File:  [local] / rpl / lapack / lapack / zggbak.f
Revision 1.11: download - view: text, annotated - select for diffs - revision graph
Fri Dec 14 14:22:46 2012 UTC (11 years, 5 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_16, rpl-4_1_15, rpl-4_1_14, rpl-4_1_13, rpl-4_1_12, rpl-4_1_11, HEAD
Mise à jour de lapack.

    1: *> \brief \b ZGGBAK
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download ZGGBAK + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zggbak.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zggbak.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zggbak.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZGGBAK( JOB, SIDE, N, ILO, IHI, LSCALE, RSCALE, M, V,
   22: *                          LDV, INFO )
   23:    24: *       .. Scalar Arguments ..
   25: *       CHARACTER          JOB, SIDE
   26: *       INTEGER            IHI, ILO, INFO, LDV, M, N
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       DOUBLE PRECISION   LSCALE( * ), RSCALE( * )
   30: *       COMPLEX*16         V( LDV, * )
   31: *       ..
   32: *  
   33: *
   34: *> \par Purpose:
   35: *  =============
   36: *>
   37: *> \verbatim
   38: *>
   39: *> ZGGBAK forms the right or left eigenvectors of a complex generalized
   40: *> eigenvalue problem A*x = lambda*B*x, by backward transformation on
   41: *> the computed eigenvectors of the balanced pair of matrices output by
   42: *> ZGGBAL.
   43: *> \endverbatim
   44: *
   45: *  Arguments:
   46: *  ==========
   47: *
   48: *> \param[in] JOB
   49: *> \verbatim
   50: *>          JOB is CHARACTER*1
   51: *>          Specifies the type of backward transformation required:
   52: *>          = 'N':  do nothing, return immediately;
   53: *>          = 'P':  do backward transformation for permutation only;
   54: *>          = 'S':  do backward transformation for scaling only;
   55: *>          = 'B':  do backward transformations for both permutation and
   56: *>                  scaling.
   57: *>          JOB must be the same as the argument JOB supplied to ZGGBAL.
   58: *> \endverbatim
   59: *>
   60: *> \param[in] SIDE
   61: *> \verbatim
   62: *>          SIDE is CHARACTER*1
   63: *>          = 'R':  V contains right eigenvectors;
   64: *>          = 'L':  V contains left eigenvectors.
   65: *> \endverbatim
   66: *>
   67: *> \param[in] N
   68: *> \verbatim
   69: *>          N is INTEGER
   70: *>          The number of rows of the matrix V.  N >= 0.
   71: *> \endverbatim
   72: *>
   73: *> \param[in] ILO
   74: *> \verbatim
   75: *>          ILO is INTEGER
   76: *> \endverbatim
   77: *>
   78: *> \param[in] IHI
   79: *> \verbatim
   80: *>          IHI is INTEGER
   81: *>          The integers ILO and IHI determined by ZGGBAL.
   82: *>          1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
   83: *> \endverbatim
   84: *>
   85: *> \param[in] LSCALE
   86: *> \verbatim
   87: *>          LSCALE is DOUBLE PRECISION array, dimension (N)
   88: *>          Details of the permutations and/or scaling factors applied
   89: *>          to the left side of A and B, as returned by ZGGBAL.
   90: *> \endverbatim
   91: *>
   92: *> \param[in] RSCALE
   93: *> \verbatim
   94: *>          RSCALE is DOUBLE PRECISION array, dimension (N)
   95: *>          Details of the permutations and/or scaling factors applied
   96: *>          to the right side of A and B, as returned by ZGGBAL.
   97: *> \endverbatim
   98: *>
   99: *> \param[in] M
  100: *> \verbatim
  101: *>          M is INTEGER
  102: *>          The number of columns of the matrix V.  M >= 0.
  103: *> \endverbatim
  104: *>
  105: *> \param[in,out] V
  106: *> \verbatim
  107: *>          V is COMPLEX*16 array, dimension (LDV,M)
  108: *>          On entry, the matrix of right or left eigenvectors to be
  109: *>          transformed, as returned by ZTGEVC.
