Annotation of rpl/lapack/lapack/zggbak.f, revision 1.18

1.8       bertrand    1: *> \brief \b ZGGBAK
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.15      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.8       bertrand    7: *
                      8: *> \htmlonly
1.15      bertrand    9: *> Download ZGGBAK + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zggbak.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zggbak.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zggbak.f">
1.8       bertrand   15: *> [TXT]</a>
1.15      bertrand   16: *> \endhtmlonly
1.8       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZGGBAK( JOB, SIDE, N, ILO, IHI, LSCALE, RSCALE, M, V,
                     22: *                          LDV, INFO )
1.15      bertrand   23: *
1.8       bertrand   24: *       .. Scalar Arguments ..
                     25: *       CHARACTER          JOB, SIDE
                     26: *       INTEGER            IHI, ILO, INFO, LDV, M, N
                     27: *       ..
                     28: *       .. Array Arguments ..
                     29: *       DOUBLE PRECISION   LSCALE( * ), RSCALE( * )
                     30: *       COMPLEX*16         V( LDV, * )
                     31: *       ..
1.15      bertrand   32: *
1.8       bertrand   33: *
                     34: *> \par Purpose:
                     35: *  =============
                     36: *>
                     37: *> \verbatim
                     38: *>
                     39: *> ZGGBAK forms the right or left eigenvectors of a complex generalized
                     40: *> eigenvalue problem A*x = lambda*B*x, by backward transformation on
                     41: *> the computed eigenvectors of the balanced pair of matrices output by
                     42: *> ZGGBAL.
                     43: *> \endverbatim
                     44: *
                     45: *  Arguments:
                     46: *  ==========
                     47: *
                     48: *> \param[in] JOB
                     49: *> \verbatim
                     50: *>          JOB is CHARACTER*1
                     51: *>          Specifies the type of backward transformation required:
                     52: *>          = 'N':  do nothing, return immediately;
                     53: *>          = 'P':  do backward transformation for permutation only;
                     54: *>          = 'S':  do backward transformation for scaling only;
                     55: *>          = 'B':  do backward transformations for both permutation and
                     56: *>                  scaling.
                     57: *>          JOB must be the same as the argument JOB supplied to ZGGBAL.
                     58: *> \endverbatim
                     59: *>
                     60: *> \param[in] SIDE
                     61: *> \verbatim
                     62: *>          SIDE is CHARACTER*1
                     63: *>          = 'R':  V contains right eigenvectors;
                     64: *>          = 'L':  V contains left eigenvectors.
                     65: *> \endverbatim
                     66: *>
                     67: *> \param[in] N
                     68: *> \verbatim
                     69: *>          N is INTEGER
                     70: *>          The number of rows of the matrix V.  N >= 0.
                     71: *> \endverbatim
                     72: *>
                     73: *> \param[in] ILO
                     74: *> \verbatim
                     75: *>          ILO is INTEGER
                     76: *> \endverbatim
                     77: *>
                     78: *> \param[in] IHI
                     79: *> \verbatim
                     80: *>          IHI is INTEGER
                     81: *>          The integers ILO and IHI determined by ZGGBAL.
                     82: *>          1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
                     83: *> \endverbatim
                     84: *>
                     85: *> \param[in] LSCALE
                     86: *> \verbatim
                     87: *>          LSCALE is DOUBLE PRECISION array, dimension (N)
                     88: *>          Details of the permutations and/or scaling factors applied
                     89: *>          to the left side of A and B, as returned by ZGGBAL.
                     90: *> \endverbatim
                     91: *>
                     92: *> \param[in] RSCALE
                     93: *> \verbatim
                     94: *>          RSCALE is DOUBLE PRECISION array, dimension (N)
                     95: *>          Details of the permutations and/or scaling factors applied
                     96: *>          to the right side of A and B, as returned by ZGGBAL.
                     97: *> \endverbatim
                     98: *>
                     99: *> \param[in] M
                    100: *> \verbatim
                    101: *>          M is INTEGER
                    102: *>          The number of columns of the matrix V.  M >= 0.
                    103: *> \endverbatim
                    104: *>
                    105: *> \param[in,out] V
                    106: *> \verbatim
                    107: *>          V is COMPLEX*16 array, dimension (LDV,M)
                    108: *>          On entry, the matrix of right or left eigenvectors to be
                    109: *>          transformed, as returned by ZTGEVC.
