File:  [local] / rpl / lapack / lapack / zgetsls.f
Revision 1.5: download - view: text, annotated - select for diffs - revision graph
Thu May 21 21:46:05 2020 UTC (3 years, 11 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_33, rpl-4_1_32, HEAD
Mise à jour de Lapack.

    1: *> \brief \b ZGETSLS
    2: *
    3: *  Definition:
    4: *  ===========
    5: *
    6: *       SUBROUTINE ZGETSLS( TRANS, M, N, NRHS, A, LDA, B, LDB,
    7: *     $                     WORK, LWORK, INFO )
    8: *
    9: *       .. Scalar Arguments ..
   10: *       CHARACTER          TRANS
   11: *       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS
   12: *       ..
   13: *       .. Array Arguments ..
   14: *       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * )
   15: *       ..
   16: *
   17: *
   18: *> \par Purpose:
   19: *  =============
   20: *>
   21: *> \verbatim
   22: *>
   23: *> ZGETSLS solves overdetermined or underdetermined complex linear systems
   24: *> involving an M-by-N matrix A, using a tall skinny QR or short wide LQ
   25: *> factorization of A.  It is assumed that A has full rank.
   26: *>
   27: *>
   28: *>
   29: *> The following options are provided:
   30: *>
   31: *> 1. If TRANS = 'N' and m >= n:  find the least squares solution of
   32: *>    an overdetermined system, i.e., solve the least squares problem
   33: *>                 minimize || B - A*X ||.
   34: *>
   35: *> 2. If TRANS = 'N' and m < n:  find the minimum norm solution of
   36: *>    an underdetermined system A * X = B.
   37: *>
   38: *> 3. If TRANS = 'C' and m >= n:  find the minimum norm solution of
   39: *>    an undetermined system A**T * X = B.
   40: *>
   41: *> 4. If TRANS = 'C' and m < n:  find the least squares solution of
   42: *>    an overdetermined system, i.e., solve the least squares problem
   43: *>                 minimize || B - A**T * X ||.
   44: *>
   45: *> Several right hand side vectors b and solution vectors x can be
   46: *> handled in a single call; they are stored as the columns of the
   47: *> M-by-NRHS right hand side matrix B and the N-by-NRHS solution
   48: *> matrix X.
   49: *> \endverbatim
   50: *
   51: *  Arguments:
   52: *  ==========
   53: *
   54: *> \param[in] TRANS
   55: *> \verbatim
   56: *>          TRANS is CHARACTER*1
   57: *>          = 'N': the linear system involves A;
   58: *>          = 'C': the linear system involves A**H.
   59: *> \endverbatim
   60: *>
   61: *> \param[in] M
   62: *> \verbatim
   63: *>          M is INTEGER
   64: *>          The number of rows of the matrix A.  M >= 0.
   65: *> \endverbatim
   66: *>
   67: *> \param[in] N
   68: *> \verbatim
   69: *>          N is INTEGER
   70: *>          The number of columns of the matrix A.  N >= 0.
   71: *> \endverbatim
   72: *>
   73: *> \param[in] NRHS
   74: *> \verbatim
   75: *>          NRHS is INTEGER
   76: *>          The number of right hand sides, i.e., the number of
   77: *>          columns of the matrices B and X. NRHS >=0.
   78: *> \endverbatim
   79: *>
   80: *> \param[in,out] A
   81: *> \verbatim
   82: *>          A is COMPLEX*16 array, dimension (LDA,N)
   83: *>          On entry, the M-by-N matrix A.
   84: *>          On exit,
   85: *>          A is overwritten by details of its QR or LQ
   86: *>          factorization as returned by ZGEQR or ZGELQ.
   87: *> \endverbatim
   88: *>
   89: *> \param[in] LDA
   90: *> \verbatim
   91: *>          LDA is INTEGER
   92: *>          The leading dimension of the array A.  LDA >= max(1,M).
   93: *> \endverbatim
   94: *>
   95: *> \param[in,out] B
   96: *> \verbatim
   97: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
   98: *>          On entry, the matrix B of right hand side vectors, stored
   99: *>          columnwise; B is M-by-NRHS if TRANS = 'N', or N-by-NRHS
  100: *>          if TRANS = 'C'.
  101: *>          On exit, if INFO = 0, B is overwritten by the solution
  102: *>          vectors, stored columnwise:
  103: *>          if TRANS = 'N' and m >= n, rows 1 to n of B contain the least
  104: *>          squares solution vectors.
