbatim
                    140: *>          B is COMPLEX*16 array, dimension (LDB, N)
                    141: *>          On entry, the second of the pair of matrices.
                    142: *>          On exit, B has been overwritten by its generalized Schur
                    143: *>          form T.
                    144: *> \endverbatim
                    145: *>
                    146: *> \param[in] LDB
                    147: *> \verbatim
                    148: *>          LDB is INTEGER
                    149: *>          The leading dimension of B.  LDB >= max(1,N).
                    150: *> \endverbatim
                    151: *>
                    152: *> \param[out] SDIM
                    153: *> \verbatim
                    154: *>          SDIM is INTEGER
                    155: *>          If SORT = 'N', SDIM = 0.
                    156: *>          If SORT = 'S', SDIM = number of eigenvalues (after sorting)
                    157: *>          for which SELCTG is true.
                    158: *> \endverbatim
                    159: *>
                    160: *> \param[out] ALPHA
                    161: *> \verbatim
                    162: *>          ALPHA is COMPLEX*16 array, dimension (N)
                    163: *> \endverbatim
                    164: *>
                    165: *> \param[out] BETA
                    166: *> \verbatim
                    167: *>          BETA is COMPLEX*16 array, dimension (N)
                    168: *>          On exit,  ALPHA(j)/BETA(j), j=1,...,N, will be the
                    169: *>          generalized eigenvalues.  ALPHA(j), j=1,...,N  and  BETA(j),
                    170: *>          j=1,...,N  are the diagonals of the complex Schur form (A,B)
                    171: *>          output by ZGGES. The  BETA(j) will be non-negative real.
                    172: *>
                    173: *>          Note: the quotients ALPHA(j)/BETA(j) may easily over- or
                    174: *>          underflow, and BETA(j) may even be zero.  Thus, the user
                    175: *>          should avoid naively computing the ratio alpha/beta.
                    176: *>          However, ALPHA will be always less than and usually
                    177: *>          comparable with norm(A) in magnitude, and BETA always less
                    178: *>          than and usually comparable with norm(B).
                    179: *> \endverbatim
                    180: *>
                    181: *> \param[out] VSL
                    182: *> \verbatim
                    183: *>          VSL is COMPLEX*16 array, dimension (LDVSL,N)
                    184: *>          If JOBVSL = 'V', VSL will contain the left Schur vectors.
                    185: *>          Not referenced if JOBVSL = 'N'.
                    186: *> \endverbatim
                    187: *>
                    188: *> \param[in] LDVSL
                    189: *> \verbatim
                    190: *>          LDVSL is INTEGER
                    191: *>          The leading dimension of the matrix VSL. LDVSL >= 1, and
                    192: *>          if JOBVSL = 'V', LDVSL >= N.
                    193: *> \endverbatim
                    194: *>
                    195: *> \param[out] VSR
                    196: *> \verbatim
                    197: *>          VSR is COMPLEX*16 array, dimension (LDVSR,N)
                    198: *>          If JOBVSR = 'V', VSR will contain the right Schur vectors.
                    199: *>          Not referenced if JOBVSR = 'N'.
                    200: *> \endverbatim
                    201: *>
                    202: *> \param[in] LDVSR
                    203: *> \verbatim
                    204: *>          LDVSR is INTEGER
                    205: *>          The leading dimension of the matrix VSR. LDVSR >= 1, and
                    206: *>          if JOBVSR = 'V', LDVSR >= N.
                    207: *> \endverbatim
                    208: *>
                    209: *> \param[out] WORK
                    210: *> \verbatim
                    211: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
                    212: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    213: *> \endverbatim
                    214: *>
                    215: *> \param[in] LWORK
                    216: *> \verbatim
                    217: *>          LWORK is INTEGER
                    218: *>          The dimension of the array WORK.  LWORK >= max(1,2*N).
                    219: *>          For good performance, LWORK must generally be larger.
                    220: *>
                    221: *>          If LWORK = -1, then a workspace query is assumed; the routine
                    222: *>          only calculates the optimal size of the WORK array, returns
                    223: *>          this value as the first entry of the WORK array, and no error
                    224: *>          message related to LWORK is issued by XERBLA.
                    225: *> \endverbatim
                    226: *>
                    227: *> \param[out] RWORK
                    228: *> \verbatim
                    229: *>          RWORK is DOUBLE PRECISION array, dimension (8*N)
                    230: *> \endverbatim
                    231: *>
                    232: *> \param[out] BWORK
                    233: *> \verbatim
                    234: *>          BWORK is LOGICAL array, dimension (N)
                    235: *>          Not referenced if SORT = 'N'.
