Annotation of rpl/lapack/lapack/zgetsls.f, revision 1.4

1.1       bertrand    1: *  Definition:
                      2: *  ===========
                      3: *
                      4: *       SUBROUTINE ZGETSLS( TRANS, M, N, NRHS, A, LDA, B, LDB,
                      5: *     $                     WORK, LWORK, INFO )
                      6: *
                      7: *       .. Scalar Arguments ..
                      8: *       CHARACTER          TRANS
                      9: *       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS
                     10: *       ..
                     11: *       .. Array Arguments ..
                     12: *       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * )
                     13: *       ..
                     14: *
                     15: *
                     16: *> \par Purpose:
                     17: *  =============
                     18: *>
                     19: *> \verbatim
                     20: *>
                     21: *> ZGETSLS solves overdetermined or underdetermined complex linear systems
                     22: *> involving an M-by-N matrix A, using a tall skinny QR or short wide LQ
                     23: *> factorization of A.  It is assumed that A has full rank.
                     24: *>
                     25: *>
                     26: *>
                     27: *> The following options are provided:
                     28: *>
                     29: *> 1. If TRANS = 'N' and m >= n:  find the least squares solution of
                     30: *>    an overdetermined system, i.e., solve the least squares problem
                     31: *>                 minimize || B - A*X ||.
                     32: *>
                     33: *> 2. If TRANS = 'N' and m < n:  find the minimum norm solution of
                     34: *>    an underdetermined system A * X = B.
                     35: *>
                     36: *> 3. If TRANS = 'C' and m >= n:  find the minimum norm solution of
                     37: *>    an undetermined system A**T * X = B.
                     38: *>
                     39: *> 4. If TRANS = 'C' and m < n:  find the least squares solution of
                     40: *>    an overdetermined system, i.e., solve the least squares problem
                     41: *>                 minimize || B - A**T * X ||.
                     42: *>
                     43: *> Several right hand side vectors b and solution vectors x can be
                     44: *> handled in a single call; they are stored as the columns of the
                     45: *> M-by-NRHS right hand side matrix B and the N-by-NRHS solution
                     46: *> matrix X.
                     47: *> \endverbatim
                     48: *
                     49: *  Arguments:
                     50: *  ==========
                     51: *
                     52: *> \param[in] TRANS
                     53: *> \verbatim
                     54: *>          TRANS is CHARACTER*1
                     55: *>          = 'N': the linear system involves A;
1.3       bertrand   56: *>          = 'C': the linear system involves A**H.
1.1       bertrand   57: *> \endverbatim
                     58: *>
                     59: *> \param[in] M
                     60: *> \verbatim
                     61: *>          M is INTEGER
                     62: *>          The number of rows of the matrix A.  M >= 0.
                     63: *> \endverbatim
                     64: *>
                     65: *> \param[in] N
                     66: *> \verbatim
                     67: *>          N is INTEGER
                     68: *>          The number of columns of the matrix A.  N >= 0.
                     69: *> \endverbatim
                     70: *>
                     71: *> \param[in] NRHS
                     72: *> \verbatim
                     73: *>          NRHS is INTEGER
                     74: *>          The number of right hand sides, i.e., the number of
                     75: *>          columns of the matrices B and X. NRHS >=0.
                     76: *> \endverbatim
                     77: *>
                     78: *> \param[in,out] A
                     79: *> \verbatim
                     80: *>          A is COMPLEX*16 array, dimension (LDA,N)
                     81: *>          On entry, the M-by-N matrix A.
                     82: *>          On exit,
                     83: *>          A is overwritten by details of its QR or LQ
                     84: *>          factorization as returned by ZGEQR or ZGELQ.
                     85: *> \endverbatim
                     86: *>
                     87: *> \param[in] LDA
                     88: *> \verbatim
                     89: *>          LDA is INTEGER
                     90: *>          The leading dimension of the array A.  LDA >= max(1,M).
