Annotation of rpl/lapack/lapack/zgesvxx.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE ZGESVXX( FACT, TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV,
        !             2:      $                    EQUED, R, C, B, LDB, X, LDX, RCOND, RPVGRW,
        !             3:      $                    BERR, N_ERR_BNDS, ERR_BNDS_NORM,
        !             4:      $                    ERR_BNDS_COMP, NPARAMS, PARAMS, WORK, RWORK,
        !             5:      $                    INFO )
        !             6: *
        !             7: *     -- LAPACK driver routine (version 3.2.1)                          --
        !             8: *     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and --
        !             9: *     -- Jason Riedy of Univ. of California Berkeley.                 --
        !            10: *     -- April 2009                                                   --
        !            11: *
        !            12: *     -- LAPACK is a software package provided by Univ. of Tennessee, --
        !            13: *     -- Univ. of California Berkeley and NAG Ltd.                    --
        !            14: *
        !            15:       IMPLICIT NONE
        !            16: *     ..
        !            17: *     .. Scalar Arguments ..
        !            18:       CHARACTER          EQUED, FACT, TRANS
        !            19:       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS, NPARAMS,
        !            20:      $                   N_ERR_BNDS
        !            21:       DOUBLE PRECISION   RCOND, RPVGRW
        !            22: *     ..
        !            23: *     .. Array Arguments ..
        !            24:       INTEGER            IPIV( * )
        !            25:       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
        !            26:      $                   X( LDX , * ),WORK( * )
        !            27:       DOUBLE PRECISION   R( * ), C( * ), PARAMS( * ), BERR( * ),
        !            28:      $                   ERR_BNDS_NORM( NRHS, * ),
        !            29:      $                   ERR_BNDS_COMP( NRHS, * ), RWORK( * )
        !            30: *     ..
        !            31: *
        !            32: *     Purpose
        !            33: *     =======
        !            34: *
        !            35: *     ZGESVXX uses the LU factorization to compute the solution to a
        !            36: *     complex*16 system of linear equations  A * X = B,  where A is an
        !            37: *     N-by-N matrix and X and B are N-by-NRHS matrices.
        !            38: *
        !            39: *     If requested, both normwise and maximum componentwise error bounds
        !            40: *     are returned. ZGESVXX will return a solution with a tiny
        !            41: *     guaranteed error (O(eps) where eps is the working machine
        !            42: *     precision) unless the matrix is very ill-conditioned, in which
        !            43: *     case a warning is returned. Relevant condition numbers also are
        !            44: *     calculated and returned.
        !            45: *
        !            46: *     ZGESVXX accepts user-provided factorizations and equilibration
        !            47: *     factors; see the definitions of the FACT and EQUED options.
        !            48: *     Solving with refinement and using a factorization from a previous
        !            49: *     ZGESVXX call will also produce a solution with either O(eps)
        !            50: *     errors or warnings, but we cannot make that claim for general
        !            51: *     user-provided factorizations and equilibration factors if they
        !            52: *     differ from what ZGESVXX would itself produce.
        !            53: *
        !            54: *     Description
        !            55: *     ===========
        !            56: *
        !            57: *     The following steps are performed:
        !            58: *
        !            59: *     1. If FACT = 'E', double precision scaling factors are computed to equilibrate
        !            60: *     the system:
        !            61: *
        !            62: *       TRANS = 'N':  diag(R)*A*diag(C)     *inv(diag(C))*X = diag(R)*B
        !            63: *       TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B
        !            64: *       TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B
        !            65: *
        !            66: *     Whether or not the system will be equilibrated depends on the
        !            67: *     scaling of the matrix A, but if equilibration is used, A is
        !            68: *     overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N')
        !            69: *     or diag(C)*B (if TRANS = 'T' or 'C').
        !            70: *
        !            71: *     2. If FACT = 'N' or 'E', the LU decomposition is used to factor
        !            72: *     the matrix A (after equilibration if FACT = 'E') as
        !            73: *
        !            74: *       A = P * L * U,
        !            75: *
        !            76: *     where P is a permutation matrix, L is a unit lower triangular
        !            77: *     matrix, and U is upper triangular.
        !            78: *
        !            79: *     3. If some U(i,i)=0, so that U is exactly singular, then the
        !            80: *     routine returns with INFO = i. Otherwise, the factored form of A
        !            81: *     is used to estimate the condition number of the matrix A (see
        !            82: *     argument RCOND). If the reciprocal of the condition number is less
        !            83: *     than machine precision, the routine still goes on to solve for X
        !            84: *     and compute error bounds as described below.
        !            85: *
        !            86: *     4. The system of equations is solved for X using the factored form
        !            87: *     of A.
        !            88: *
        !            89: *     5. By default (unless PARAMS(LA_LINRX_ITREF_I) is set to zero),
        !            90: *     the routine will use iterative refinement to try to get a small
        !            91: *     error and error bounds.  Refinement calculates the residual to at
        !            92: *     least twice the working precision.
        !            93: *
        !            94: *     6. If equilibration was used, the matrix X is premultiplied by
        !            95: *     diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so
        !            96: *     that it solves the original system before equilibration.
        !            97: *
        !            98: *     Arguments
        !            99: *     =========
        !           100: *
        !           101: *     Some optional parameters are bundled in the PARAMS array.  These
        !           102: *     settings determine how refinement is performed, but often the
        !           103: *     defaults are acceptable.  If the defaults are acceptable, users
        !           104: *     can pass NPARAMS = 0 which prevents the source code from accessing
        !           105: *     the PARAMS argument.