                    236: *> \endverbatim
                    237: *>
                    238: *> \param[out] INFO
                    239: *> \verbatim
                    240: *>          INFO is INTEGER
                    241: *>          = 0:  successful exit
                    242: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
                    243: *>          =1,...,N:
                    244: *>                The QZ iteration failed.  (A,B) are not in Schur
                    245: *>                form, but ALPHA(j) and BETA(j) should be correct for
                    246: *>                j=INFO+1,...,N.
                    247: *>          > N:  =N+1: other than QZ iteration failed in ZHGEQZ
                    248: *>                =N+2: after reordering, roundoff changed values of
                    249: *>                      some complex eigenvalues so that leading
                    250: *>                      eigenvalues in the Generalized Schur form no
                    251: *>                      longer satisfy SELCTG=.TRUE.  This could also
                    252: *>                      be caused due to scaling.
                    253: *>                =N+3: reordering falied in ZTGSEN.
                    254: *> \endverbatim
                    255: *
                    256: *  Authors:
                    257: *  ========
                    258: *
                    259: *> \author Univ. of Tennessee 
                    260: *> \author Univ. of California Berkeley 
                    261: *> \author Univ. of Colorado Denver 
                    262: *> \author NAG Ltd. 
                    263: *
                    264: *> \date November 2011
                    265: *
                    266: *> \ingroup complex16GEeigen
                    267: *
                    268: *  =====================================================================
1.1       bertrand  269:       SUBROUTINE ZGGES( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, LDB,
                    270:      $                  SDIM, ALPHA, BETA, VSL, LDVSL, VSR, LDVSR, WORK,
                    271:      $                  LWORK, RWORK, BWORK, INFO )
                    272: *
1.8       bertrand  273: *  -- LAPACK driver routine (version 3.4.0) --
1.1       bertrand  274: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    275: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.8       bertrand  276: *     November 2011
1.1       bertrand  277: *
                    278: *     .. Scalar Arguments ..
                    279:       CHARACTER          JOBVSL, JOBVSR, SORT
                    280:       INTEGER            INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N, SDIM
                    281: *     ..
                    282: *     .. Array Arguments ..
                    283:       LOGICAL            BWORK( * )
                    284:       DOUBLE PRECISION   RWORK( * )
                    285:       COMPLEX*16         A( LDA, * ), ALPHA( * ), B( LDB, * ),
                    286:      $                   BETA( * ), VSL( LDVSL, * ), VSR( LDVSR, * ),
                    287:      $                   WORK( * )
                    288: *     ..
                    289: *     .. Function Arguments ..
                    290:       LOGICAL            SELCTG
                    291:       EXTERNAL           SELCTG
                    292: *     ..
                    293: *
                    294: *  =====================================================================
                    295: *
                    296: *     .. Parameters ..
                    297:       DOUBLE PRECISION   ZERO, ONE
                    298:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
                    299:       COMPLEX*16         CZERO, CONE
                    300:       PARAMETER          ( CZERO = ( 0.0D0, 0.0D0 ),
                    301:      $                   CONE = ( 1.0D0, 0.0D0 ) )
                    302: *     ..
                    303: *     .. Local Scalars ..
                    304:       LOGICAL            CURSL, ILASCL, ILBSCL, ILVSL, ILVSR, LASTSL,
                    305:      $                   LQUERY, WANTST
                    306:       INTEGER            I, ICOLS, IERR, IHI, IJOBVL, IJOBVR, ILEFT,
                    307:      $                   ILO, IRIGHT, IROWS, IRWRK, ITAU, IWRK, LWKMIN,
                    308:      $                   LWKOPT
                    309:       DOUBLE PRECISION   ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS, PVSL,
                    310:      $                   PVSR, SMLNUM
                    311: *     ..
                    312: *     .. Local Arrays ..
                    313:       INTEGER            IDUM( 1 )
                    314:       DOUBLE PRECISION   DIF( 2 )
                    315: *     ..
                    316: *     .. External Subroutines ..
                    317:       EXTERNAL           DLABAD, XERBLA, ZGEQRF, ZGGBAK, ZGGBAL, ZGGHRD,
                    318:      $                   ZHGEQZ, ZLACPY, ZLASCL, ZLASET, ZTGSEN, ZUNGQR,
                    319:      $                   ZUNMQR
                    320: *     ..