                     91: *> \endverbatim
                     92: *>
                     93: *> \param[in,out] B
                     94: *> \verbatim
                     95: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
                     96: *>          On entry, the matrix B of right hand side vectors, stored
                     97: *>          columnwise; B is M-by-NRHS if TRANS = 'N', or N-by-NRHS
                     98: *>          if TRANS = 'C'.
                     99: *>          On exit, if INFO = 0, B is overwritten by the solution
                    100: *>          vectors, stored columnwise:
                    101: *>          if TRANS = 'N' and m >= n, rows 1 to n of B contain the least
                    102: *>          squares solution vectors.
                    103: *>          if TRANS = 'N' and m < n, rows 1 to N of B contain the
                    104: *>          minimum norm solution vectors;
                    105: *>          if TRANS = 'C' and m >= n, rows 1 to M of B contain the
                    106: *>          minimum norm solution vectors;
                    107: *>          if TRANS = 'C' and m < n, rows 1 to M of B contain the
                    108: *>          least squares solution vectors.
                    109: *> \endverbatim
                    110: *>
                    111: *> \param[in] LDB
                    112: *> \verbatim
                    113: *>          LDB is INTEGER
                    114: *>          The leading dimension of the array B. LDB >= MAX(1,M,N).
                    115: *> \endverbatim
                    116: *>
                    117: *> \param[out] WORK
                    118: *> \verbatim
                    119: *>          (workspace) COMPLEX*16 array, dimension (MAX(1,LWORK))
                    120: *>          On exit, if INFO = 0, WORK(1) contains optimal (or either minimal
                    121: *>          or optimal, if query was assumed) LWORK.
                    122: *>          See LWORK for details.
                    123: *> \endverbatim
                    124: *>
                    125: *> \param[in] LWORK
                    126: *> \verbatim
                    127: *>          LWORK is INTEGER
                    128: *>          The dimension of the array WORK.
                    129: *>          If LWORK = -1 or -2, then a workspace query is assumed.
                    130: *>          If LWORK = -1, the routine calculates optimal size of WORK for the
                    131: *>          optimal performance and returns this value in WORK(1).
                    132: *>          If LWORK = -2, the routine calculates minimal size of WORK and 
                    133: *>          returns this value in WORK(1).
                    134: *> \endverbatim
                    135: *>
                    136: *> \param[out] INFO
                    137: *> \verbatim
                    138: *>          INFO is INTEGER
                    139: *>          = 0:  successful exit
                    140: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    141: *>          > 0:  if INFO =  i, the i-th diagonal element of the
                    142: *>                triangular factor of A is zero, so that A does not have
                    143: *>                full rank; the least squares solution could not be
                    144: *>                computed.
                    145: *> \endverbatim
                    146: *
                    147: *  Authors:
                    148: *  ========
                    149: *
                    150: *> \author Univ. of Tennessee
                    151: *> \author Univ. of California Berkeley
                    152: *> \author Univ. of Colorado Denver
                    153: *> \author NAG Ltd.
                    154: *
1.3       bertrand  155: *> \date June 2017
1.1       bertrand  156: *
                    157: *> \ingroup complex16GEsolve
                    158: *
                    159: *  =====================================================================
                    160:       SUBROUTINE ZGETSLS( TRANS, M, N, NRHS, A, LDA, B, LDB,
                    161:      $                    WORK, LWORK, INFO )
                    162: *
1.3       bertrand  163: *  -- LAPACK driver routine (version 3.7.1) --
1.1       bertrand  164: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    165: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.3       bertrand  166: *     June 2017
1.1       bertrand  167: *
                    168: *     .. Scalar Arguments ..
                    169:       CHARACTER          TRANS
                    170:       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS
                    171: *     ..
                    172: *     .. Array Arguments ..
                    173:       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * )
                    174: *
                    175: *     ..
                    176: *
                    177: *  =====================================================================
                    178: *
                    179: *     .. Parameters ..
