File:  [local] / rpl / lapack / lapack / zgetsls.f
Revision 1.6: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:20 2023 UTC (9 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZGETSLS
    2: *
    3: *  Definition:
    4: *  ===========
    5: *
    6: *       SUBROUTINE ZGETSLS( TRANS, M, N, NRHS, A, LDA, B, LDB,
    7: *     $                     WORK, LWORK, INFO )
    8: *
    9: *       .. Scalar Arguments ..
   10: *       CHARACTER          TRANS
   11: *       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS
   12: *       ..
   13: *       .. Array Arguments ..
   14: *       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * )
   15: *       ..
   16: *
   17: *
   18: *> \par Purpose:
   19: *  =============
   20: *>
   21: *> \verbatim
   22: *>
   23: *> ZGETSLS solves overdetermined or underdetermined complex linear systems
   24: *> involving an M-by-N matrix A, using a tall skinny QR or short wide LQ
   25: *> factorization of A.  It is assumed that A has full rank.
   26: *>
   27: *>
   28: *>
   29: *> The following options are provided:
   30: *>
   31: *> 1. If TRANS = 'N' and m >= n:  find the least squares solution of
   32: *>    an overdetermined system, i.e., solve the least squares problem
   33: *>                 minimize || B - A*X ||.
   34: *>
   35: *> 2. If TRANS = 'N' and m < n:  find the minimum norm solution of
   36: *>    an underdetermined system A * X = B.
   37: *>
   38: *> 3. If TRANS = 'C' and m >= n:  find the minimum norm solution of
   39: *>    an undetermined system A**T * X = B.
   40: *>
   41: *> 4. If TRANS = 'C' and m < n:  find the least squares solution of
   42: *>    an overdetermined system, i.e., solve the least squares problem
   43: *>                 minimize || B - A**T * X ||.
   44: *>
   45: *> Several right hand side vectors b and solution vectors x can be
   46: *> handled in a single call; they are stored as the columns of the
   47: *> M-by-NRHS right hand side matrix B and the N-by-NRHS solution
   48: *> matrix X.
   49: *> \endverbatim
   50: *
   51: *  Arguments:
   52: *  ==========
   53: *
   54: *> \param[in] TRANS
   55: *> \verbatim
   56: *>          TRANS is CHARACTER*1
   57: *>          = 'N': the linear system involves A;
   58: *>          = 'C': the linear system involves A**H.
   59: *> \endverbatim
   60: *>
   61: *> \param[in] M
   62: *> \verbatim
   63: *>          M is INTEGER
   64: *>          The number of rows of the matrix A.  M >= 0.
   65: *> \endverbatim
   66: *>
   67: *> \param[in] N
   68: *> \verbatim
   69: *>          N is INTEGER
   70: *>          The number of columns of the matrix A.  N >= 0.
   71: *> \endverbatim
   72: *>
   73: *> \param[in] NRHS
   74: *> \verbatim
   75: *>          NRHS is INTEGER
   76: *>          The number of right hand sides, i.e., the number of
   77: *>          columns of the matrices B and X. NRHS >=0.
   78: *> \endverbatim
   79: *>
   80: *> \param[in,out] A
   81: *> \verbatim
   82: *>          A is COMPLEX*16 array, dimension (LDA,N)
   83: *>          On entry, the M-by-N matrix A.
   84: *>          On exit,
   85: *>          A is overwritten by details of its QR or LQ
   86: *>          factorization as returned by ZGEQR or ZGELQ.
   87: *> \endverbatim
   88: *>
   89: *> \param[in] LDA
   90: *> \verbatim
   91: *>          LDA is INTEGER
   92: *>          The leading dimension of the array A.  LDA >= max(1,M).
   93: *> \endverbatim
   94: *>
   95: *> \param[in,out] B
   96: *> \verbatim
   97: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
   98: *>          On entry, the matrix B of right hand side vectors, stored
   99: *>          columnwise; B is M-by-NRHS if TRANS = 'N', or N-by-NRHS
  100: *>          if TRANS = 'C'.
  101: *>          On exit, if INFO = 0, B is overwritten by the solution
  102: *>          vectors, stored columnwise:
  103: *>          if TRANS = 'N' and m >= n, rows 1 to n of B contain the least
  104: *>          squares solution vectors.
