Annotation of rpl/lapack/lapack/zgetri.f, revision 1.16

1.8       bertrand    1: *> \brief \b ZGETRI
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.14      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.8       bertrand    7: *
                      8: *> \htmlonly
1.14      bertrand    9: *> Download ZGETRI + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgetri.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgetri.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgetri.f">
1.8       bertrand   15: *> [TXT]</a>
1.14      bertrand   16: *> \endhtmlonly
1.8       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZGETRI( N, A, LDA, IPIV, WORK, LWORK, INFO )
1.14      bertrand   22: *
1.8       bertrand   23: *       .. Scalar Arguments ..
                     24: *       INTEGER            INFO, LDA, LWORK, N
                     25: *       ..
                     26: *       .. Array Arguments ..
                     27: *       INTEGER            IPIV( * )
                     28: *       COMPLEX*16         A( LDA, * ), WORK( * )
                     29: *       ..
1.14      bertrand   30: *
1.8       bertrand   31: *
                     32: *> \par Purpose:
                     33: *  =============
                     34: *>
                     35: *> \verbatim
                     36: *>
                     37: *> ZGETRI computes the inverse of a matrix using the LU factorization
                     38: *> computed by ZGETRF.
                     39: *>
                     40: *> This method inverts U and then computes inv(A) by solving the system
                     41: *> inv(A)*L = inv(U) for inv(A).
                     42: *> \endverbatim
                     43: *
                     44: *  Arguments:
                     45: *  ==========
                     46: *
                     47: *> \param[in] N
                     48: *> \verbatim
                     49: *>          N is INTEGER
                     50: *>          The order of the matrix A.  N >= 0.
                     51: *> \endverbatim
                     52: *>
                     53: *> \param[in,out] A
                     54: *> \verbatim
                     55: *>          A is COMPLEX*16 array, dimension (LDA,N)
                     56: *>          On entry, the factors L and U from the factorization
                     57: *>          A = P*L*U as computed by ZGETRF.
                     58: *>          On exit, if INFO = 0, the inverse of the original matrix A.
                     59: *> \endverbatim
                     60: *>
                     61: *> \param[in] LDA
                     62: *> \verbatim
                     63: *>          LDA is INTEGER
                     64: *>          The leading dimension of the array A.  LDA >= max(1,N).
                     65: *> \endverbatim
                     66: *>
                     67: *> \param[in] IPIV
                     68: *> \verbatim
                     69: *>          IPIV is INTEGER array, dimension (N)
                     70: *>          The pivot indices from ZGETRF; for 1<=i<=N, row i of the
                     71: *>          matrix was interchanged with row IPIV(i).
                     72: *> \endverbatim
                     73: *>
                     74: *> \param[out] WORK
                     75: *> \verbatim
                     76: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
                     77: *>          On exit, if INFO=0, then WORK(1) returns the optimal LWORK.
                     78: *> \endverbatim
                     79: *>
                     80: *> \param[in] LWORK
                     81: *> \verbatim
                     82: *>          LWORK is INTEGER
                     83: *>          The dimension of the array WORK.  LWORK >= max(1,N).
                     84: *>          For optimal performance LWORK >= N*NB, where NB is
                     85: *>          the optimal blocksize returned by ILAENV.
                     86: *>
                     87: *>          If LWORK = -1, then a workspace query is assumed; the routine
                     88: *>          only calculates the optimal size of the WORK array, returns
                     89: *>          this value as the first entry of the WORK array, and no error
                     90: *>          message related to LWORK is issued by XERBLA.
                     91: *> \endverbatim
                     92: *>
                     93: *> \param[out] INFO
                     94: *> \verbatim
                     95: *>          INFO is INTEGER
                     96: *>          = 0:  successful exit
                     97: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                     98: *>          > 0:  if INFO = i, U(i,i) is exactly zero; the matrix is
                     99: *>                singular and its inverse could not be computed.
                    100: *> \endverbatim
                    101: *
                    102: *  Authors:
                    103: *  ========
                    104: *
1.14      bertrand  105: *> \author Univ. of Tennessee
                    106: *> \author Univ. of California Berkeley
                    107: *> \author Univ. of Colorado Denver
                    108: *> \author NAG Ltd.
1.8       bertrand  109: *
1.14      bertrand  110: *> \date December 2016
1.8       bertrand  111: *
                    112: *> \ingroup complex16GEcomputational
                    113: *
                    114: *  =====================================================================
1.1       bertrand  115:       SUBROUTINE ZGETRI( N, A, LDA, IPIV, WORK, LWORK, INFO )
                    116: *
1.14      bertrand  117: *  -- LAPACK computational routine (version 3.7.0) --
1.1       bertrand  118: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    119: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.14      bertrand  120: *     December 2016
1.1       bertrand  121: *
                    122: *     .. Scalar Arguments ..
                    123:       INTEGER            INFO, LDA, LWORK, N
                    124: *     ..
                    125: *     .. Array Arguments ..
                    126:       INTEGER            IPIV( * )
                    127:       COMPLEX*16         A( LDA, * ), WORK( * )
                    128: *     ..
                    129: *
                    130: *  =====================================================================
                    131: *
                    132: *     .. Parameters ..
                    133:       COMPLEX*16         ZERO, ONE
                    134:       PARAMETER          ( ZERO = ( 0.0D+0, 0.0D+0 ),
                    135:      $                   ONE = ( 1.0D+0, 0.0D+0 ) )
                    136: *     ..
                    137: *     .. Local Scalars ..