                    180:       DOUBLE PRECISION   ZERO, ONE
                    181:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
                    182:       COMPLEX*16         CZERO
                    183:       PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ) )
                    184: *     ..
                    185: *     .. Local Scalars ..
                    186:       LOGICAL            LQUERY, TRAN
                    187:       INTEGER            I, IASCL, IBSCL, J, MINMN, MAXMN, BROW,
                    188:      $                   SCLLEN, MNK, TSZO, TSZM, LWO, LWM, LW1, LW2,
                    189:      $                   WSIZEO, WSIZEM, INFO2
1.3       bertrand  190:       DOUBLE PRECISION   ANRM, BIGNUM, BNRM, SMLNUM, DUM( 1 )
                    191:       COMPLEX*16         TQ( 5 ), WORKQ( 1 )
1.1       bertrand  192: *     ..
                    193: *     .. External Functions ..
                    194:       LOGICAL            LSAME
                    195:       INTEGER            ILAENV
                    196:       DOUBLE PRECISION   DLAMCH, ZLANGE
                    197:       EXTERNAL           LSAME, ILAENV, DLABAD, DLAMCH, ZLANGE
                    198: *     ..
                    199: *     .. External Subroutines ..
                    200:       EXTERNAL           ZGEQR, ZGEMQR, ZLASCL, ZLASET,
                    201:      $                   ZTRTRS, XERBLA, ZGELQ, ZGEMLQ
                    202: *     ..
                    203: *     .. Intrinsic Functions ..
                    204:       INTRINSIC          DBLE, MAX, MIN, INT
                    205: *     ..
                    206: *     .. Executable Statements ..
                    207: *
                    208: *     Test the input arguments.
                    209: *
                    210:       INFO = 0
                    211:       MINMN = MIN( M, N )
                    212:       MAXMN = MAX( M, N )
                    213:       MNK   = MAX( MINMN, NRHS )
                    214:       TRAN  = LSAME( TRANS, 'C' )
                    215: *
                    216:       LQUERY = ( LWORK.EQ.-1 .OR. LWORK.EQ.-2 )
                    217:       IF( .NOT.( LSAME( TRANS, 'N' ) .OR.
                    218:      $    LSAME( TRANS, 'C' ) ) ) THEN
                    219:          INFO = -1
                    220:       ELSE IF( M.LT.0 ) THEN
                    221:          INFO = -2
                    222:       ELSE IF( N.LT.0 ) THEN
                    223:          INFO = -3
                    224:       ELSE IF( NRHS.LT.0 ) THEN
                    225:          INFO = -4
                    226:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
                    227:          INFO = -6
                    228:       ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN
                    229:          INFO = -8
                    230:       END IF
                    231: *
                    232:       IF( INFO.EQ.0 ) THEN
                    233: *
                    234: *     Determine the block size and minimum LWORK
                    235: *
                    236:        IF( M.GE.N ) THEN
                    237:          CALL ZGEQR( M, N, A, LDA, TQ, -1, WORKQ, -1, INFO2 )
                    238:          TSZO = INT( TQ( 1 ) )
1.3       bertrand  239:          LWO  = INT( WORKQ( 1 ) )
1.1       bertrand  240:          CALL ZGEMQR( 'L', TRANS, M, NRHS, N, A, LDA, TQ,
                    241:      $                TSZO, B, LDB, WORKQ, -1, INFO2 )
1.3       bertrand  242:          LWO  = MAX( LWO, INT( WORKQ( 1 ) ) )
1.1       bertrand  243:          CALL ZGEQR( M, N, A, LDA, TQ, -2, WORKQ, -2, INFO2 )
                    244:          TSZM = INT( TQ( 1 ) )
1.3       bertrand  245:          LWM  = INT( WORKQ( 1 ) )
1.1       bertrand  246:          CALL ZGEMQR( 'L', TRANS, M, NRHS, N, A, LDA, TQ,
                    247:      $                TSZM, B, LDB, WORKQ, -1, INFO2 )
1.3       bertrand  248:          LWM = MAX( LWM, INT( WORKQ( 1 ) ) )
