File:  [local] / rpl / lapack / lapack / zggbal.f
Revision 1.19: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:20 2023 UTC (9 months, 1 week ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZGGBAL
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZGGBAL + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zggbal.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zggbal.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zggbal.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZGGBAL( JOB, N, A, LDA, B, LDB, ILO, IHI, LSCALE,
   22: *                          RSCALE, WORK, INFO )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       CHARACTER          JOB
   26: *       INTEGER            IHI, ILO, INFO, LDA, LDB, N
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       DOUBLE PRECISION   LSCALE( * ), RSCALE( * ), WORK( * )
   30: *       COMPLEX*16         A( LDA, * ), B( LDB, * )
   31: *       ..
   32: *
   33: *
   34: *> \par Purpose:
   35: *  =============
   36: *>
   37: *> \verbatim
   38: *>
   39: *> ZGGBAL balances a pair of general complex matrices (A,B).  This
   40: *> involves, first, permuting A and B by similarity transformations to
   41: *> isolate eigenvalues in the first 1 to ILO$-$1 and last IHI+1 to N
   42: *> elements on the diagonal; and second, applying a diagonal similarity
   43: *> transformation to rows and columns ILO to IHI to make the rows
   44: *> and columns as close in norm as possible. Both steps are optional.
   45: *>
   46: *> Balancing may reduce the 1-norm of the matrices, and improve the
   47: *> accuracy of the computed eigenvalues and/or eigenvectors in the
   48: *> generalized eigenvalue problem A*x = lambda*B*x.
   49: *> \endverbatim
   50: *
   51: *  Arguments:
   52: *  ==========
   53: *
   54: *> \param[in] JOB
   55: *> \verbatim
   56: *>          JOB is CHARACTER*1
   57: *>          Specifies the operations to be performed on A and B:
   58: *>          = 'N':  none:  simply set ILO = 1, IHI = N, LSCALE(I) = 1.0
   59: *>                  and RSCALE(I) = 1.0 for i=1,...,N;
   60: *>          = 'P':  permute only;
   61: *>          = 'S':  scale only;
   62: *>          = 'B':  both permute and scale.
   63: *> \endverbatim
   64: *>
   65: *> \param[in] N
   66: *> \verbatim
   67: *>          N is INTEGER
   68: *>          The order of the matrices A and B.  N >= 0.
   69: *> \endverbatim
   70: *>
   71: *> \param[in,out] A
   72: *> \verbatim
   73: *>          A is COMPLEX*16 array, dimension (LDA,N)
   74: *>          On entry, the input matrix A.
   75: *>          On exit, A is overwritten by the balanced matrix.
   76: *>          If JOB = 'N', A is not referenced.
   77: *> \endverbatim
   78: *>
   79: *> \param[in] LDA
   80: *> \verbatim
   81: *>          LDA is INTEGER
   82: *>          The leading dimension of the array A. LDA >= max(1,N).
   83: *> \endverbatim
   84: *>
   85: *> \param[in,out] B
   86: *> \verbatim
   87: *>          B is COMPLEX*16 array, dimension (LDB,N)
   88: *>          On entry, the input matrix B.
   89: *>          On exit, B is overwritten by the balanced matrix.
   90: *>          If JOB = 'N', B is not referenced.
   91: *> \endverbatim
   92: *>
   93: *> \param[in] LDB
   94: *> \verbatim
   95: *>          LDB is INTEGER
   96: *>          The leading dimension of the array B. LDB >= max(1,N).
   97: *> \endverbatim
   98: *>
   99: *> \param[out] ILO
  100: *> \verbatim
  101: *>          ILO is INTEGER
  102: *> \endverbatim
  103: *>
  104: *> \param[out] IHI
  105: *> \verbatim
  106: *>          IHI is INTEGER
  107: *>          ILO and IHI are set to integers such that on exit
  108: *>          A(i,j) = 0 and B(i,j) = 0 if i > j and
  109: *>          j = 1,...,ILO-1 or i = IHI+1,...,N.
  110: *>          If JOB = 'N' or 'S', ILO = 1 and IHI = N.
