File:  [local] / rpl / lapack / lapack / zggbal.f
Revision 1.6: download - view: text, annotated - select for diffs - revision graph
Fri Aug 13 21:04:04 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_0_19, rpl-4_0_18, HEAD
Patches pour OS/2

    1:       SUBROUTINE ZGGBAL( JOB, N, A, LDA, B, LDB, ILO, IHI, LSCALE,
    2:      $                   RSCALE, WORK, INFO )
    3: *
    4: *  -- LAPACK routine (version 3.2) --
    5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    7: *     November 2006
    8: *
    9: *     .. Scalar Arguments ..
   10:       CHARACTER          JOB
   11:       INTEGER            IHI, ILO, INFO, LDA, LDB, N
   12: *     ..
   13: *     .. Array Arguments ..
   14:       DOUBLE PRECISION   LSCALE( * ), RSCALE( * ), WORK( * )
   15:       COMPLEX*16         A( LDA, * ), B( LDB, * )
   16: *     ..
   17: *
   18: *  Purpose
   19: *  =======
   20: *
   21: *  ZGGBAL balances a pair of general complex matrices (A,B).  This
   22: *  involves, first, permuting A and B by similarity transformations to
   23: *  isolate eigenvalues in the first 1 to ILO$-$1 and last IHI+1 to N
   24: *  elements on the diagonal; and second, applying a diagonal similarity
   25: *  transformation to rows and columns ILO to IHI to make the rows
   26: *  and columns as close in norm as possible. Both steps are optional.
   27: *
   28: *  Balancing may reduce the 1-norm of the matrices, and improve the
   29: *  accuracy of the computed eigenvalues and/or eigenvectors in the
   30: *  generalized eigenvalue problem A*x = lambda*B*x.
   31: *
   32: *  Arguments
   33: *  =========
   34: *
   35: *  JOB     (input) CHARACTER*1
   36: *          Specifies the operations to be performed on A and B:
   37: *          = 'N':  none:  simply set ILO = 1, IHI = N, LSCALE(I) = 1.0
   38: *                  and RSCALE(I) = 1.0 for i=1,...,N;
   39: *          = 'P':  permute only;
   40: *          = 'S':  scale only;
   41: *          = 'B':  both permute and scale.
   42: *
   43: *  N       (input) INTEGER
   44: *          The order of the matrices A and B.  N >= 0.
   45: *
   46: *  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
   47: *          On entry, the input matrix A.
   48: *          On exit, A is overwritten by the balanced matrix.
   49: *          If JOB = 'N', A is not referenced.
   50: *
   51: *  LDA     (input) INTEGER
   52: *          The leading dimension of the array A. LDA >= max(1,N).
   53: *
   54: *  B       (input/output) COMPLEX*16 array, dimension (LDB,N)
   55: *          On entry, the input matrix B.
   56: *          On exit, B is overwritten by the balanced matrix.
   57: *          If JOB = 'N', B is not referenced.
   58: *
   59: *  LDB     (input) INTEGER
   60: *          The leading dimension of the array B. LDB >= max(1,N).
   61: *
   62: *  ILO     (output) INTEGER
   63: *  IHI     (output) INTEGER
   64: *          ILO and IHI are set to integers such that on exit
   65: *          A(i,j) = 0 and B(i,j) = 0 if i > j and
   66: *          j = 1,...,ILO-1 or i = IHI+1,...,N.
   67: *          If JOB = 'N' or 'S', ILO = 1 and IHI = N.
   68: *
   69: *  LSCALE  (output) DOUBLE PRECISION array, dimension (N)
   70: *          Details of the permutations and scaling factors applied
   71: *          to the left side of A and B.  If P(j) is the index of the
   72: *          row interchanged with row j, and D(j) is the scaling factor
   73: *          applied to row j, then
   74: *            LSCALE(j) = P(j)    for J = 1,...,ILO-1
   75: *                      = D(j)    for J = ILO,...,IHI
   76: *                      = P(j)    for J = IHI+1,...,N.
   77: *          The order in which the interchanges are made is N to IHI+1,
   78: *          then 1 to ILO-1.
   79: *
   80: *  RSCALE  (output) DOUBLE PRECISION array, dimension (N)
   81: *          Details of the permutations and scaling factors applied
   82: *          to the right side of A and B.  If P(j) is the index of the
   83: *          column interchanged with column j, and D(j) is the scaling
   84: *          factor applied to column j, then
   85: *            RSCALE(j) = P(j)    for J = 1,...,ILO-1
   86: *                      = D(j)    for J = ILO,...,IHI
   87: *                      = P(j)    for J = IHI+1,...,N.