  110: *>          On exit, V is overwritten by the transformed eigenvectors.
  111: *> \endverbatim
  112: *>
  113: *> \param[in] LDV
  114: *> \verbatim
  115: *>          LDV is INTEGER
  116: *>          The leading dimension of the matrix V. LDV >= max(1,N).
  117: *> \endverbatim
  118: *>
  119: *> \param[out] INFO
  120: *> \verbatim
  121: *>          INFO is INTEGER
  122: *>          = 0:  successful exit.
  123: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
  124: *> \endverbatim
  125: *
  126: *  Authors:
  127: *  ========
  128: *
  129: *> \author Univ. of Tennessee 
  130: *> \author Univ. of California Berkeley 
  131: *> \author Univ. of Colorado Denver 
  132: *> \author NAG Ltd. 
  133: *
  134: *> \date November 2011
  135: *
  136: *> \ingroup complex16GBcomputational
  137: *
  138: *> \par Further Details:
  139: *  =====================
  140: *>
  141: *> \verbatim
  142: *>
  143: *>  See R.C. Ward, Balancing the generalized eigenvalue problem,
  144: *>                 SIAM J. Sci. Stat. Comp. 2 (1981), 141-152.
  145: *> \endverbatim
  146: *>
  147: *  =====================================================================
  148:       SUBROUTINE ZGGBAK( JOB, SIDE, N, ILO, IHI, LSCALE, RSCALE, M, V,
  149:      $                   LDV, INFO )
  150: *
  151: *  -- LAPACK computational routine (version 3.4.0) --
  152: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  153: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  154: *     November 2011
  155: *
  156: *     .. Scalar Arguments ..
  157:       CHARACTER          JOB, SIDE
  158:       INTEGER            IHI, ILO, INFO, LDV, M, N
  159: *     ..
  160: *     .. Array Arguments ..
  161:       DOUBLE PRECISION   LSCALE( * ), RSCALE( * )
  162:       COMPLEX*16         V( LDV, * )
  163: *     ..
  164: *
  165: *  =====================================================================
  166: *
  167: *     .. Local Scalars ..
  168:       LOGICAL            LEFTV, RIGHTV
  169:       INTEGER            I, K
  170: *     ..
  171: *     .. External Functions ..
  172:       LOGICAL            LSAME
  173:       EXTERNAL           LSAME
  174: *     ..
  175: *     .. External Subroutines ..
  176:       EXTERNAL           XERBLA, ZDSCAL, ZSWAP
  177: *     ..
  178: *     .. Intrinsic Functions ..
  179:       INTRINSIC          MAX
  180: *     ..
  181: *     .. Executable Statements ..
  182: *
  183: *     Test the input parameters
  184: *
  185:       RIGHTV = LSAME( SIDE, 'R' )
  186:       LEFTV = LSAME( SIDE, 'L' )
  187: *
  188:       INFO = 0
  189:       IF( .NOT.LSAME( JOB, 'N' ) .AND. .NOT.LSAME( JOB, 'P' ) .AND.