1.1       bertrand  249:          WSIZEO = TSZO + LWO
                    250:          WSIZEM = TSZM + LWM
                    251:        ELSE
                    252:          CALL ZGELQ( M, N, A, LDA, TQ, -1, WORKQ, -1, INFO2 )
                    253:          TSZO = INT( TQ( 1 ) )
1.3       bertrand  254:          LWO  = INT( WORKQ( 1 ) )
1.1       bertrand  255:          CALL ZGEMLQ( 'L', TRANS, N, NRHS, M, A, LDA, TQ,
                    256:      $                TSZO, B, LDB, WORKQ, -1, INFO2 )
1.3       bertrand  257:          LWO  = MAX( LWO, INT( WORKQ( 1 ) ) )
1.1       bertrand  258:          CALL ZGELQ( M, N, A, LDA, TQ, -2, WORKQ, -2, INFO2 )
                    259:          TSZM = INT( TQ( 1 ) )
1.3       bertrand  260:          LWM  = INT( WORKQ( 1 ) )
1.1       bertrand  261:          CALL ZGEMLQ( 'L', TRANS, N, NRHS, M, A, LDA, TQ,
                    262:      $                TSZO, B, LDB, WORKQ, -1, INFO2 )
1.3       bertrand  263:          LWM  = MAX( LWM, INT( WORKQ( 1 ) ) )
1.1       bertrand  264:          WSIZEO = TSZO + LWO
                    265:          WSIZEM = TSZM + LWM
                    266:        END IF
                    267: *
                    268:        IF( ( LWORK.LT.WSIZEM ).AND.( .NOT.LQUERY ) ) THEN
                    269:           INFO = -10
                    270:        END IF
                    271: *
                    272:       END IF
                    273: *
                    274:       IF( INFO.NE.0 ) THEN
                    275:         CALL XERBLA( 'ZGETSLS', -INFO )
                    276:         WORK( 1 ) = DBLE( WSIZEO )
                    277:         RETURN
                    278:       END IF
                    279:       IF( LQUERY ) THEN
                    280:         IF( LWORK.EQ.-1 ) WORK( 1 ) = REAL( WSIZEO )
                    281:         IF( LWORK.EQ.-2 ) WORK( 1 ) = REAL( WSIZEM )
                    282:         RETURN
                    283:       END IF
                    284:       IF( LWORK.LT.WSIZEO ) THEN
                    285:         LW1 = TSZM
                    286:         LW2 = LWM
                    287:       ELSE
                    288:         LW1 = TSZO
                    289:         LW2 = LWO
                    290:       END IF
                    291: *
                    292: *     Quick return if possible
                    293: *
                    294:       IF( MIN( M, N, NRHS ).EQ.0 ) THEN
                    295:            CALL ZLASET( 'FULL', MAX( M, N ), NRHS, CZERO, CZERO,
                    296:      $                  B, LDB )
                    297:            RETURN
                    298:       END IF
                    299: *
                    300: *     Get machine parameters
                    301: *
                    302:        SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'P' )
                    303:        BIGNUM = ONE / SMLNUM
                    304:        CALL DLABAD( SMLNUM, BIGNUM )
                    305: *
                    306: *     Scale A, B if max element outside range [SMLNUM,BIGNUM]
                    307: *
1.3       bertrand  308:       ANRM = ZLANGE( 'M', M, N, A, LDA, DUM )
1.1       bertrand  309:       IASCL = 0
                    310:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
                    311: *
                    312: *        Scale matrix norm up to SMLNUM
                    313: *
                    314:          CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
                    315:          IASCL = 1
                    316:       ELSE IF( ANRM.GT.BIGNUM ) THEN
                    317: *
                    318: *        Scale matrix norm down to BIGNUM
                    319: *
                    320:          CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
                    321:          IASCL = 2
                    322:       ELSE IF( ANRM.EQ.ZERO ) THEN
                    323: *
                    324: *        Matrix all zero. Return zero solution.