                    321: *     .. External Functions ..
                    322:       LOGICAL            LSAME
                    323:       INTEGER            ILAENV
                    324:       DOUBLE PRECISION   DLAMCH, ZLANGE
                    325:       EXTERNAL           LSAME, ILAENV, DLAMCH, ZLANGE
                    326: *     ..
                    327: *     .. Intrinsic Functions ..
                    328:       INTRINSIC          MAX, SQRT
                    329: *     ..
                    330: *     .. Executable Statements ..
                    331: *
                    332: *     Decode the input arguments
                    333: *
                    334:       IF( LSAME( JOBVSL, 'N' ) ) THEN
                    335:          IJOBVL = 1
                    336:          ILVSL = .FALSE.
                    337:       ELSE IF( LSAME( JOBVSL, 'V' ) ) THEN
                    338:          IJOBVL = 2
                    339:          ILVSL = .TRUE.
                    340:       ELSE
                    341:          IJOBVL = -1
                    342:          ILVSL = .FALSE.
                    343:       END IF
                    344: *
                    345:       IF( LSAME( JOBVSR, 'N' ) ) THEN
                    346:          IJOBVR = 1
                    347:          ILVSR = .FALSE.
                    348:       ELSE IF( LSAME( JOBVSR, 'V' ) ) THEN
                    349:          IJOBVR = 2
                    350:          ILVSR = .TRUE.
                    351:       ELSE
                    352:          IJOBVR = -1
                    353:          ILVSR = .FALSE.
                    354:       END IF
                    355: *
                    356:       WANTST = LSAME( SORT, 'S' )
                    357: *
                    358: *     Test the input arguments
                    359: *
                    360:       INFO = 0
                    361:       LQUERY = ( LWORK.EQ.-1 )
                    362:       IF( IJOBVL.LE.0 ) THEN
                    363:          INFO = -1
                    364:       ELSE IF( IJOBVR.LE.0 ) THEN
                    365:          INFO = -2
                    366:       ELSE IF( ( .NOT.WANTST ) .AND. ( .NOT.LSAME( SORT, 'N' ) ) ) THEN
                    367:          INFO = -3
                    368:       ELSE IF( N.LT.0 ) THEN
                    369:          INFO = -5
                    370:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    371:          INFO = -7
                    372:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    373:          INFO = -9
                    374:       ELSE IF( LDVSL.LT.1 .OR. ( ILVSL .AND. LDVSL.LT.N ) ) THEN
                    375:          INFO = -14
                    376:       ELSE IF( LDVSR.LT.1 .OR. ( ILVSR .AND. LDVSR.LT.N ) ) THEN
                    377:          INFO = -16
                    378:       END IF
                    379: *
                    380: *     Compute workspace
                    381: *      (Note: Comments in the code beginning "Workspace:" describe the
                    382: *       minimal amount of workspace needed at that point in the code,
                    383: *       as well as the preferred amount for good performance.
                    384: *       NB refers to the optimal block size for the immediately
                    385: *       following subroutine, as returned by ILAENV.)
                    386: *
                    387:       IF( INFO.EQ.0 ) THEN
                    388:          LWKMIN = MAX( 1, 2*N )
                    389:          LWKOPT = MAX( 1, N + N*ILAENV( 1, 'ZGEQRF', ' ', N, 1, N, 0 ) )
                    390:          LWKOPT = MAX( LWKOPT, N +
                    391:      $                 N*ILAENV( 1, 'ZUNMQR', ' ', N, 1, N, -1 ) )
                    392:          IF( ILVSL ) THEN
                    393:             LWKOPT = MAX( LWKOPT, N +
                    394:      $                    N*ILAENV( 1, 'ZUNGQR', ' ', N, 1, N, -1 ) )
                    395:          END IF
                    396:          WORK( 1 ) = LWKOPT
                    397: *
                    398:          IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY )
                    399:      $      INFO = -18
                    400:       END IF
                    401: *
                    402:       IF( INFO.NE.0 ) THEN
                    403:          CALL XERBLA( 'ZGGES ', -INFO )
                    404:          RETURN
                    405:       ELSE IF( LQUERY ) THEN
                    406:          RETURN
                    407:       END IF
                    408: *
                    409: *     Quick return if possible
                    410: *
                    411:       IF( N.EQ.0 ) THEN
                    412:          SDIM = 0
                    413:          RETURN
                    414:       END IF
                    415: *
                    416: *     Get machine constants
                    417: *
                    418:       EPS = DLAMCH( 'P' )
                    419:       SMLNUM = DLAMCH( 'S' )
                    420:       BIGNUM = ONE / SMLNUM
                    421:       CALL DLABAD( SMLNUM, BIGNUM )
                    422:       SMLNUM = SQRT( SMLNUM ) / EPS
                    423:       BIGNUM = ONE / SMLNUM
                    424: *
                    425: *     Scale A if max element outside range [SMLNUM,BIGNUM]
                    426: *
                    427:       ANRM = ZLANGE( 'M', N, N, A, LDA, RWORK )
                    428:       ILASCL = .FALSE.