  105: *>          if TRANS = 'N' and m < n, rows 1 to N of B contain the
  106: *>          minimum norm solution vectors;
  107: *>          if TRANS = 'C' and m >= n, rows 1 to M of B contain the
  108: *>          minimum norm solution vectors;
  109: *>          if TRANS = 'C' and m < n, rows 1 to M of B contain the
  110: *>          least squares solution vectors.
  111: *> \endverbatim
  112: *>
  113: *> \param[in] LDB
  114: *> \verbatim
  115: *>          LDB is INTEGER
  116: *>          The leading dimension of the array B. LDB >= MAX(1,M,N).
  117: *> \endverbatim
  118: *>
  119: *> \param[out] WORK
  120: *> \verbatim
  121: *>          (workspace) COMPLEX*16 array, dimension (MAX(1,LWORK))
  122: *>          On exit, if INFO = 0, WORK(1) contains optimal (or either minimal
  123: *>          or optimal, if query was assumed) LWORK.
  124: *>          See LWORK for details.
  125: *> \endverbatim
  126: *>
  127: *> \param[in] LWORK
  128: *> \verbatim
  129: *>          LWORK is INTEGER
  130: *>          The dimension of the array WORK.
  131: *>          If LWORK = -1 or -2, then a workspace query is assumed.
  132: *>          If LWORK = -1, the routine calculates optimal size of WORK for the
  133: *>          optimal performance and returns this value in WORK(1).
  134: *>          If LWORK = -2, the routine calculates minimal size of WORK and 
  135: *>          returns this value in WORK(1).
  136: *> \endverbatim
  137: *>
  138: *> \param[out] INFO
  139: *> \verbatim
  140: *>          INFO is INTEGER
  141: *>          = 0:  successful exit
  142: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  143: *>          > 0:  if INFO =  i, the i-th diagonal element of the
  144: *>                triangular factor of A is zero, so that A does not have
  145: *>                full rank; the least squares solution could not be
  146: *>                computed.
  147: *> \endverbatim
  148: *
  149: *  Authors:
  150: *  ========
  151: *
  152: *> \author Univ. of Tennessee
  153: *> \author Univ. of California Berkeley
  154: *> \author Univ. of Colorado Denver
  155: *> \author NAG Ltd.
  156: *
  157: *> \ingroup complex16GEsolve
  158: *
  159: *  =====================================================================
  160:       SUBROUTINE ZGETSLS( TRANS, M, N, NRHS, A, LDA, B, LDB,
  161:      $                    WORK, LWORK, INFO )
  162: *
  163: *  -- LAPACK driver routine --
  164: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  165: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  166: *
  167: *     .. Scalar Arguments ..
  168:       CHARACTER          TRANS
  169:       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS
  170: *     ..
  171: *     .. Array Arguments ..
  172:       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * )
  173: *
  174: *     ..
  175: *
  176: *  =====================================================================
  177: *
  178: *     .. Parameters ..
  179:       DOUBLE PRECISION   ZERO, ONE
  180:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
  181:       COMPLEX*16         CZERO
  182:       PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ) )
  183: *     ..
  184: *     .. Local Scalars ..
  185:       LOGICAL            LQUERY, TRAN
  186:       INTEGER            I, IASCL, IBSCL, J, MAXMN, BROW,
  187:      $                   SCLLEN, TSZO, TSZM, LWO, LWM, LW1, LW2,
  188:      $                   WSIZEO, WSIZEM, INFO2
  189:       DOUBLE PRECISION   ANRM, BIGNUM, BNRM, SMLNUM, DUM( 1 )
  190:       COMPLEX*16         TQ( 5 ), WORKQ( 1 )
  191: *     ..
  192: *     .. External Functions ..
  193:       LOGICAL            LSAME
  194:       DOUBLE PRECISION   DLAMCH, ZLANGE
  195:       EXTERNAL           LSAME, DLABAD, DLAMCH, ZLANGE
  196: *     ..
  197: *     .. External Subroutines ..
  198:       EXTERNAL           ZGEQR, ZGEMQR, ZLASCL, ZLASET,
  199:      $                   ZTRTRS, XERBLA, ZGELQ, ZGEMLQ
  200: *     ..
  201: *     .. Intrinsic Functions ..
  202:       INTRINSIC          DBLE, MAX, MIN, INT
  203: *     ..