  105: *>          if TRANS = 'N' and m < n, rows 1 to N of B contain the
  106: *>          minimum norm solution vectors;
  107: *>          if TRANS = 'C' and m >= n, rows 1 to M of B contain the
  108: *>          minimum norm solution vectors;
  109: *>          if TRANS = 'C' and m < n, rows 1 to M of B contain the
  110: *>          least squares solution vectors.
  111: *> \endverbatim
  112: *>
  113: *> \param[in] LDB
  114: *> \verbatim
  115: *>          LDB is INTEGER
  116: *>          The leading dimension of the array B. LDB >= MAX(1,M,N).
  117: *> \endverbatim
  118: *>
  119: *> \param[out] WORK
  120: *> \verbatim
  121: *>          (workspace) COMPLEX*16 array, dimension (MAX(1,LWORK))
  122: *>          On exit, if INFO = 0, WORK(1) contains optimal (or either minimal
  123: *>          or optimal, if query was assumed) LWORK.
  124: *>          See LWORK for details.
  125: *> \endverbatim
  126: *>
  127: *> \param[in] LWORK
  128: *> \verbatim
  129: *>          LWORK is INTEGER
  130: *>          The dimension of the array WORK.
  131: *>          If LWORK = -1 or -2, then a workspace query is assumed.
  132: *>          If LWORK = -1, the routine calculates optimal size of WORK for the
  133: *>          optimal performance and returns this value in WORK(1).
  134: *>          If LWORK = -2, the routine calculates minimal size of WORK and 
  135: *>          returns this value in WORK(1).
  136: *> \endverbatim
  137: *>
  138: *> \param[out] INFO
  139: *> \verbatim
  140: *>          INFO is INTEGER
  141: *>          = 0:  successful exit
  142: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  143: *>          > 0:  if INFO =  i, the i-th diagonal element of the
  144: *>                triangular factor of A is zero, so that A does not have
  145: *>                full rank; the least squares solution could not be
  146: *>                computed.
  147: *> \endverbatim
  148: *
  149: *  Authors:
  150: *  ========
  151: *
  152: *> \author Univ. of Tennessee
  153: *> \author Univ. of California Berkeley
  154: *> \author Univ. of Colorado Denver
  155: *> \author NAG Ltd.
  156: *
  157: *> \date June 2017
  158: *
  159: *> \ingroup complex16GEsolve
  160: *
  161: *  =====================================================================
  162:       SUBROUTINE ZGETSLS( TRANS, M, N, NRHS, A, LDA, B, LDB,
  163:      $                    WORK, LWORK, INFO )
  164: *
  165: *  -- LAPACK driver routine (version 3.7.1) --
  166: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  167: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  168: *     June 2017
  169: *
  170: *     .. Scalar Arguments ..
  171:       CHARACTER          TRANS
  172:       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS
  173: *     ..
  174: *     .. Array Arguments ..
  175:       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * )
  176: *
  177: *     ..
  178: *
  179: *  =====================================================================
  180: *
  181: *     .. Parameters ..
  182:       DOUBLE PRECISION   ZERO, ONE
  183:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
  184:       COMPLEX*16         CZERO
  185:       PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ) )
  186: *     ..
  187: *     .. Local Scalars ..
  188:       LOGICAL            LQUERY, TRAN
  189:       INTEGER            I, IASCL, IBSCL, J, MINMN, MAXMN, BROW,
  190:      $                   SCLLEN, MNK, TSZO, TSZM, LWO, LWM, LW1, LW2,
  191:      $                   WSIZEO, WSIZEM, INFO2
  192:       DOUBLE PRECISION   ANRM, BIGNUM, BNRM, SMLNUM, DUM( 1 )
  193:       COMPLEX*16         TQ( 5 ), WORKQ( 1 )
  194: *     ..
  195: *     .. External Functions ..
  196:       LOGICAL            LSAME
  197:       INTEGER            ILAENV
  198:       DOUBLE PRECISION   DLAMCH, ZLANGE
  199:       EXTERNAL           LSAME, ILAENV, DLABAD, DLAMCH, ZLANGE
  200: *     ..
  201: *     .. External Subroutines ..
  202:       EXTERNAL           ZGEQR, ZGEMQR, ZLASCL, ZLASET,
  203:      $                   ZTRTRS, XERBLA, ZGELQ, ZGEMLQ
  204: *     ..