   88: *          The order in which the interchanges are made is N to IHI+1,
   89: *          then 1 to ILO-1.
   90: *
   91: *  WORK    (workspace) REAL array, dimension (lwork)
   92: *          lwork must be at least max(1,6*N) when JOB = 'S' or 'B', and
   93: *          at least 1 when JOB = 'N' or 'P'.
   94: *
   95: *  INFO    (output) INTEGER
   96: *          = 0:  successful exit
   97: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
   98: *
   99: *  Further Details
  100: *  ===============
  101: *
  102: *  See R.C. WARD, Balancing the generalized eigenvalue problem,
  103: *                 SIAM J. Sci. Stat. Comp. 2 (1981), 141-152.
  104: *
  105: *  =====================================================================
  106: *
  107: *     .. Parameters ..
  108:       DOUBLE PRECISION   ZERO, HALF, ONE
  109:       PARAMETER          ( ZERO = 0.0D+0, HALF = 0.5D+0, ONE = 1.0D+0 )
  110:       DOUBLE PRECISION   THREE, SCLFAC
  111:       PARAMETER          ( THREE = 3.0D+0, SCLFAC = 1.0D+1 )
  112:       COMPLEX*16         CZERO
  113:       PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ) )
  114: *     ..
  115: *     .. Local Scalars ..
  116:       INTEGER            I, ICAB, IFLOW, IP1, IR, IRAB, IT, J, JC, JP1,
  117:      $                   K, KOUNT, L, LCAB, LM1, LRAB, LSFMAX, LSFMIN,
  118:      $                   M, NR, NRP2
  119:       DOUBLE PRECISION   ALPHA, BASL, BETA, CAB, CMAX, COEF, COEF2,
  120:      $                   COEF5, COR, EW, EWC, GAMMA, PGAMMA, RAB, SFMAX,
  121:      $                   SFMIN, SUM, T, TA, TB, TC
  122:       COMPLEX*16         CDUM
  123: *     ..
  124: *     .. External Functions ..
  125:       LOGICAL            LSAME
  126:       INTEGER            IZAMAX
  127:       DOUBLE PRECISION   DDOT, DLAMCH
  128:       EXTERNAL           LSAME, IZAMAX, DDOT, DLAMCH
  129: *     ..
  130: *     .. External Subroutines ..
  131:       EXTERNAL           DAXPY, DSCAL, XERBLA, ZDSCAL, ZSWAP
  132: *     ..
  133: *     .. Intrinsic Functions ..
  134:       INTRINSIC          ABS, DBLE, DIMAG, INT, LOG10, MAX, MIN, SIGN
  135: *     ..
  136: *     .. Statement Functions ..
  137:       DOUBLE PRECISION   CABS1
  138: *     ..
  139: *     .. Statement Function definitions ..
  140:       CABS1( CDUM ) = ABS( DBLE( CDUM ) ) + ABS( DIMAG( CDUM ) )
  141: *     ..
  142: *     .. Executable Statements ..
  143: *
  144: *     Test the input parameters
  145: *
  146:       INFO = 0
  147:       IF( .NOT.LSAME( JOB, 'N' ) .AND. .NOT.LSAME( JOB, 'P' ) .AND.
  148:      $    .NOT.LSAME( JOB, 'S' ) .AND. .NOT.LSAME( JOB, 'B' ) ) THEN
  149:          INFO = -1
  150:       ELSE IF( N.LT.0 ) THEN
  151:          INFO = -2
  152:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  153:          INFO = -4
  154:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  155:          INFO = -6
  156:       END IF
  157:       IF( INFO.NE.0 ) THEN
  158:          CALL XERBLA( 'ZGGBAL', -INFO )
  159:          RETURN
  160:       END IF
  161: *
  162: *     Quick return if possible
  163: *
  164:       IF( N.EQ.0 ) THEN
  165:          ILO = 1
  166:          IHI = N
  167:          RETURN
  168:       END IF
  169: *
  170:       IF( N.EQ.1 ) THEN
  171:          ILO = 1
  172:          IHI = N
  173:          LSCALE( 1 ) = ONE
  174:          RSCALE( 1 ) = ONE
  175:          RETURN
  176:       END IF
  177: *
  178:       IF( LSAME( JOB, 'N' ) ) THEN
  179:          ILO = 1
  180:          IHI = N
  181:          DO 10 I = 1, N
  182:             LSCALE( I ) = ONE
  183:             RSCALE( I ) = ONE
  184:    10    CONTINUE
  185:          RETURN
  186:       END IF
  187: *
  188:       K = 1
  189:       L = N
  190:       IF( LSAME( JOB, 'S' ) )
  191:      $   GO TO 190
  192: *
  193:       GO TO 30
  194: *
  195: *     Permute the matrices A and B to isolate the eigenvalues.