  111: *> \endverbatim
  112: *>
  113: *> \param[out] LSCALE
  114: *> \verbatim
  115: *>          LSCALE is DOUBLE PRECISION array, dimension (N)
  116: *>          Details of the permutations and scaling factors applied
  117: *>          to the left side of A and B.  If P(j) is the index of the
  118: *>          row interchanged with row j, and D(j) is the scaling factor
  119: *>          applied to row j, then
  120: *>            LSCALE(j) = P(j)    for J = 1,...,ILO-1
  121: *>                      = D(j)    for J = ILO,...,IHI
  122: *>                      = P(j)    for J = IHI+1,...,N.
  123: *>          The order in which the interchanges are made is N to IHI+1,
  124: *>          then 1 to ILO-1.
  125: *> \endverbatim
  126: *>
  127: *> \param[out] RSCALE
  128: *> \verbatim
  129: *>          RSCALE is DOUBLE PRECISION array, dimension (N)
  130: *>          Details of the permutations and scaling factors applied
  131: *>          to the right side of A and B.  If P(j) is the index of the
  132: *>          column interchanged with column j, and D(j) is the scaling
  133: *>          factor applied to column j, then
  134: *>            RSCALE(j) = P(j)    for J = 1,...,ILO-1
  135: *>                      = D(j)    for J = ILO,...,IHI
  136: *>                      = P(j)    for J = IHI+1,...,N.
  137: *>          The order in which the interchanges are made is N to IHI+1,
  138: *>          then 1 to ILO-1.
  139: *> \endverbatim
  140: *>
  141: *> \param[out] WORK
  142: *> \verbatim
  143: *>          WORK is DOUBLE PRECISION array, dimension (lwork)
  144: *>          lwork must be at least max(1,6*N) when JOB = 'S' or 'B', and
  145: *>          at least 1 when JOB = 'N' or 'P'.
  146: *> \endverbatim
  147: *>
  148: *> \param[out] INFO
  149: *> \verbatim
  150: *>          INFO is INTEGER
  151: *>          = 0:  successful exit
  152: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
  153: *> \endverbatim
  154: *
  155: *  Authors:
  156: *  ========
  157: *
  158: *> \author Univ. of Tennessee
  159: *> \author Univ. of California Berkeley
  160: *> \author Univ. of Colorado Denver
  161: *> \author NAG Ltd.
  162: *
  163: *> \ingroup complex16GBcomputational
  164: *
  165: *> \par Further Details:
  166: *  =====================
  167: *>
  168: *> \verbatim
  169: *>
  170: *>  See R.C. WARD, Balancing the generalized eigenvalue problem,
  171: *>                 SIAM J. Sci. Stat. Comp. 2 (1981), 141-152.
  172: *> \endverbatim
  173: *>
  174: *  =====================================================================
  175:       SUBROUTINE ZGGBAL( JOB, N, A, LDA, B, LDB, ILO, IHI, LSCALE,
  176:      $                   RSCALE, WORK, INFO )
  177: *
  178: *  -- LAPACK computational routine --
  179: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  180: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  181: *
  182: *     .. Scalar Arguments ..
  183:       CHARACTER          JOB
  184:       INTEGER            IHI, ILO, INFO, LDA, LDB, N
  185: *     ..
  186: *     .. Array Arguments ..
  187:       DOUBLE PRECISION   LSCALE( * ), RSCALE( * ), WORK( * )
  188:       COMPLEX*16         A( LDA, * ), B( LDB, * )
  189: *     ..
  190: *
  191: *  =====================================================================
  192: *
  193: *     .. Parameters ..
  194:       DOUBLE PRECISION   ZERO, HALF, ONE
  195:       PARAMETER          ( ZERO = 0.0D+0, HALF = 0.5D+0, ONE = 1.0D+0 )
  196:       DOUBLE PRECISION   THREE, SCLFAC
  197:       PARAMETER          ( THREE = 3.0D+0, SCLFAC = 1.0D+1 )
  198:       COMPLEX*16         CZERO
  199:       PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ) )
  200: *     ..
  201: *     .. Local Scalars ..