                    429:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
                    430:          ANRMTO = SMLNUM
                    431:          ILASCL = .TRUE.
                    432:       ELSE IF( ANRM.GT.BIGNUM ) THEN
                    433:          ANRMTO = BIGNUM
                    434:          ILASCL = .TRUE.
                    435:       END IF
                    436: *
                    437:       IF( ILASCL )
                    438:      $   CALL ZLASCL( 'G', 0, 0, ANRM, ANRMTO, N, N, A, LDA, IERR )
                    439: *
                    440: *     Scale B if max element outside range [SMLNUM,BIGNUM]
                    441: *
                    442:       BNRM = ZLANGE( 'M', N, N, B, LDB, RWORK )
                    443:       ILBSCL = .FALSE.
                    444:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
                    445:          BNRMTO = SMLNUM
                    446:          ILBSCL = .TRUE.
                    447:       ELSE IF( BNRM.GT.BIGNUM ) THEN
                    448:          BNRMTO = BIGNUM
                    449:          ILBSCL = .TRUE.
                    450:       END IF
                    451: *
                    452:       IF( ILBSCL )
                    453:      $   CALL ZLASCL( 'G', 0, 0, BNRM, BNRMTO, N, N, B, LDB, IERR )
                    454: *
                    455: *     Permute the matrix to make it more nearly triangular
                    456: *     (Real Workspace: need 6*N)
                    457: *
                    458:       ILEFT = 1
                    459:       IRIGHT = N + 1
                    460:       IRWRK = IRIGHT + N
                    461:       CALL ZGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, RWORK( ILEFT ),
                    462:      $             RWORK( IRIGHT ), RWORK( IRWRK ), IERR )
                    463: *
                    464: *     Reduce B to triangular form (QR decomposition of B)
                    465: *     (Complex Workspace: need N, prefer N*NB)
                    466: *
                    467:       IROWS = IHI + 1 - ILO
                    468:       ICOLS = N + 1 - ILO
                    469:       ITAU = 1
                    470:       IWRK = ITAU + IROWS
                    471:       CALL ZGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
                    472:      $             WORK( IWRK ), LWORK+1-IWRK, IERR )
                    473: *
                    474: *     Apply the orthogonal transformation to matrix A
                    475: *     (Complex Workspace: need N, prefer N*NB)
                    476: *
                    477:       CALL ZUNMQR( 'L', 'C', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
                    478:      $             WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWRK ),
                    479:      $             LWORK+1-IWRK, IERR )
                    480: *
                    481: *     Initialize VSL
                    482: *     (Complex Workspace: need N, prefer N*NB)
                    483: *
                    484:       IF( ILVSL ) THEN
                    485:          CALL ZLASET( 'Full', N, N, CZERO, CONE, VSL, LDVSL )
                    486:          IF( IROWS.GT.1 ) THEN
                    487:             CALL ZLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
                    488:      $                   VSL( ILO+1, ILO ), LDVSL )
                    489:          END IF
                    490:          CALL ZUNGQR( IROWS, IROWS, IROWS, VSL( ILO, ILO ), LDVSL,
                    491:      $                WORK( ITAU ), WORK( IWRK ), LWORK+1-IWRK, IERR )
                    492:       END IF
                    493: *
                    494: *     Initialize VSR
                    495: *
                    496:       IF( ILVSR )
                    497:      $   CALL ZLASET( 'Full', N, N, CZERO, CONE, VSR, LDVSR )
                    498: *
                    499: *     Reduce to generalized Hessenberg form
                    500: *     (Workspace: none needed)
                    501: *
                    502:       CALL ZGGHRD( JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB, VSL,
                    503:      $             LDVSL, VSR, LDVSR, IERR )
                    504: *
                    505:       SDIM = 0
                    506: *
                    507: *     Perform QZ algorithm, computing Schur vectors if desired
                    508: *     (Complex Workspace: need N)
                    509: *     (Real Workspace: need N)
                    510: *
                    511:       IWRK = ITAU