  196: *
  197: *     Find row with one nonzero in columns 1 through L
  198: *
  199:    20 CONTINUE
  200:       L = LM1
  201:       IF( L.NE.1 )
  202:      $   GO TO 30
  203: *
  204:       RSCALE( 1 ) = 1
  205:       LSCALE( 1 ) = 1
  206:       GO TO 190
  207: *
  208:    30 CONTINUE
  209:       LM1 = L - 1
  210:       DO 80 I = L, 1, -1
  211:          DO 40 J = 1, LM1
  212:             JP1 = J + 1
  213:             IF( A( I, J ).NE.CZERO .OR. B( I, J ).NE.CZERO )
  214:      $         GO TO 50
  215:    40    CONTINUE
  216:          J = L
  217:          GO TO 70
  218: *
  219:    50    CONTINUE
  220:          DO 60 J = JP1, L
  221:             IF( A( I, J ).NE.CZERO .OR. B( I, J ).NE.CZERO )
  222:      $         GO TO 80
  223:    60    CONTINUE
  224:          J = JP1 - 1
  225: *
  226:    70    CONTINUE
  227:          M = L
  228:          IFLOW = 1
  229:          GO TO 160
  230:    80 CONTINUE
  231:       GO TO 100
  232: *
  233: *     Find column with one nonzero in rows K through N
  234: *
  235:    90 CONTINUE
  236:       K = K + 1
  237: *
  238:   100 CONTINUE
  239:       DO 150 J = K, L
  240:          DO 110 I = K, LM1
  241:             IP1 = I + 1
  242:             IF( A( I, J ).NE.CZERO .OR. B( I, J ).NE.CZERO )
  243:      $         GO TO 120
  244:   110    CONTINUE
  245:          I = L
  246:          GO TO 140
  247:   120    CONTINUE
  248:          DO 130 I = IP1, L
  249:             IF( A( I, J ).NE.CZERO .OR. B( I, J ).NE.CZERO )
  250:      $         GO TO 150
  251:   130    CONTINUE
  252:          I = IP1 - 1
  253:   140    CONTINUE
  254:          M = K
  255:          IFLOW = 2
  256:          GO TO 160
  257:   150 CONTINUE
  258:       GO TO 190
  259: *
  260: *     Permute rows M and I
  261: *
  262:   160 CONTINUE
  263:       LSCALE( M ) = I
  264:       IF( I.EQ.M )
  265:      $   GO TO 170
  266:       CALL ZSWAP( N-K+1, A( I, K ), LDA, A( M, K ), LDA )
  267:       CALL ZSWAP( N-K+1, B( I, K ), LDB, B( M, K ), LDB )
  268: *
  269: *     Permute columns M and J
  270: *
  271:   170 CONTINUE
  272:       RSCALE( M ) = J
  273:       IF( J.EQ.M )
  274:      $   GO TO 180
  275:       CALL ZSWAP( L, A( 1, J ), 1, A( 1, M ), 1 )
  276:       CALL ZSWAP( L, B( 1, J ), 1, B( 1, M ), 1 )
  277: *
  278:   180 CONTINUE
  279:       GO TO ( 20, 90 )IFLOW
  280: *
  281:   190 CONTINUE
  282:       ILO = K
  283:       IHI = L
  284: *
  285:       IF( LSAME( JOB, 'P' ) ) THEN
  286:          DO 195 I = ILO, IHI
  287:             LSCALE( I ) = ONE
  288:             RSCALE( I ) = ONE
  289:   195    CONTINUE
  290:          RETURN
  291:       END IF
  292: *
  293:       IF( ILO.EQ.IHI )
  294:      $   RETURN
  295: *
  296: *     Balance the submatrix in rows ILO to IHI.