  204: *     .. Executable Statements ..
  205: *
  206: *     Test the input arguments.
  207: *
  208:       INFO = 0
  209:       MAXMN = MAX( M, N )
  210:       TRAN  = LSAME( TRANS, 'C' )
  211: *
  212:       LQUERY = ( LWORK.EQ.-1 .OR. LWORK.EQ.-2 )
  213:       IF( .NOT.( LSAME( TRANS, 'N' ) .OR.
  214:      $    LSAME( TRANS, 'C' ) ) ) THEN
  215:          INFO = -1
  216:       ELSE IF( M.LT.0 ) THEN
  217:          INFO = -2
  218:       ELSE IF( N.LT.0 ) THEN
  219:          INFO = -3
  220:       ELSE IF( NRHS.LT.0 ) THEN
  221:          INFO = -4
  222:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  223:          INFO = -6
  224:       ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN
  225:          INFO = -8
  226:       END IF
  227: *
  228:       IF( INFO.EQ.0 ) THEN
  229: *
  230: *     Determine the optimum and minimum LWORK
  231: *
  232:        IF( M.GE.N ) THEN
  233:          CALL ZGEQR( M, N, A, LDA, TQ, -1, WORKQ, -1, INFO2 )
  234:          TSZO = INT( TQ( 1 ) )
  235:          LWO  = INT( WORKQ( 1 ) )
  236:          CALL ZGEMQR( 'L', TRANS, M, NRHS, N, A, LDA, TQ,
  237:      $                TSZO, B, LDB, WORKQ, -1, INFO2 )
  238:          LWO  = MAX( LWO, INT( WORKQ( 1 ) ) )
  239:          CALL ZGEQR( M, N, A, LDA, TQ, -2, WORKQ, -2, INFO2 )
  240:          TSZM = INT( TQ( 1 ) )
  241:          LWM  = INT( WORKQ( 1 ) )
  242:          CALL ZGEMQR( 'L', TRANS, M, NRHS, N, A, LDA, TQ,
  243:      $                TSZM, B, LDB, WORKQ, -1, INFO2 )
  244:          LWM = MAX( LWM, INT( WORKQ( 1 ) ) )
  245:          WSIZEO = TSZO + LWO
  246:          WSIZEM = TSZM + LWM
  247:        ELSE
  248:          CALL ZGELQ( M, N, A, LDA, TQ, -1, WORKQ, -1, INFO2 )
  249:          TSZO = INT( TQ( 1 ) )
  250:          LWO  = INT( WORKQ( 1 ) )
  251:          CALL ZGEMLQ( 'L', TRANS, N, NRHS, M, A, LDA, TQ,
  252:      $                TSZO, B, LDB, WORKQ, -1, INFO2 )
  253:          LWO  = MAX( LWO, INT( WORKQ( 1 ) ) )
  254:          CALL ZGELQ( M, N, A, LDA, TQ, -2, WORKQ, -2, INFO2 )
  255:          TSZM = INT( TQ( 1 ) )
  256:          LWM  = INT( WORKQ( 1 ) )
  257:          CALL ZGEMLQ( 'L', TRANS, N, NRHS, M, A, LDA, TQ,
  258:      $                TSZM, B, LDB, WORKQ, -1, INFO2 )
  259:          LWM  = MAX( LWM, INT( WORKQ( 1 ) ) )
  260:          WSIZEO = TSZO + LWO
  261:          WSIZEM = TSZM + LWM
  262:        END IF
  263: *
  264:        IF( ( LWORK.LT.WSIZEM ).AND.( .NOT.LQUERY ) ) THEN
  265:           INFO = -10
  266:        END IF
  267: *
  268:        WORK( 1 ) = DBLE( WSIZEO )
  269: *
  270:       END IF
  271: *
  272:       IF( INFO.NE.0 ) THEN
  273:         CALL XERBLA( 'ZGETSLS', -INFO )
  274:         RETURN
  275:       END IF
  276:       IF( LQUERY ) THEN
  277:         IF( LWORK.EQ.-2 ) WORK( 1 ) = DBLE( WSIZEM )
  278:         RETURN
  279:       END IF
  280:       IF( LWORK.LT.WSIZEO ) THEN
  281:         LW1 = TSZM
  282:         LW2 = LWM
  283:       ELSE
  284:         LW1 = TSZO
  285:         LW2 = LWO
  286:       END IF
  287: *
  288: *     Quick return if possible
  289: *
  290:       IF( MIN( M, N, NRHS ).EQ.0 ) THEN
  291:            CALL ZLASET( 'FULL', MAX( M, N ), NRHS, CZERO, CZERO,
  292:      $                  B, LDB )
  293:            RETURN
  294:       END IF
  295: *
  296: *     Get machine parameters
  297: *
  298:        SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'P' )
  299:        BIGNUM = ONE / SMLNUM
  300:        CALL DLABAD( SMLNUM, BIGNUM )
  301: *
  302: *     Scale A, B if max element outside range [SMLNUM,BIGNUM]