                    110: *>          On exit, V is overwritten by the transformed eigenvectors.
                    111: *> \endverbatim
                    112: *>
                    113: *> \param[in] LDV
                    114: *> \verbatim
                    115: *>          LDV is INTEGER
                    116: *>          The leading dimension of the matrix V. LDV >= max(1,N).
                    117: *> \endverbatim
                    118: *>
                    119: *> \param[out] INFO
                    120: *> \verbatim
                    121: *>          INFO is INTEGER
                    122: *>          = 0:  successful exit.
                    123: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
                    124: *> \endverbatim
                    125: *
                    126: *  Authors:
                    127: *  ========
                    128: *
1.15      bertrand  129: *> \author Univ. of Tennessee
                    130: *> \author Univ. of California Berkeley
                    131: *> \author Univ. of Colorado Denver
                    132: *> \author NAG Ltd.
1.8       bertrand  133: *
                    134: *> \ingroup complex16GBcomputational
                    135: *
                    136: *> \par Further Details:
                    137: *  =====================
                    138: *>
                    139: *> \verbatim
                    140: *>
                    141: *>  See R.C. Ward, Balancing the generalized eigenvalue problem,
                    142: *>                 SIAM J. Sci. Stat. Comp. 2 (1981), 141-152.
                    143: *> \endverbatim
                    144: *>
                    145: *  =====================================================================
1.1       bertrand  146:       SUBROUTINE ZGGBAK( JOB, SIDE, N, ILO, IHI, LSCALE, RSCALE, M, V,
                    147:      $                   LDV, INFO )
                    148: *
1.18    ! bertrand  149: *  -- LAPACK computational routine --
1.1       bertrand  150: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    151: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    152: *
                    153: *     .. Scalar Arguments ..
                    154:       CHARACTER          JOB, SIDE
                    155:       INTEGER            IHI, ILO, INFO, LDV, M, N
                    156: *     ..
                    157: *     .. Array Arguments ..
                    158:       DOUBLE PRECISION   LSCALE( * ), RSCALE( * )
                    159:       COMPLEX*16         V( LDV, * )
                    160: *     ..
                    161: *
                    162: *  =====================================================================
                    163: *
                    164: *     .. Local Scalars ..
                    165:       LOGICAL            LEFTV, RIGHTV
                    166:       INTEGER            I, K
                    167: *     ..
                    168: *     .. External Functions ..
                    169:       LOGICAL            LSAME
                    170:       EXTERNAL           LSAME
                    171: *     ..
                    172: *     .. External Subroutines ..
                    173:       EXTERNAL           XERBLA, ZDSCAL, ZSWAP
                    174: *     ..
                    175: *     .. Intrinsic Functions ..
1.13      bertrand  176:       INTRINSIC          MAX, INT
1.1       bertrand  177: *     ..
                    178: *     .. Executable Statements ..
                    179: *
                    180: *     Test the input parameters
                    181: *
                    182:       RIGHTV = LSAME( SIDE, 'R' )
                    183:       LEFTV = LSAME( SIDE, 'L' )
                    184: *
                    185:       INFO = 0
                    186:       IF( .NOT.LSAME( JOB, 'N' ) .AND. .NOT.LSAME( JOB, 'P' ) .AND.