                    512:       CALL ZHGEQZ( 'S', JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB,
                    513:      $             ALPHA, BETA, VSL, LDVSL, VSR, LDVSR, WORK( IWRK ),
                    514:      $             LWORK+1-IWRK, RWORK( IRWRK ), IERR )
                    515:       IF( IERR.NE.0 ) THEN
                    516:          IF( IERR.GT.0 .AND. IERR.LE.N ) THEN
                    517:             INFO = IERR
                    518:          ELSE IF( IERR.GT.N .AND. IERR.LE.2*N ) THEN
                    519:             INFO = IERR - N
                    520:          ELSE
                    521:             INFO = N + 1
                    522:          END IF
                    523:          GO TO 30
                    524:       END IF
                    525: *
                    526: *     Sort eigenvalues ALPHA/BETA if desired
                    527: *     (Workspace: none needed)
                    528: *
                    529:       IF( WANTST ) THEN
                    530: *
                    531: *        Undo scaling on eigenvalues before selecting
                    532: *
                    533:          IF( ILASCL )
                    534:      $      CALL ZLASCL( 'G', 0, 0, ANRM, ANRMTO, N, 1, ALPHA, N, IERR )
                    535:          IF( ILBSCL )
                    536:      $      CALL ZLASCL( 'G', 0, 0, BNRM, BNRMTO, N, 1, BETA, N, IERR )
                    537: *
                    538: *        Select eigenvalues
                    539: *
                    540:          DO 10 I = 1, N
                    541:             BWORK( I ) = SELCTG( ALPHA( I ), BETA( I ) )
                    542:    10    CONTINUE
                    543: *
                    544:          CALL ZTGSEN( 0, ILVSL, ILVSR, BWORK, N, A, LDA, B, LDB, ALPHA,
                    545:      $                BETA, VSL, LDVSL, VSR, LDVSR, SDIM, PVSL, PVSR,
                    546:      $                DIF, WORK( IWRK ), LWORK-IWRK+1, IDUM, 1, IERR )
                    547:          IF( IERR.EQ.1 )
                    548:      $      INFO = N + 3
                    549: *
                    550:       END IF
                    551: *
                    552: *     Apply back-permutation to VSL and VSR
                    553: *     (Workspace: none needed)
                    554: *
                    555:       IF( ILVSL )
                    556:      $   CALL ZGGBAK( 'P', 'L', N, ILO, IHI, RWORK( ILEFT ),
                    557:      $                RWORK( IRIGHT ), N, VSL, LDVSL, IERR )
                    558:       IF( ILVSR )
                    559:      $   CALL ZGGBAK( 'P', 'R', N, ILO, IHI, RWORK( ILEFT ),
                    560:      $                RWORK( IRIGHT ), N, VSR, LDVSR, IERR )
                    561: *
                    562: *     Undo scaling
                    563: *
                    564:       IF( ILASCL ) THEN
                    565:          CALL ZLASCL( 'U', 0, 0, ANRMTO, ANRM, N, N, A, LDA, IERR )
                    566:          CALL ZLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHA, N, IERR )
                    567:       END IF
                    568: *
                    569:       IF( ILBSCL ) THEN
                    570:          CALL ZLASCL( 'U', 0, 0, BNRMTO, BNRM, N, N, B, LDB, IERR )
                    571:          CALL ZLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
                    572:       END IF
                    573: *
                    574:       IF( WANTST ) THEN
                    575: *
                    576: *        Check if reordering is correct
                    577: *
                    578:          LASTSL = .TRUE.
                    579:          SDIM = 0
                    580:          DO 20 I = 1, N
                    581:             CURSL = SELCTG( ALPHA( I ), BETA( I ) )
                    582:             IF( CURSL )
                    583:      $         SDIM = SDIM + 1
                    584:             IF( CURSL .AND. .NOT.LASTSL )
                    585:      $         INFO = N + 2
                    586:             LASTSL = CURSL
                    587:    20    CONTINUE
                    588: *
                    589:       END IF
                    590: *
                    591:    30 CONTINUE
                    592: *
                    593:       WORK( 1 ) = LWKOPT
                    594: *
                    595:       RETURN
                    596: *
                    597: *     End of ZGGES
                    598: *
                    599:       END

CVSweb interface <joel.bertrand@systella.fr>