  202:       INTEGER            I, ICAB, IFLOW, IP1, IR, IRAB, IT, J, JC, JP1,
  203:      $                   K, KOUNT, L, LCAB, LM1, LRAB, LSFMAX, LSFMIN,
  204:      $                   M, NR, NRP2
  205:       DOUBLE PRECISION   ALPHA, BASL, BETA, CAB, CMAX, COEF, COEF2,
  206:      $                   COEF5, COR, EW, EWC, GAMMA, PGAMMA, RAB, SFMAX,
  207:      $                   SFMIN, SUM, T, TA, TB, TC
  208:       COMPLEX*16         CDUM
  209: *     ..
  210: *     .. External Functions ..
  211:       LOGICAL            LSAME
  212:       INTEGER            IZAMAX
  213:       DOUBLE PRECISION   DDOT, DLAMCH
  214:       EXTERNAL           LSAME, IZAMAX, DDOT, DLAMCH
  215: *     ..
  216: *     .. External Subroutines ..
  217:       EXTERNAL           DAXPY, DSCAL, XERBLA, ZDSCAL, ZSWAP
  218: *     ..
  219: *     .. Intrinsic Functions ..
  220:       INTRINSIC          ABS, DBLE, DIMAG, INT, LOG10, MAX, MIN, SIGN
  221: *     ..
  222: *     .. Statement Functions ..
  223:       DOUBLE PRECISION   CABS1
  224: *     ..
  225: *     .. Statement Function definitions ..
  226:       CABS1( CDUM ) = ABS( DBLE( CDUM ) ) + ABS( DIMAG( CDUM ) )
  227: *     ..
  228: *     .. Executable Statements ..
  229: *
  230: *     Test the input parameters
  231: *
  232:       INFO = 0
  233:       IF( .NOT.LSAME( JOB, 'N' ) .AND. .NOT.LSAME( JOB, 'P' ) .AND.
  234:      $    .NOT.LSAME( JOB, 'S' ) .AND. .NOT.LSAME( JOB, 'B' ) ) THEN
  235:          INFO = -1
  236:       ELSE IF( N.LT.0 ) THEN
  237:          INFO = -2
  238:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  239:          INFO = -4
  240:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  241:          INFO = -6
  242:       END IF
  243:       IF( INFO.NE.0 ) THEN
  244:          CALL XERBLA( 'ZGGBAL', -INFO )
  245:          RETURN
  246:       END IF
  247: *
  248: *     Quick return if possible
  249: *
  250:       IF( N.EQ.0 ) THEN
  251:          ILO = 1
  252:          IHI = N
  253:          RETURN
  254:       END IF
  255: *
  256:       IF( N.EQ.1 ) THEN
  257:          ILO = 1
  258:          IHI = N
  259:          LSCALE( 1 ) = ONE
  260:          RSCALE( 1 ) = ONE
  261:          RETURN
  262:       END IF
  263: *
  264:       IF( LSAME( JOB, 'N' ) ) THEN
  265:          ILO = 1
  266:          IHI = N
  267:          DO 10 I = 1, N
  268:             LSCALE( I ) = ONE
  269:             RSCALE( I ) = ONE
  270:    10    CONTINUE
  271:          RETURN
  272:       END IF
  273: *
  274:       K = 1
  275:       L = N
  276:       IF( LSAME( JOB, 'S' ) )
  277:      $   GO TO 190
  278: *
  279:       GO TO 30
  280: *
  281: *     Permute the matrices A and B to isolate the eigenvalues.