  205: *     .. Intrinsic Functions ..
  206:       INTRINSIC          DBLE, MAX, MIN, INT
  207: *     ..
  208: *     .. Executable Statements ..
  209: *
  210: *     Test the input arguments.
  211: *
  212:       INFO = 0
  213:       MINMN = MIN( M, N )
  214:       MAXMN = MAX( M, N )
  215:       MNK   = MAX( MINMN, NRHS )
  216:       TRAN  = LSAME( TRANS, 'C' )
  217: *
  218:       LQUERY = ( LWORK.EQ.-1 .OR. LWORK.EQ.-2 )
  219:       IF( .NOT.( LSAME( TRANS, 'N' ) .OR.
  220:      $    LSAME( TRANS, 'C' ) ) ) THEN
  221:          INFO = -1
  222:       ELSE IF( M.LT.0 ) THEN
  223:          INFO = -2
  224:       ELSE IF( N.LT.0 ) THEN
  225:          INFO = -3
  226:       ELSE IF( NRHS.LT.0 ) THEN
  227:          INFO = -4
  228:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  229:          INFO = -6
  230:       ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN
  231:          INFO = -8
  232:       END IF
  233: *
  234:       IF( INFO.EQ.0 ) THEN
  235: *
  236: *     Determine the block size and minimum LWORK
  237: *
  238:        IF( M.GE.N ) THEN
  239:          CALL ZGEQR( M, N, A, LDA, TQ, -1, WORKQ, -1, INFO2 )
  240:          TSZO = INT( TQ( 1 ) )
  241:          LWO  = INT( WORKQ( 1 ) )
  242:          CALL ZGEMQR( 'L', TRANS, M, NRHS, N, A, LDA, TQ,
  243:      $                TSZO, B, LDB, WORKQ, -1, INFO2 )
  244:          LWO  = MAX( LWO, INT( WORKQ( 1 ) ) )
  245:          CALL ZGEQR( M, N, A, LDA, TQ, -2, WORKQ, -2, INFO2 )
  246:          TSZM = INT( TQ( 1 ) )
  247:          LWM  = INT( WORKQ( 1 ) )
  248:          CALL ZGEMQR( 'L', TRANS, M, NRHS, N, A, LDA, TQ,
  249:      $                TSZM, B, LDB, WORKQ, -1, INFO2 )
  250:          LWM = MAX( LWM, INT( WORKQ( 1 ) ) )
  251:          WSIZEO = TSZO + LWO
  252:          WSIZEM = TSZM + LWM
  253:        ELSE
  254:          CALL ZGELQ( M, N, A, LDA, TQ, -1, WORKQ, -1, INFO2 )
  255:          TSZO = INT( TQ( 1 ) )
  256:          LWO  = INT( WORKQ( 1 ) )
  257:          CALL ZGEMLQ( 'L', TRANS, N, NRHS, M, A, LDA, TQ,
  258:      $                TSZO, B, LDB, WORKQ, -1, INFO2 )
  259:          LWO  = MAX( LWO, INT( WORKQ( 1 ) ) )
  260:          CALL ZGELQ( M, N, A, LDA, TQ, -2, WORKQ, -2, INFO2 )
  261:          TSZM = INT( TQ( 1 ) )
  262:          LWM  = INT( WORKQ( 1 ) )
  263:          CALL ZGEMLQ( 'L', TRANS, N, NRHS, M, A, LDA, TQ,
  264:      $                TSZO, B, LDB, WORKQ, -1, INFO2 )
  265:          LWM  = MAX( LWM, INT( WORKQ( 1 ) ) )
  266:          WSIZEO = TSZO + LWO
  267:          WSIZEM = TSZM + LWM
  268:        END IF
  269: *
  270:        IF( ( LWORK.LT.WSIZEM ).AND.( .NOT.LQUERY ) ) THEN
  271:           INFO = -10
  272:        END IF
  273: *
  274:       END IF
  275: *
  276:       IF( INFO.NE.0 ) THEN
  277:         CALL XERBLA( 'ZGETSLS', -INFO )
  278:         WORK( 1 ) = DBLE( WSIZEO )
  279:         RETURN
  280:       END IF
  281:       IF( LQUERY ) THEN
  282:         IF( LWORK.EQ.-1 ) WORK( 1 ) = REAL( WSIZEO )
  283:         IF( LWORK.EQ.-2 ) WORK( 1 ) = REAL( WSIZEM )
  284:         RETURN
  285:       END IF
  286:       IF( LWORK.LT.WSIZEO ) THEN
  287:         LW1 = TSZM
  288:         LW2 = LWM
  289:       ELSE
  290:         LW1 = TSZO
  291:         LW2 = LWO
  292:       END IF
  293: *
  294: *     Quick return if possible
  295: *
  296:       IF( MIN( M, N, NRHS ).EQ.0 ) THEN
  297:            CALL ZLASET( 'FULL', MAX( M, N ), NRHS, CZERO, CZERO,
  298:      $                  B, LDB )
  299:            RETURN
  300:       END IF
  301: *
  302: *     Get machine parameters
  303: *
  304:        SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'P' )
  305:        BIGNUM = ONE / SMLNUM