                    325: *
                    326:          CALL ZLASET( 'F', MAXMN, NRHS, CZERO, CZERO, B, LDB )
                    327:          GO TO 50
                    328:       END IF
                    329: *
                    330:       BROW = M
                    331:       IF ( TRAN ) THEN
                    332:         BROW = N
                    333:       END IF
1.3       bertrand  334:       BNRM = ZLANGE( 'M', BROW, NRHS, B, LDB, DUM )
1.1       bertrand  335:       IBSCL = 0
                    336:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
                    337: *
                    338: *        Scale matrix norm up to SMLNUM
                    339: *
                    340:          CALL ZLASCL( 'G', 0, 0, BNRM, SMLNUM, BROW, NRHS, B, LDB,
                    341:      $                INFO )
                    342:          IBSCL = 1
                    343:       ELSE IF( BNRM.GT.BIGNUM ) THEN
                    344: *
                    345: *        Scale matrix norm down to BIGNUM
                    346: *
                    347:          CALL ZLASCL( 'G', 0, 0, BNRM, BIGNUM, BROW, NRHS, B, LDB,
                    348:      $                INFO )
                    349:          IBSCL = 2
                    350:       END IF
                    351: *
                    352:       IF ( M.GE.N ) THEN
                    353: *
                    354: *        compute QR factorization of A
                    355: *
                    356:         CALL ZGEQR( M, N, A, LDA, WORK( LW2+1 ), LW1,
                    357:      $              WORK( 1 ), LW2, INFO )
                    358:         IF ( .NOT.TRAN ) THEN
                    359: *
                    360: *           Least-Squares Problem min || A * X - B ||
                    361: *
                    362: *           B(1:M,1:NRHS) := Q**T * B(1:M,1:NRHS)
                    363: *
                    364:           CALL ZGEMQR( 'L' , 'C', M, NRHS, N, A, LDA,
                    365:      $                 WORK( LW2+1 ), LW1, B, LDB, WORK( 1 ), LW2,
                    366:      $                 INFO )
                    367: *
                    368: *           B(1:N,1:NRHS) := inv(R) * B(1:N,1:NRHS)
                    369: *
                    370:           CALL ZTRTRS( 'U', 'N', 'N', N, NRHS,
                    371:      $                  A, LDA, B, LDB, INFO )
                    372:           IF( INFO.GT.0 ) THEN
                    373:             RETURN
                    374:           END IF
                    375:           SCLLEN = N
                    376:         ELSE
                    377: *
                    378: *           Overdetermined system of equations A**T * X = B
                    379: *
                    380: *           B(1:N,1:NRHS) := inv(R**T) * B(1:N,1:NRHS)
                    381: *
                    382:             CALL ZTRTRS( 'U', 'C', 'N', N, NRHS,
                    383:      $                   A, LDA, B, LDB, INFO )
                    384: *
                    385:             IF( INFO.GT.0 ) THEN
                    386:                RETURN
                    387:             END IF
                    388: *
                    389: *           B(N+1:M,1:NRHS) = CZERO
                    390: *
                    391:             DO 20 J = 1, NRHS
                    392:                DO 10 I = N + 1, M
                    393:                   B( I, J ) = CZERO
                    394:    10          CONTINUE
                    395:    20       CONTINUE
                    396: *
                    397: *           B(1:M,1:NRHS) := Q(1:N,:) * B(1:N,1:NRHS)
                    398: *
                    399:             CALL ZGEMQR( 'L', 'N', M, NRHS, N, A, LDA,
                    400:      $                   WORK( LW2+1 ), LW1, B, LDB, WORK( 1 ), LW2,
                    401:      $                   INFO )
                    402: *
                    403:             SCLLEN = M
                    404: *
                    405:          END IF
                    406: *
                    407:       ELSE
                    408: *
                    409: *        Compute LQ factorization of A
                    410: *
                    411:          CALL ZGELQ( M, N, A, LDA, WORK( LW2+1 ), LW1,
                    412:      $               WORK( 1 ), LW2, INFO )
                    413: *
                    414: *        workspace at least M, optimally M*NB.