  282: *
  283: *     Find row with one nonzero in columns 1 through L
  284: *
  285:    20 CONTINUE
  286:       L = LM1
  287:       IF( L.NE.1 )
  288:      $   GO TO 30
  289: *
  290:       RSCALE( 1 ) = 1
  291:       LSCALE( 1 ) = 1
  292:       GO TO 190
  293: *
  294:    30 CONTINUE
  295:       LM1 = L - 1
  296:       DO 80 I = L, 1, -1
  297:          DO 40 J = 1, LM1
  298:             JP1 = J + 1
  299:             IF( A( I, J ).NE.CZERO .OR. B( I, J ).NE.CZERO )
  300:      $         GO TO 50
  301:    40    CONTINUE
  302:          J = L
  303:          GO TO 70
  304: *
  305:    50    CONTINUE
  306:          DO 60 J = JP1, L
  307:             IF( A( I, J ).NE.CZERO .OR. B( I, J ).NE.CZERO )
  308:      $         GO TO 80
  309:    60    CONTINUE
  310:          J = JP1 - 1
  311: *
  312:    70    CONTINUE
  313:          M = L
  314:          IFLOW = 1
  315:          GO TO 160
  316:    80 CONTINUE
  317:       GO TO 100
  318: *
  319: *     Find column with one nonzero in rows K through N
  320: *
  321:    90 CONTINUE
  322:       K = K + 1
  323: *
  324:   100 CONTINUE
  325:       DO 150 J = K, L
  326:          DO 110 I = K, LM1
  327:             IP1 = I + 1
  328:             IF( A( I, J ).NE.CZERO .OR. B( I, J ).NE.CZERO )
  329:      $         GO TO 120
  330:   110    CONTINUE
  331:          I = L
  332:          GO TO 140
  333:   120    CONTINUE
  334:          DO 130 I = IP1, L
  335:             IF( A( I, J ).NE.CZERO .OR. B( I, J ).NE.CZERO )
  336:      $         GO TO 150
  337:   130    CONTINUE
  338:          I = IP1 - 1
  339:   140    CONTINUE
  340:          M = K
  341:          IFLOW = 2
  342:          GO TO 160
  343:   150 CONTINUE
  344:       GO TO 190
  345: *
  346: *     Permute rows M and I
  347: *
  348:   160 CONTINUE
  349:       LSCALE( M ) = I
  350:       IF( I.EQ.M )
  351:      $   GO TO 170
  352:       CALL ZSWAP( N-K+1, A( I, K ), LDA, A( M, K ), LDA )
  353:       CALL ZSWAP( N-K+1, B( I, K ), LDB, B( M, K ), LDB )
  354: *
  355: *     Permute columns M and J
  356: *
  357:   170 CONTINUE
  358:       RSCALE( M ) = J
  359:       IF( J.EQ.M )
  360:      $   GO TO 180
  361:       CALL ZSWAP( L, A( 1, J ), 1, A( 1, M ), 1 )
  362:       CALL ZSWAP( L, B( 1, J ), 1, B( 1, M ), 1 )
  363: *
  364:   180 CONTINUE
  365:       GO TO ( 20, 90 )IFLOW
  366: *
  367:   190 CONTINUE
  368:       ILO = K
  369:       IHI = L
  370: *
  371:       IF( LSAME( JOB, 'P' ) ) THEN
  372:          DO 195 I = ILO, IHI
  373:             LSCALE( I ) = ONE
  374:             RSCALE( I ) = ONE
  375:   195    CONTINUE
  376:          RETURN
  377:       END IF
  378: *
  379:       IF( ILO.EQ.IHI )
  380:      $   RETURN
  381: *
  382: *     Balance the submatrix in rows ILO to IHI.