                    138:       LOGICAL            LQUERY
                    139:       INTEGER            I, IWS, J, JB, JJ, JP, LDWORK, LWKOPT, NB,
                    140:      $                   NBMIN, NN
                    141: *     ..
                    142: *     .. External Functions ..
                    143:       INTEGER            ILAENV
                    144:       EXTERNAL           ILAENV
                    145: *     ..
                    146: *     .. External Subroutines ..
                    147:       EXTERNAL           XERBLA, ZGEMM, ZGEMV, ZSWAP, ZTRSM, ZTRTRI
                    148: *     ..
                    149: *     .. Intrinsic Functions ..
                    150:       INTRINSIC          MAX, MIN
                    151: *     ..
                    152: *     .. Executable Statements ..
                    153: *
                    154: *     Test the input parameters.
                    155: *
                    156:       INFO = 0
                    157:       NB = ILAENV( 1, 'ZGETRI', ' ', N, -1, -1, -1 )
                    158:       LWKOPT = N*NB
                    159:       WORK( 1 ) = LWKOPT
                    160:       LQUERY = ( LWORK.EQ.-1 )
                    161:       IF( N.LT.0 ) THEN
                    162:          INFO = -1
                    163:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    164:          INFO = -3
                    165:       ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN
                    166:          INFO = -6
                    167:       END IF
                    168:       IF( INFO.NE.0 ) THEN
                    169:          CALL XERBLA( 'ZGETRI', -INFO )
                    170:          RETURN
                    171:       ELSE IF( LQUERY ) THEN
                    172:          RETURN
                    173:       END IF
                    174: *
                    175: *     Quick return if possible
                    176: *
                    177:       IF( N.EQ.0 )
                    178:      $   RETURN
                    179: *
                    180: *     Form inv(U).  If INFO > 0 from ZTRTRI, then U is singular,
                    181: *     and the inverse is not computed.
                    182: *
                    183:       CALL ZTRTRI( 'Upper', 'Non-unit', N, A, LDA, INFO )
                    184:       IF( INFO.GT.0 )
                    185:      $   RETURN
                    186: *
                    187:       NBMIN = 2
                    188:       LDWORK = N
                    189:       IF( NB.GT.1 .AND. NB.LT.N ) THEN
                    190:          IWS = MAX( LDWORK*NB, 1 )
                    191:          IF( LWORK.LT.IWS ) THEN
                    192:             NB = LWORK / LDWORK
                    193:             NBMIN = MAX( 2, ILAENV( 2, 'ZGETRI', ' ', N, -1, -1, -1 ) )
                    194:          END IF
                    195:       ELSE
                    196:          IWS = N
                    197:       END IF
                    198: *
                    199: *     Solve the equation inv(A)*L = inv(U) for inv(A).
                    200: *
                    201:       IF( NB.LT.NBMIN .OR. NB.GE.N ) THEN
                    202: *
                    203: *        Use unblocked code.
                    204: *
                    205:          DO 20 J = N, 1, -1
                    206: *
                    207: *           Copy current column of L to WORK and replace with zeros.
                    208: *
                    209:             DO 10 I = J + 1, N
                    210:                WORK( I ) = A( I, J )
                    211:                A( I, J ) = ZERO
                    212:    10       CONTINUE
                    213: *
                    214: *           Compute current column of inv(A).
                    215: *
                    216:             IF( J.LT.N )
                    217:      $         CALL ZGEMV( 'No transpose', N, N-J, -ONE, A( 1, J+1 ),
                    218:      $                     LDA, WORK( J+1 ), 1, ONE, A( 1, J ), 1 )
                    219:    20    CONTINUE
                    220:       ELSE
                    221: *
                    222: *        Use blocked code.
                    223: *
                    224:          NN = ( ( N-1 ) / NB )*NB + 1
                    225:          DO 50 J = NN, 1, -NB
                    226:             JB = MIN( NB, N-J+1 )
                    227: *
                    228: *           Copy current block column of L to WORK and replace with
                    229: *           zeros.
                    230: *
                    231:             DO 40 JJ = J, J + JB - 1
                    232:                DO 30 I = JJ + 1, N
                    233:                   WORK( I+( JJ-J )*LDWORK ) = A( I, JJ )
                    234:                   A( I, JJ ) = ZERO
                    235:    30          CONTINUE
                    236:    40       CONTINUE
                    237: *
                    238: *           Compute current block column of inv(A).
                    239: *
                    240:             IF( J+JB.LE.N )
                    241:      $         CALL ZGEMM( 'No transpose', 'No transpose', N, JB,
                    242:      $                     N-J-JB+1, -ONE, A( 1, J+JB ), LDA,
                    243:      $                     WORK( J+JB ), LDWORK, ONE, A( 1, J ), LDA )
                    244:             CALL ZTRSM( 'Right', 'Lower', 'No transpose', 'Unit', N, JB,
                    245:      $                  ONE, WORK( J ), LDWORK, A( 1, J ), LDA )
                    246:    50    CONTINUE
                    247:       END IF
                    248: *
                    249: *     Apply column interchanges.
                    250: *
                    251:       DO 60 J = N - 1, 1, -1
                    252:          JP = IPIV( J )
                    253:          IF( JP.NE.J )
                    254:      $      CALL ZSWAP( N, A( 1, J ), 1, A( 1, JP ), 1 )
                    255:    60 CONTINUE
                    256: *
                    257:       WORK( 1 ) = IWS
                    258:       RETURN
                    259: *
                    260: *     End of ZGETRI
                    261: *
                    262:       END

CVSweb interface <joel.bertrand@systella.fr>