  190:      $    .NOT.LSAME( JOB, 'S' ) .AND. .NOT.LSAME( JOB, 'B' ) ) THEN
  191:          INFO = -1
  192:       ELSE IF( .NOT.RIGHTV .AND. .NOT.LEFTV ) THEN
  193:          INFO = -2
  194:       ELSE IF( N.LT.0 ) THEN
  195:          INFO = -3
  196:       ELSE IF( ILO.LT.1 ) THEN
  197:          INFO = -4
  198:       ELSE IF( N.EQ.0 .AND. IHI.EQ.0 .AND. ILO.NE.1 ) THEN
  199:          INFO = -4
  200:       ELSE IF( N.GT.0 .AND. ( IHI.LT.ILO .OR. IHI.GT.MAX( 1, N ) ) )
  201:      $   THEN
  202:          INFO = -5
  203:       ELSE IF( N.EQ.0 .AND. ILO.EQ.1 .AND. IHI.NE.0 ) THEN
  204:          INFO = -5
  205:       ELSE IF( M.LT.0 ) THEN
  206:          INFO = -8
  207:       ELSE IF( LDV.LT.MAX( 1, N ) ) THEN
  208:          INFO = -10
  209:       END IF
  210:       IF( INFO.NE.0 ) THEN
  211:          CALL XERBLA( 'ZGGBAK', -INFO )
  212:          RETURN
  213:       END IF
  214: *
  215: *     Quick return if possible
  216: *
  217:       IF( N.EQ.0 )
  218:      $   RETURN
  219:       IF( M.EQ.0 )
  220:      $   RETURN
  221:       IF( LSAME( JOB, 'N' ) )
  222:      $   RETURN
  223: *
  224:       IF( ILO.EQ.IHI )
  225:      $   GO TO 30
  226: *
  227: *     Backward balance
  228: *
  229:       IF( LSAME( JOB, 'S' ) .OR. LSAME( JOB, 'B' ) ) THEN
  230: *
  231: *        Backward transformation on right eigenvectors
  232: *
  233:          IF( RIGHTV ) THEN
  234:             DO 10 I = ILO, IHI
  235:                CALL ZDSCAL( M, RSCALE( I ), V( I, 1 ), LDV )
  236:    10       CONTINUE
  237:          END IF
  238: *
  239: *        Backward transformation on left eigenvectors
  240: *
  241:          IF( LEFTV ) THEN
  242:             DO 20 I = ILO, IHI
  243:                CALL ZDSCAL( M, LSCALE( I ), V( I, 1 ), LDV )
  244:    20       CONTINUE
  245:          END IF
  246:       END IF
  247: *
  248: *     Backward permutation
  249: *
  250:    30 CONTINUE
  251:       IF( LSAME( JOB, 'P' ) .OR. LSAME( JOB, 'B' ) ) THEN
  252: *
  253: *        Backward permutation on right eigenvectors
  254: *
  255:          IF( RIGHTV ) THEN
  256:             IF( ILO.EQ.1 )
  257:      $         GO TO 50
  258:             DO 40 I = ILO - 1, 1, -1
  259:                K = RSCALE( I )
  260:                IF( K.EQ.I )
  261:      $            GO TO 40
  262:                CALL ZSWAP( M, V( I, 1 ), LDV, V( K, 1 ), LDV )
  263:    40       CONTINUE
  264: *
  265:    50       CONTINUE
  266:             IF( IHI.EQ.N )
  267:      $         GO TO 70
  268:             DO 60 I = IHI + 1, N
  269:                K = RSCALE( I )
  270:                IF( K.EQ.I )
  271:      $            GO TO 60
  272:                CALL ZSWAP( M, V( I, 1 ), LDV, V( K, 1 ), LDV )
  273:    60       CONTINUE
  274:          END IF
  275: *
  276: *        Backward permutation on left eigenvectors
  277: *
  278:    70    CONTINUE
  279:          IF( LEFTV ) THEN
  280:             IF( ILO.EQ.1 )
  281:      $         GO TO 90
  282:             DO 80 I = ILO - 1, 1, -1
  283:                K = LSCALE( I )
  284:                IF( K.EQ.I )
  285:      $            GO TO 80
  286:                CALL ZSWAP( M, V( I, 1 ), LDV, V( K, 1 ), LDV )
  287:    80       CONTINUE
  288: *
  289:    90       CONTINUE
  290:             IF( IHI.EQ.N )
  291:      $         GO TO 110
  292:             DO 100 I = IHI + 1, N
  293:                K = LSCALE( I )
  294:                IF( K.EQ.I )
  295:      $            GO TO 100
  296:                CALL ZSWAP( M, V( I, 1 ), LDV, V( K, 1 ), LDV )
  297:   100       CONTINUE
  298:          END IF
  299:       END IF
  300: *
  301:   110 CONTINUE
  302: *
  303:       RETURN
  304: *
  305: *     End of ZGGBAK
  306: *
  307:       END

CVSweb interface <joel.bertrand@systella.fr>