  383: *
  384:       NR = IHI - ILO + 1
  385:       DO 200 I = ILO, IHI
  386:          RSCALE( I ) = ZERO
  387:          LSCALE( I ) = ZERO
  388: *
  389:          WORK( I ) = ZERO
  390:          WORK( I+N ) = ZERO
  391:          WORK( I+2*N ) = ZERO
  392:          WORK( I+3*N ) = ZERO
  393:          WORK( I+4*N ) = ZERO
  394:          WORK( I+5*N ) = ZERO
  395:   200 CONTINUE
  396: *
  397: *     Compute right side vector in resulting linear equations
  398: *
  399:       BASL = LOG10( SCLFAC )
  400:       DO 240 I = ILO, IHI
  401:          DO 230 J = ILO, IHI
  402:             IF( A( I, J ).EQ.CZERO ) THEN
  403:                TA = ZERO
  404:                GO TO 210
  405:             END IF
  406:             TA = LOG10( CABS1( A( I, J ) ) ) / BASL
  407: *
  408:   210       CONTINUE
  409:             IF( B( I, J ).EQ.CZERO ) THEN
  410:                TB = ZERO
  411:                GO TO 220
  412:             END IF
  413:             TB = LOG10( CABS1( B( I, J ) ) ) / BASL
  414: *
  415:   220       CONTINUE
  416:             WORK( I+4*N ) = WORK( I+4*N ) - TA - TB
  417:             WORK( J+5*N ) = WORK( J+5*N ) - TA - TB
  418:   230    CONTINUE
  419:   240 CONTINUE
  420: *
  421:       COEF = ONE / DBLE( 2*NR )
  422:       COEF2 = COEF*COEF
  423:       COEF5 = HALF*COEF2
  424:       NRP2 = NR + 2
  425:       BETA = ZERO
  426:       IT = 1
  427: *
  428: *     Start generalized conjugate gradient iteration
  429: *
  430:   250 CONTINUE
  431: *
  432:       GAMMA = DDOT( NR, WORK( ILO+4*N ), 1, WORK( ILO+4*N ), 1 ) +
  433:      $        DDOT( NR, WORK( ILO+5*N ), 1, WORK( ILO+5*N ), 1 )
  434: *
  435:       EW = ZERO
  436:       EWC = ZERO
  437:       DO 260 I = ILO, IHI
  438:          EW = EW + WORK( I+4*N )
  439:          EWC = EWC + WORK( I+5*N )
  440:   260 CONTINUE
  441: *
  442:       GAMMA = COEF*GAMMA - COEF2*( EW**2+EWC**2 ) - COEF5*( EW-EWC )**2
  443:       IF( GAMMA.EQ.ZERO )
  444:      $   GO TO 350
  445:       IF( IT.NE.1 )
  446:      $   BETA = GAMMA / PGAMMA
  447:       T = COEF5*( EWC-THREE*EW )
  448:       TC = COEF5*( EW-THREE*EWC )
  449: *
  450:       CALL DSCAL( NR, BETA, WORK( ILO ), 1 )
  451:       CALL DSCAL( NR, BETA, WORK( ILO+N ), 1 )
  452: *
  453:       CALL DAXPY( NR, COEF, WORK( ILO+4*N ), 1, WORK( ILO+N ), 1 )
  454:       CALL DAXPY( NR, COEF, WORK( ILO+5*N ), 1, WORK( ILO ), 1 )
  455: *
  456:       DO 270 I = ILO, IHI
  457:          WORK( I ) = WORK( I ) + TC
  458:          WORK( I+N ) = WORK( I+N ) + T
  459:   270 CONTINUE
  460: *
  461: *     Apply matrix to vector
  462: *
  463:       DO 300 I = ILO, IHI
  464:          KOUNT = 0
  465:          SUM = ZERO
  466:          DO 290 J = ILO, IHI
  467:             IF( A( I, J ).EQ.CZERO )
  468:      $         GO TO 280
  469:             KOUNT = KOUNT + 1
  470:             SUM = SUM + WORK( J )
  471:   280       CONTINUE
  472:             IF( B( I, J ).EQ.CZERO )
  473:      $         GO TO 290
  474:             KOUNT = KOUNT + 1
  475:             SUM = SUM + WORK( J )
  476:   290    CONTINUE
  477:          WORK( I+2*N ) = DBLE( KOUNT )*WORK( I+N ) + SUM
  478:   300 CONTINUE
  479: *
  480:       DO 330 J = ILO, IHI
  481:          KOUNT = 0
  482:          SUM = ZERO
  483:          DO 320 I = ILO, IHI