  303: *
  304:       ANRM = ZLANGE( 'M', M, N, A, LDA, DUM )
  305:       IASCL = 0
  306:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
  307: *
  308: *        Scale matrix norm up to SMLNUM
  309: *
  310:          CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
  311:          IASCL = 1
  312:       ELSE IF( ANRM.GT.BIGNUM ) THEN
  313: *
  314: *        Scale matrix norm down to BIGNUM
  315: *
  316:          CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
  317:          IASCL = 2
  318:       ELSE IF( ANRM.EQ.ZERO ) THEN
  319: *
  320: *        Matrix all zero. Return zero solution.
  321: *
  322:          CALL ZLASET( 'F', MAXMN, NRHS, CZERO, CZERO, B, LDB )
  323:          GO TO 50
  324:       END IF
  325: *
  326:       BROW = M
  327:       IF ( TRAN ) THEN
  328:         BROW = N
  329:       END IF
  330:       BNRM = ZLANGE( 'M', BROW, NRHS, B, LDB, DUM )
  331:       IBSCL = 0
  332:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
  333: *
  334: *        Scale matrix norm up to SMLNUM
  335: *
  336:          CALL ZLASCL( 'G', 0, 0, BNRM, SMLNUM, BROW, NRHS, B, LDB,
  337:      $                INFO )
  338:          IBSCL = 1
  339:       ELSE IF( BNRM.GT.BIGNUM ) THEN
  340: *
  341: *        Scale matrix norm down to BIGNUM
  342: *
  343:          CALL ZLASCL( 'G', 0, 0, BNRM, BIGNUM, BROW, NRHS, B, LDB,
  344:      $                INFO )
  345:          IBSCL = 2
  346:       END IF
  347: *
  348:       IF ( M.GE.N ) THEN
  349: *
  350: *        compute QR factorization of A
  351: *
  352:         CALL ZGEQR( M, N, A, LDA, WORK( LW2+1 ), LW1,
  353:      $              WORK( 1 ), LW2, INFO )
  354:         IF ( .NOT.TRAN ) THEN
  355: *
  356: *           Least-Squares Problem min || A * X - B ||
  357: *
  358: *           B(1:M,1:NRHS) := Q**T * B(1:M,1:NRHS)
  359: *
  360:           CALL ZGEMQR( 'L' , 'C', M, NRHS, N, A, LDA,
  361:      $                 WORK( LW2+1 ), LW1, B, LDB, WORK( 1 ), LW2,
  362:      $                 INFO )
  363: *
  364: *           B(1:N,1:NRHS) := inv(R) * B(1:N,1:NRHS)
  365: *
  366:           CALL ZTRTRS( 'U', 'N', 'N', N, NRHS,
  367:      $                  A, LDA, B, LDB, INFO )
  368:           IF( INFO.GT.0 ) THEN
  369:             RETURN
  370:           END IF
  371:           SCLLEN = N
  372:         ELSE
  373: *
  374: *           Overdetermined system of equations A**T * X = B
  375: *
  376: *           B(1:N,1:NRHS) := inv(R**T) * B(1:N,1:NRHS)
  377: *
  378:             CALL ZTRTRS( 'U', 'C', 'N', N, NRHS,
  379:      $                   A, LDA, B, LDB, INFO )
  380: *
  381:             IF( INFO.GT.0 ) THEN
  382:                RETURN
  383:             END IF
  384: *
  385: *           B(N+1:M,1:NRHS) = CZERO
  386: *
  387:             DO 20 J = 1, NRHS
  388:                DO 10 I = N + 1, M
  389:                   B( I, J ) = CZERO
  390:    10          CONTINUE
  391:    20       CONTINUE
  392: *
  393: *           B(1:M,1:NRHS) := Q(1:N,:) * B(1:N,1:NRHS)
  394: *
  395:             CALL ZGEMQR( 'L', 'N', M, NRHS, N, A, LDA,
  396:      $                   WORK( LW2+1 ), LW1, B, LDB, WORK( 1 ), LW2,
  397:      $                   INFO )
  398: *
  399:             SCLLEN = M
  400: *
  401:          END IF
  402: *
  403:       ELSE
  404: *
  405: *        Compute LQ factorization of A
  406: *
  407:          CALL ZGELQ( M, N, A, LDA, WORK( LW2+1 ), LW1,
  408:      $               WORK( 1 ), LW2, INFO )
  409: *
  410: *        workspace at least M, optimally M*NB.