  297: *
  298:       NR = IHI - ILO + 1
  299:       DO 200 I = ILO, IHI
  300:          RSCALE( I ) = ZERO
  301:          LSCALE( I ) = ZERO
  302: *
  303:          WORK( I ) = ZERO
  304:          WORK( I+N ) = ZERO
  305:          WORK( I+2*N ) = ZERO
  306:          WORK( I+3*N ) = ZERO
  307:          WORK( I+4*N ) = ZERO
  308:          WORK( I+5*N ) = ZERO
  309:   200 CONTINUE
  310: *
  311: *     Compute right side vector in resulting linear equations
  312: *
  313:       BASL = LOG10( SCLFAC )
  314:       DO 240 I = ILO, IHI
  315:          DO 230 J = ILO, IHI
  316:             IF( A( I, J ).EQ.CZERO ) THEN
  317:                TA = ZERO
  318:                GO TO 210
  319:             END IF
  320:             TA = LOG10( CABS1( A( I, J ) ) ) / BASL
  321: *
  322:   210       CONTINUE
  323:             IF( B( I, J ).EQ.CZERO ) THEN
  324:                TB = ZERO
  325:                GO TO 220
  326:             END IF
  327:             TB = LOG10( CABS1( B( I, J ) ) ) / BASL
  328: *
  329:   220       CONTINUE
  330:             WORK( I+4*N ) = WORK( I+4*N ) - TA - TB
  331:             WORK( J+5*N ) = WORK( J+5*N ) - TA - TB
  332:   230    CONTINUE
  333:   240 CONTINUE
  334: *
  335:       COEF = ONE / DBLE( 2*NR )
  336:       COEF2 = COEF*COEF
  337:       COEF5 = HALF*COEF2
  338:       NRP2 = NR + 2
  339:       BETA = ZERO
  340:       IT = 1
  341: *
  342: *     Start generalized conjugate gradient iteration
  343: *
  344:   250 CONTINUE
  345: *
  346:       GAMMA = DDOT( NR, WORK( ILO+4*N ), 1, WORK( ILO+4*N ), 1 ) +
  347:      $        DDOT( NR, WORK( ILO+5*N ), 1, WORK( ILO+5*N ), 1 )
  348: *
  349:       EW = ZERO
  350:       EWC = ZERO
  351:       DO 260 I = ILO, IHI
  352:          EW = EW + WORK( I+4*N )
  353:          EWC = EWC + WORK( I+5*N )
  354:   260 CONTINUE
  355: *
  356:       GAMMA = COEF*GAMMA - COEF2*( EW**2+EWC**2 ) - COEF5*( EW-EWC )**2
  357:       IF( GAMMA.EQ.ZERO )
  358:      $   GO TO 350
  359:       IF( IT.NE.1 )
  360:      $   BETA = GAMMA / PGAMMA
  361:       T = COEF5*( EWC-THREE*EW )
  362:       TC = COEF5*( EW-THREE*EWC )
  363: *
  364:       CALL DSCAL( NR, BETA, WORK( ILO ), 1 )
  365:       CALL DSCAL( NR, BETA, WORK( ILO+N ), 1 )
  366: *
  367:       CALL DAXPY( NR, COEF, WORK( ILO+4*N ), 1, WORK( ILO+N ), 1 )
  368:       CALL DAXPY( NR, COEF, WORK( ILO+5*N ), 1, WORK( ILO ), 1 )
  369: *
  370:       DO 270 I = ILO, IHI
  371:          WORK( I ) = WORK( I ) + TC
  372:          WORK( I+N ) = WORK( I+N ) + T
  373:   270 CONTINUE
  374: *
  375: *     Apply matrix to vector
  376: *
  377:       DO 300 I = ILO, IHI
  378:          KOUNT = 0
  379:          SUM = ZERO
  380:          DO 290 J = ILO, IHI
  381:             IF( A( I, J ).EQ.CZERO )
  382:      $         GO TO 280
  383:             KOUNT = KOUNT + 1
  384:             SUM = SUM + WORK( J )
  385:   280       CONTINUE
  386:             IF( B( I, J ).EQ.CZERO )
  387:      $         GO TO 290
  388:             KOUNT = KOUNT + 1
  389:             SUM = SUM + WORK( J )
  390:   290    CONTINUE
  391:          WORK( I+2*N ) = DBLE( KOUNT )*WORK( I+N ) + SUM
  392:   300 CONTINUE
  393: *
  394:       DO 330 J = ILO, IHI
  395:          KOUNT = 0
  396:          SUM = ZERO
  397:          DO 320 I = ILO, IHI