                    187:      $    .NOT.LSAME( JOB, 'S' ) .AND. .NOT.LSAME( JOB, 'B' ) ) THEN
                    188:          INFO = -1
                    189:       ELSE IF( .NOT.RIGHTV .AND. .NOT.LEFTV ) THEN
                    190:          INFO = -2
                    191:       ELSE IF( N.LT.0 ) THEN
                    192:          INFO = -3
                    193:       ELSE IF( ILO.LT.1 ) THEN
                    194:          INFO = -4
                    195:       ELSE IF( N.EQ.0 .AND. IHI.EQ.0 .AND. ILO.NE.1 ) THEN
                    196:          INFO = -4
                    197:       ELSE IF( N.GT.0 .AND. ( IHI.LT.ILO .OR. IHI.GT.MAX( 1, N ) ) )
                    198:      $   THEN
                    199:          INFO = -5
                    200:       ELSE IF( N.EQ.0 .AND. ILO.EQ.1 .AND. IHI.NE.0 ) THEN
                    201:          INFO = -5
                    202:       ELSE IF( M.LT.0 ) THEN
                    203:          INFO = -8
                    204:       ELSE IF( LDV.LT.MAX( 1, N ) ) THEN
                    205:          INFO = -10
                    206:       END IF
                    207:       IF( INFO.NE.0 ) THEN
                    208:          CALL XERBLA( 'ZGGBAK', -INFO )
                    209:          RETURN
                    210:       END IF
                    211: *
                    212: *     Quick return if possible
                    213: *
                    214:       IF( N.EQ.0 )
                    215:      $   RETURN
                    216:       IF( M.EQ.0 )
                    217:      $   RETURN
                    218:       IF( LSAME( JOB, 'N' ) )
                    219:      $   RETURN
                    220: *
                    221:       IF( ILO.EQ.IHI )
                    222:      $   GO TO 30
                    223: *
                    224: *     Backward balance
                    225: *
                    226:       IF( LSAME( JOB, 'S' ) .OR. LSAME( JOB, 'B' ) ) THEN
                    227: *
                    228: *        Backward transformation on right eigenvectors
                    229: *
                    230:          IF( RIGHTV ) THEN
                    231:             DO 10 I = ILO, IHI
                    232:                CALL ZDSCAL( M, RSCALE( I ), V( I, 1 ), LDV )
                    233:    10       CONTINUE
                    234:          END IF
                    235: *
                    236: *        Backward transformation on left eigenvectors
                    237: *
                    238:          IF( LEFTV ) THEN
                    239:             DO 20 I = ILO, IHI
                    240:                CALL ZDSCAL( M, LSCALE( I ), V( I, 1 ), LDV )
                    241:    20       CONTINUE
                    242:          END IF
                    243:       END IF
                    244: *
                    245: *     Backward permutation
                    246: *
                    247:    30 CONTINUE
                    248:       IF( LSAME( JOB, 'P' ) .OR. LSAME( JOB, 'B' ) ) THEN
                    249: *
                    250: *        Backward permutation on right eigenvectors
                    251: *
                    252:          IF( RIGHTV ) THEN
                    253:             IF( ILO.EQ.1 )
                    254:      $         GO TO 50
                    255:             DO 40 I = ILO - 1, 1, -1
1.13      bertrand  256:                K = INT(RSCALE( I ))
1.1       bertrand  257:                IF( K.EQ.I )
                    258:      $            GO TO 40
                    259:                CALL ZSWAP( M, V( I, 1 ), LDV, V( K, 1 ), LDV )
                    260:    40       CONTINUE
                    261: *
                    262:    50       CONTINUE
                    263:             IF( IHI.EQ.N )
                    264:      $         GO TO 70
                    265:             DO 60 I = IHI + 1, N
1.13      bertrand  266:                K = INT(RSCALE( I ))
1.1       bertrand  267:                IF( K.EQ.I )
                    268:      $            GO TO 60
                    269:                CALL ZSWAP( M, V( I, 1 ), LDV, V( K, 1 ), LDV )
                    270:    60       CONTINUE
                    271:          END IF
                    272: *
                    273: *        Backward permutation on left eigenvectors
                    274: *
                    275:    70    CONTINUE
                    276:          IF( LEFTV ) THEN
                    277:             IF( ILO.EQ.1 )
                    278:      $         GO TO 90
                    279:             DO 80 I = ILO - 1, 1, -1
1.13      bertrand  280:                K = INT(LSCALE( I ))
1.1       bertrand  281:                IF( K.EQ.I )
                    282:      $            GO TO 80
                    283:                CALL ZSWAP( M, V( I, 1 ), LDV, V( K, 1 ), LDV )
                    284:    80       CONTINUE
                    285: *
                    286:    90       CONTINUE
                    287:             IF( IHI.EQ.N )
                    288:      $         GO TO 110
                    289:             DO 100 I = IHI + 1, N
1.13      bertrand  290:                K = INT(LSCALE( I ))
1.1       bertrand  291:                IF( K.EQ.I )
                    292:      $            GO TO 100
                    293:                CALL ZSWAP( M, V( I, 1 ), LDV, V( K, 1 ), LDV )
                    294:   100       CONTINUE
                    295:          END IF
                    296:       END IF
                    297: *
                    298:   110 CONTINUE
                    299: *
                    300:       RETURN
                    301: *
                    302: *     End of ZGGBAK
                    303: *
                    304:       END

CVSweb interface <joel.bertrand@systella.fr>