  484:             IF( A( I, J ).EQ.CZERO )
  485:      $         GO TO 310
  486:             KOUNT = KOUNT + 1
  487:             SUM = SUM + WORK( I+N )
  488:   310       CONTINUE
  489:             IF( B( I, J ).EQ.CZERO )
  490:      $         GO TO 320
  491:             KOUNT = KOUNT + 1
  492:             SUM = SUM + WORK( I+N )
  493:   320    CONTINUE
  494:          WORK( J+3*N ) = DBLE( KOUNT )*WORK( J ) + SUM
  495:   330 CONTINUE
  496: *
  497:       SUM = DDOT( NR, WORK( ILO+N ), 1, WORK( ILO+2*N ), 1 ) +
  498:      $      DDOT( NR, WORK( ILO ), 1, WORK( ILO+3*N ), 1 )
  499:       ALPHA = GAMMA / SUM
  500: *
  501: *     Determine correction to current iteration
  502: *
  503:       CMAX = ZERO
  504:       DO 340 I = ILO, IHI
  505:          COR = ALPHA*WORK( I+N )
  506:          IF( ABS( COR ).GT.CMAX )
  507:      $      CMAX = ABS( COR )
  508:          LSCALE( I ) = LSCALE( I ) + COR
  509:          COR = ALPHA*WORK( I )
  510:          IF( ABS( COR ).GT.CMAX )
  511:      $      CMAX = ABS( COR )
  512:          RSCALE( I ) = RSCALE( I ) + COR
  513:   340 CONTINUE
  514:       IF( CMAX.LT.HALF )
  515:      $   GO TO 350
  516: *
  517:       CALL DAXPY( NR, -ALPHA, WORK( ILO+2*N ), 1, WORK( ILO+4*N ), 1 )
  518:       CALL DAXPY( NR, -ALPHA, WORK( ILO+3*N ), 1, WORK( ILO+5*N ), 1 )
  519: *
  520:       PGAMMA = GAMMA
  521:       IT = IT + 1
  522:       IF( IT.LE.NRP2 )
  523:      $   GO TO 250
  524: *
  525: *     End generalized conjugate gradient iteration
  526: *
  527:   350 CONTINUE
  528:       SFMIN = DLAMCH( 'S' )
  529:       SFMAX = ONE / SFMIN
  530:       LSFMIN = INT( LOG10( SFMIN ) / BASL+ONE )
  531:       LSFMAX = INT( LOG10( SFMAX ) / BASL )
  532:       DO 360 I = ILO, IHI
  533:          IRAB = IZAMAX( N-ILO+1, A( I, ILO ), LDA )
  534:          RAB = ABS( A( I, IRAB+ILO-1 ) )
  535:          IRAB = IZAMAX( N-ILO+1, B( I, ILO ), LDB )
  536:          RAB = MAX( RAB, ABS( B( I, IRAB+ILO-1 ) ) )
  537:          LRAB = INT( LOG10( RAB+SFMIN ) / BASL+ONE )
  538:          IR = INT(LSCALE( I ) + SIGN( HALF, LSCALE( I ) ))
  539:          IR = MIN( MAX( IR, LSFMIN ), LSFMAX, LSFMAX-LRAB )
  540:          LSCALE( I ) = SCLFAC**IR
  541:          ICAB = IZAMAX( IHI, A( 1, I ), 1 )
  542:          CAB = ABS( A( ICAB, I ) )
  543:          ICAB = IZAMAX( IHI, B( 1, I ), 1 )
  544:          CAB = MAX( CAB, ABS( B( ICAB, I ) ) )
  545:          LCAB = INT( LOG10( CAB+SFMIN ) / BASL+ONE )
  546:          JC = INT(RSCALE( I ) + SIGN( HALF, RSCALE( I ) ))
  547:          JC = MIN( MAX( JC, LSFMIN ), LSFMAX, LSFMAX-LCAB )
  548:          RSCALE( I ) = SCLFAC**JC
  549:   360 CONTINUE
  550: *
  551: *     Row scaling of matrices A and B
  552: *
  553:       DO 370 I = ILO, IHI
  554:          CALL ZDSCAL( N-ILO+1, LSCALE( I ), A( I, ILO ), LDA )
  555:          CALL ZDSCAL( N-ILO+1, LSCALE( I ), B( I, ILO ), LDB )
  556:   370 CONTINUE
  557: *
  558: *     Column scaling of matrices A and B
  559: *
  560:       DO 380 J = ILO, IHI
  561:          CALL ZDSCAL( IHI, RSCALE( J ), A( 1, J ), 1 )
  562:          CALL ZDSCAL( IHI, RSCALE( J ), B( 1, J ), 1 )
  563:   380 CONTINUE
  564: *
  565:       RETURN
  566: *
  567: *     End of ZGGBAL
  568: *
  569:       END

CVSweb interface <joel.bertrand@systella.fr>