  398:             IF( A( I, J ).EQ.CZERO )
  399:      $         GO TO 310
  400:             KOUNT = KOUNT + 1
  401:             SUM = SUM + WORK( I+N )
  402:   310       CONTINUE
  403:             IF( B( I, J ).EQ.CZERO )
  404:      $         GO TO 320
  405:             KOUNT = KOUNT + 1
  406:             SUM = SUM + WORK( I+N )
  407:   320    CONTINUE
  408:          WORK( J+3*N ) = DBLE( KOUNT )*WORK( J ) + SUM
  409:   330 CONTINUE
  410: *
  411:       SUM = DDOT( NR, WORK( ILO+N ), 1, WORK( ILO+2*N ), 1 ) +
  412:      $      DDOT( NR, WORK( ILO ), 1, WORK( ILO+3*N ), 1 )
  413:       ALPHA = GAMMA / SUM
  414: *
  415: *     Determine correction to current iteration
  416: *
  417:       CMAX = ZERO
  418:       DO 340 I = ILO, IHI
  419:          COR = ALPHA*WORK( I+N )
  420:          IF( ABS( COR ).GT.CMAX )
  421:      $      CMAX = ABS( COR )
  422:          LSCALE( I ) = LSCALE( I ) + COR
  423:          COR = ALPHA*WORK( I )
  424:          IF( ABS( COR ).GT.CMAX )
  425:      $      CMAX = ABS( COR )
  426:          RSCALE( I ) = RSCALE( I ) + COR
  427:   340 CONTINUE
  428:       IF( CMAX.LT.HALF )
  429:      $   GO TO 350
  430: *
  431:       CALL DAXPY( NR, -ALPHA, WORK( ILO+2*N ), 1, WORK( ILO+4*N ), 1 )
  432:       CALL DAXPY( NR, -ALPHA, WORK( ILO+3*N ), 1, WORK( ILO+5*N ), 1 )
  433: *
  434:       PGAMMA = GAMMA
  435:       IT = IT + 1
  436:       IF( IT.LE.NRP2 )
  437:      $   GO TO 250
  438: *
  439: *     End generalized conjugate gradient iteration
  440: *
  441:   350 CONTINUE
  442:       SFMIN = DLAMCH( 'S' )
  443:       SFMAX = ONE / SFMIN
  444:       LSFMIN = INT( LOG10( SFMIN ) / BASL+ONE )
  445:       LSFMAX = INT( LOG10( SFMAX ) / BASL )
  446:       DO 360 I = ILO, IHI
  447:          IRAB = IZAMAX( N-ILO+1, A( I, ILO ), LDA )
  448:          RAB = ABS( A( I, IRAB+ILO-1 ) )
  449:          IRAB = IZAMAX( N-ILO+1, B( I, ILO ), LDB )
  450:          RAB = MAX( RAB, ABS( B( I, IRAB+ILO-1 ) ) )
  451:          LRAB = INT( LOG10( RAB+SFMIN ) / BASL+ONE )
  452:          IR = LSCALE( I ) + SIGN( HALF, LSCALE( I ) )
  453:          IR = MIN( MAX( IR, LSFMIN ), LSFMAX, LSFMAX-LRAB )
  454:          LSCALE( I ) = SCLFAC**IR
  455:          ICAB = IZAMAX( IHI, A( 1, I ), 1 )
  456:          CAB = ABS( A( ICAB, I ) )
  457:          ICAB = IZAMAX( IHI, B( 1, I ), 1 )
  458:          CAB = MAX( CAB, ABS( B( ICAB, I ) ) )
  459:          LCAB = INT( LOG10( CAB+SFMIN ) / BASL+ONE )
  460:          JC = RSCALE( I ) + SIGN( HALF, RSCALE( I ) )
  461:          JC = MIN( MAX( JC, LSFMIN ), LSFMAX, LSFMAX-LCAB )
  462:          RSCALE( I ) = SCLFAC**JC
  463:   360 CONTINUE
  464: *
  465: *     Row scaling of matrices A and B
  466: *
  467:       DO 370 I = ILO, IHI
  468:          CALL ZDSCAL( N-ILO+1, LSCALE( I ), A( I, ILO ), LDA )
  469:          CALL ZDSCAL( N-ILO+1, LSCALE( I ), B( I, ILO ), LDB )
  470:   370 CONTINUE
  471: *
  472: *     Column scaling of matrices A and B
  473: *
  474:       DO 380 J = ILO, IHI
  475:          CALL ZDSCAL( IHI, RSCALE( J ), A( 1, J ), 1 )
  476:          CALL ZDSCAL( IHI, RSCALE( J ), B( 1, J ), 1 )
  477:   380 CONTINUE
  478: *
  479:       RETURN
  480: *
  481: *     End of ZGGBAL
  482: *
  483:       END

CVSweb interface <joel.bertrand@systella.fr>