  306:        CALL DLABAD( SMLNUM, BIGNUM )
  307: *
  308: *     Scale A, B if max element outside range [SMLNUM,BIGNUM]
  309: *
  310:       ANRM = ZLANGE( 'M', M, N, A, LDA, DUM )
  311:       IASCL = 0
  312:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
  313: *
  314: *        Scale matrix norm up to SMLNUM
  315: *
  316:          CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
  317:          IASCL = 1
  318:       ELSE IF( ANRM.GT.BIGNUM ) THEN
  319: *
  320: *        Scale matrix norm down to BIGNUM
  321: *
  322:          CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
  323:          IASCL = 2
  324:       ELSE IF( ANRM.EQ.ZERO ) THEN
  325: *
  326: *        Matrix all zero. Return zero solution.
  327: *
  328:          CALL ZLASET( 'F', MAXMN, NRHS, CZERO, CZERO, B, LDB )
  329:          GO TO 50
  330:       END IF
  331: *
  332:       BROW = M
  333:       IF ( TRAN ) THEN
  334:         BROW = N
  335:       END IF
  336:       BNRM = ZLANGE( 'M', BROW, NRHS, B, LDB, DUM )
  337:       IBSCL = 0
  338:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
  339: *
  340: *        Scale matrix norm up to SMLNUM
  341: *
  342:          CALL ZLASCL( 'G', 0, 0, BNRM, SMLNUM, BROW, NRHS, B, LDB,
  343:      $                INFO )
  344:          IBSCL = 1
  345:       ELSE IF( BNRM.GT.BIGNUM ) THEN
  346: *
  347: *        Scale matrix norm down to BIGNUM
  348: *
  349:          CALL ZLASCL( 'G', 0, 0, BNRM, BIGNUM, BROW, NRHS, B, LDB,
  350:      $                INFO )
  351:          IBSCL = 2
  352:       END IF
  353: *
  354:       IF ( M.GE.N ) THEN
  355: *
  356: *        compute QR factorization of A
  357: *
  358:         CALL ZGEQR( M, N, A, LDA, WORK( LW2+1 ), LW1,
  359:      $              WORK( 1 ), LW2, INFO )
  360:         IF ( .NOT.TRAN ) THEN
  361: *
  362: *           Least-Squares Problem min || A * X - B ||
  363: *
  364: *           B(1:M,1:NRHS) := Q**T * B(1:M,1:NRHS)
  365: *
  366:           CALL ZGEMQR( 'L' , 'C', M, NRHS, N, A, LDA,
  367:      $                 WORK( LW2+1 ), LW1, B, LDB, WORK( 1 ), LW2,
  368:      $                 INFO )
  369: *
  370: *           B(1:N,1:NRHS) := inv(R) * B(1:N,1:NRHS)
  371: *
  372:           CALL ZTRTRS( 'U', 'N', 'N', N, NRHS,
  373:      $                  A, LDA, B, LDB, INFO )
  374:           IF( INFO.GT.0 ) THEN
  375:             RETURN
  376:           END IF
  377:           SCLLEN = N
  378:         ELSE
  379: *
  380: *           Overdetermined system of equations A**T * X = B
  381: *
  382: *           B(1:N,1:NRHS) := inv(R**T) * B(1:N,1:NRHS)
  383: *
  384:             CALL ZTRTRS( 'U', 'C', 'N', N, NRHS,
  385:      $                   A, LDA, B, LDB, INFO )
  386: *
  387:             IF( INFO.GT.0 ) THEN
  388:                RETURN
  389:             END IF
  390: *
  391: *           B(N+1:M,1:NRHS) = CZERO
  392: *
  393:             DO 20 J = 1, NRHS
  394:                DO 10 I = N + 1, M
  395:                   B( I, J ) = CZERO
  396:    10          CONTINUE
  397:    20       CONTINUE
  398: *
  399: *           B(1:M,1:NRHS) := Q(1:N,:) * B(1:N,1:NRHS)
  400: *
  401:             CALL ZGEMQR( 'L', 'N', M, NRHS, N, A, LDA,
  402:      $                   WORK( LW2+1 ), LW1, B, LDB, WORK( 1 ), LW2,
  403:      $                   INFO )
  404: *
  405:             SCLLEN = M
  406: *
  407:          END IF
  408: *
  409:       ELSE
  410: *
  411: *        Compute LQ factorization of A
  412: *
  413:          CALL ZGELQ( M, N, A, LDA, WORK( LW2+1 ), LW1,
  414:      $               WORK( 1 ), LW2, INFO )
  415: *
  416: *        workspace at least M, optimally M*NB.