  411: *
  412:          IF( .NOT.TRAN ) THEN
  413: *
  414: *           underdetermined system of equations A * X = B
  415: *
  416: *           B(1:M,1:NRHS) := inv(L) * B(1:M,1:NRHS)
  417: *
  418:             CALL ZTRTRS( 'L', 'N', 'N', M, NRHS,
  419:      $                   A, LDA, B, LDB, INFO )
  420: *
  421:             IF( INFO.GT.0 ) THEN
  422:                RETURN
  423:             END IF
  424: *
  425: *           B(M+1:N,1:NRHS) = 0
  426: *
  427:             DO 40 J = 1, NRHS
  428:                DO 30 I = M + 1, N
  429:                   B( I, J ) = CZERO
  430:    30          CONTINUE
  431:    40       CONTINUE
  432: *
  433: *           B(1:N,1:NRHS) := Q(1:N,:)**T * B(1:M,1:NRHS)
  434: *
  435:             CALL ZGEMLQ( 'L', 'C', N, NRHS, M, A, LDA,
  436:      $                   WORK( LW2+1 ), LW1, B, LDB, WORK( 1 ), LW2,
  437:      $                   INFO )
  438: *
  439: *           workspace at least NRHS, optimally NRHS*NB
  440: *
  441:             SCLLEN = N
  442: *
  443:          ELSE
  444: *
  445: *           overdetermined system min || A**T * X - B ||
  446: *
  447: *           B(1:N,1:NRHS) := Q * B(1:N,1:NRHS)
  448: *
  449:             CALL ZGEMLQ( 'L', 'N', N, NRHS, M, A, LDA,
  450:      $                   WORK( LW2+1 ), LW1, B, LDB, WORK( 1 ), LW2,
  451:      $                   INFO )
  452: *
  453: *           workspace at least NRHS, optimally NRHS*NB
  454: *
  455: *           B(1:M,1:NRHS) := inv(L**T) * B(1:M,1:NRHS)
  456: *
  457:             CALL ZTRTRS( 'L', 'C', 'N', M, NRHS,
  458:      $                   A, LDA, B, LDB, INFO )
  459: *
  460:             IF( INFO.GT.0 ) THEN
  461:                RETURN
  462:             END IF
  463: *
  464:             SCLLEN = M
  465: *
  466:          END IF
  467: *
  468:       END IF
  469: *
  470: *     Undo scaling
  471: *
  472:       IF( IASCL.EQ.1 ) THEN
  473:         CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, SCLLEN, NRHS, B, LDB,
  474:      $               INFO )
  475:       ELSE IF( IASCL.EQ.2 ) THEN
  476:         CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, SCLLEN, NRHS, B, LDB,
  477:      $                INFO )
  478:       END IF
  479:       IF( IBSCL.EQ.1 ) THEN
  480:         CALL ZLASCL( 'G', 0, 0, SMLNUM, BNRM, SCLLEN, NRHS, B, LDB,
  481:      $               INFO )
  482:       ELSE IF( IBSCL.EQ.2 ) THEN
  483:         CALL ZLASCL( 'G', 0, 0, BIGNUM, BNRM, SCLLEN, NRHS, B, LDB,
  484:      $               INFO )
  485:       END IF
  486: *
  487:    50 CONTINUE
  488:       WORK( 1 ) = DBLE( TSZO + LWO )
  489:       RETURN
  490: *
  491: *     End of ZGETSLS
  492: *
  493:       END

CVSweb interface <joel.bertrand@systella.fr>