                    415: *
                    416:          IF( .NOT.TRAN ) THEN
                    417: *
                    418: *           underdetermined system of equations A * X = B
                    419: *
                    420: *           B(1:M,1:NRHS) := inv(L) * B(1:M,1:NRHS)
                    421: *
                    422:             CALL ZTRTRS( 'L', 'N', 'N', M, NRHS,
                    423:      $                   A, LDA, B, LDB, INFO )
                    424: *
                    425:             IF( INFO.GT.0 ) THEN
                    426:                RETURN
                    427:             END IF
                    428: *
                    429: *           B(M+1:N,1:NRHS) = 0
                    430: *
                    431:             DO 40 J = 1, NRHS
                    432:                DO 30 I = M + 1, N
                    433:                   B( I, J ) = CZERO
                    434:    30          CONTINUE
                    435:    40       CONTINUE
                    436: *
                    437: *           B(1:N,1:NRHS) := Q(1:N,:)**T * B(1:M,1:NRHS)
                    438: *
                    439:             CALL ZGEMLQ( 'L', 'C', N, NRHS, M, A, LDA,
                    440:      $                   WORK( LW2+1 ), LW1, B, LDB, WORK( 1 ), LW2,
                    441:      $                   INFO )
                    442: *
                    443: *           workspace at least NRHS, optimally NRHS*NB
                    444: *
                    445:             SCLLEN = N
                    446: *
                    447:          ELSE
                    448: *
                    449: *           overdetermined system min || A**T * X - B ||
                    450: *
                    451: *           B(1:N,1:NRHS) := Q * B(1:N,1:NRHS)
                    452: *
                    453:             CALL ZGEMLQ( 'L', 'N', N, NRHS, M, A, LDA,
                    454:      $                   WORK( LW2+1 ), LW1, B, LDB, WORK( 1 ), LW2,
                    455:      $                   INFO )
                    456: *
                    457: *           workspace at least NRHS, optimally NRHS*NB
                    458: *
                    459: *           B(1:M,1:NRHS) := inv(L**T) * B(1:M,1:NRHS)
                    460: *
                    461:             CALL ZTRTRS( 'L', 'C', 'N', M, NRHS,
                    462:      $                   A, LDA, B, LDB, INFO )
                    463: *
                    464:             IF( INFO.GT.0 ) THEN
                    465:                RETURN
                    466:             END IF
                    467: *
                    468:             SCLLEN = M
                    469: *
                    470:          END IF
                    471: *
                    472:       END IF
                    473: *
                    474: *     Undo scaling
                    475: *
                    476:       IF( IASCL.EQ.1 ) THEN
                    477:         CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, SCLLEN, NRHS, B, LDB,
                    478:      $               INFO )
                    479:       ELSE IF( IASCL.EQ.2 ) THEN
                    480:         CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, SCLLEN, NRHS, B, LDB,
                    481:      $                INFO )
                    482:       END IF
                    483:       IF( IBSCL.EQ.1 ) THEN
                    484:         CALL ZLASCL( 'G', 0, 0, SMLNUM, BNRM, SCLLEN, NRHS, B, LDB,
                    485:      $               INFO )
                    486:       ELSE IF( IBSCL.EQ.2 ) THEN
                    487:         CALL ZLASCL( 'G', 0, 0, BIGNUM, BNRM, SCLLEN, NRHS, B, LDB,
                    488:      $               INFO )
                    489:       END IF
                    490: *
                    491:    50 CONTINUE
                    492:       WORK( 1 ) = DBLE( TSZO + LWO )
                    493:       RETURN
                    494: *
                    495: *     End of ZGETSLS
                    496: *
                    497:       END

CVSweb interface <joel.bertrand@systella.fr>