  417: *
  418:          IF( .NOT.TRAN ) THEN
  419: *
  420: *           underdetermined system of equations A * X = B
  421: *
  422: *           B(1:M,1:NRHS) := inv(L) * B(1:M,1:NRHS)
  423: *
  424:             CALL ZTRTRS( 'L', 'N', 'N', M, NRHS,
  425:      $                   A, LDA, B, LDB, INFO )
  426: *
  427:             IF( INFO.GT.0 ) THEN
  428:                RETURN
  429:             END IF
  430: *
  431: *           B(M+1:N,1:NRHS) = 0
  432: *
  433:             DO 40 J = 1, NRHS
  434:                DO 30 I = M + 1, N
  435:                   B( I, J ) = CZERO
  436:    30          CONTINUE
  437:    40       CONTINUE
  438: *
  439: *           B(1:N,1:NRHS) := Q(1:N,:)**T * B(1:M,1:NRHS)
  440: *
  441:             CALL ZGEMLQ( 'L', 'C', N, NRHS, M, A, LDA,
  442:      $                   WORK( LW2+1 ), LW1, B, LDB, WORK( 1 ), LW2,
  443:      $                   INFO )
  444: *
  445: *           workspace at least NRHS, optimally NRHS*NB
  446: *
  447:             SCLLEN = N
  448: *
  449:          ELSE
  450: *
  451: *           overdetermined system min || A**T * X - B ||
  452: *
  453: *           B(1:N,1:NRHS) := Q * B(1:N,1:NRHS)
  454: *
  455:             CALL ZGEMLQ( 'L', 'N', N, NRHS, M, A, LDA,
  456:      $                   WORK( LW2+1 ), LW1, B, LDB, WORK( 1 ), LW2,
  457:      $                   INFO )
  458: *
  459: *           workspace at least NRHS, optimally NRHS*NB
  460: *
  461: *           B(1:M,1:NRHS) := inv(L**T) * B(1:M,1:NRHS)
  462: *
  463:             CALL ZTRTRS( 'L', 'C', 'N', M, NRHS,
  464:      $                   A, LDA, B, LDB, INFO )
  465: *
  466:             IF( INFO.GT.0 ) THEN
  467:                RETURN
  468:             END IF
  469: *
  470:             SCLLEN = M
  471: *
  472:          END IF
  473: *
  474:       END IF
  475: *
  476: *     Undo scaling
  477: *
  478:       IF( IASCL.EQ.1 ) THEN
  479:         CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, SCLLEN, NRHS, B, LDB,
  480:      $               INFO )
  481:       ELSE IF( IASCL.EQ.2 ) THEN
  482:         CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, SCLLEN, NRHS, B, LDB,
  483:      $                INFO )
  484:       END IF
  485:       IF( IBSCL.EQ.1 ) THEN
  486:         CALL ZLASCL( 'G', 0, 0, SMLNUM, BNRM, SCLLEN, NRHS, B, LDB,
  487:      $               INFO )
  488:       ELSE IF( IBSCL.EQ.2 ) THEN
  489:         CALL ZLASCL( 'G', 0, 0, BIGNUM, BNRM, SCLLEN, NRHS, B, LDB,
  490:      $               INFO )
  491:       END IF
  492: *
  493:    50 CONTINUE
  494:       WORK( 1 ) = DBLE( TSZO + LWO )
  495:       RETURN
  496: *
  497: *     End of ZGETSLS
  498: *
  499:       END

CVSweb interface <joel.bertrand@systella.fr>