        !           106: *
        !           107: *     FACT    (input) CHARACTER*1
        !           108: *     Specifies whether or not the factored form of the matrix A is
        !           109: *     supplied on entry, and if not, whether the matrix A should be
        !           110: *     equilibrated before it is factored.
        !           111: *       = 'F':  On entry, AF and IPIV contain the factored form of A.
        !           112: *               If EQUED is not 'N', the matrix A has been
        !           113: *               equilibrated with scaling factors given by R and C.
        !           114: *               A, AF, and IPIV are not modified.
        !           115: *       = 'N':  The matrix A will be copied to AF and factored.
        !           116: *       = 'E':  The matrix A will be equilibrated if necessary, then
        !           117: *               copied to AF and factored.
        !           118: *
        !           119: *     TRANS   (input) CHARACTER*1
        !           120: *     Specifies the form of the system of equations:
        !           121: *       = 'N':  A * X = B     (No transpose)
        !           122: *       = 'T':  A**T * X = B  (Transpose)
        !           123: *       = 'C':  A**H * X = B  (Conjugate Transpose)
        !           124: *
        !           125: *     N       (input) INTEGER
        !           126: *     The number of linear equations, i.e., the order of the
        !           127: *     matrix A.  N >= 0.
        !           128: *
        !           129: *     NRHS    (input) INTEGER
        !           130: *     The number of right hand sides, i.e., the number of columns
        !           131: *     of the matrices B and X.  NRHS >= 0.
        !           132: *
        !           133: *     A       (input/output) COMPLEX*16 array, dimension (LDA,N)
        !           134: *     On entry, the N-by-N matrix A.  If FACT = 'F' and EQUED is
        !           135: *     not 'N', then A must have been equilibrated by the scaling
        !           136: *     factors in R and/or C.  A is not modified if FACT = 'F' or
        !           137: *     'N', or if FACT = 'E' and EQUED = 'N' on exit.
        !           138: *
        !           139: *     On exit, if EQUED .ne. 'N', A is scaled as follows:
        !           140: *     EQUED = 'R':  A := diag(R) * A
        !           141: *     EQUED = 'C':  A := A * diag(C)
        !           142: *     EQUED = 'B':  A := diag(R) * A * diag(C).
        !           143: *
        !           144: *     LDA     (input) INTEGER
        !           145: *     The leading dimension of the array A.  LDA >= max(1,N).
        !           146: *
        !           147: *     AF      (input or output) COMPLEX*16 array, dimension (LDAF,N)
        !           148: *     If FACT = 'F', then AF is an input argument and on entry
        !           149: *     contains the factors L and U from the factorization
        !           150: *     A = P*L*U as computed by ZGETRF.  If EQUED .ne. 'N', then
        !           151: *     AF is the factored form of the equilibrated matrix A.
        !           152: *
        !           153: *     If FACT = 'N', then AF is an output argument and on exit
        !           154: *     returns the factors L and U from the factorization A = P*L*U
        !           155: *     of the original matrix A.
        !           156: *
        !           157: *     If FACT = 'E', then AF is an output argument and on exit
        !           158: *     returns the factors L and U from the factorization A = P*L*U
        !           159: *     of the equilibrated matrix A (see the description of A for
        !           160: *     the form of the equilibrated matrix).
        !           161: *
        !           162: *     LDAF    (input) INTEGER
        !           163: *     The leading dimension of the array AF.  LDAF >= max(1,N).
        !           164: *
        !           165: *     IPIV    (input or output) INTEGER array, dimension (N)
        !           166: *     If FACT = 'F', then IPIV is an input argument and on entry
        !           167: *     contains the pivot indices from the factorization A = P*L*U
        !           168: *     as computed by ZGETRF; row i of the matrix was interchanged
        !           169: *     with row IPIV(i).
        !           170: *
        !           171: *     If FACT = 'N', then IPIV is an output argument and on exit
        !           172: *     contains the pivot indices from the factorization A = P*L*U
        !           173: *     of the original matrix A.
        !           174: *
        !           175: *     If FACT = 'E', then IPIV is an output argument and on exit
        !           176: *     contains the pivot indices from the factorization A = P*L*U
        !           177: *     of the equilibrated matrix A.
        !           178: *
        !           179: *     EQUED   (input or output) CHARACTER*1
        !           180: *     Specifies the form of equilibration that was done.
        !           181: *       = 'N':  No equilibration (always true if FACT = 'N').
        !           182: *       = 'R':  Row equilibration, i.e., A has been premultiplied by
        !           183: *               diag(R).
        !           184: *       = 'C':  Column equilibration, i.e., A has been postmultiplied
        !           185: *               by diag(C).
        !           186: *       = 'B':  Both row and column equilibration, i.e., A has been
        !           187: *               replaced by diag(R) * A * diag(C).
        !           188: *     EQUED is an input argument if FACT = 'F'; otherwise, it is an
        !           189: *     output argument.
        !           190: *
        !           191: *     R       (input or output) DOUBLE PRECISION array, dimension (N)
        !           192: *     The row scale factors for A.  If EQUED = 'R' or 'B', A is
        !           193: *     multiplied on the left by diag(R); if EQUED = 'N' or 'C', R
        !           194: *     is not accessed.  R is an input argument if FACT = 'F';
        !           195: *     otherwise, R is an output argument.  If FACT = 'F' and
        !           196: *     EQUED = 'R' or 'B', each element of R must be positive.
        !           197: *     If R is output, each element of R is a power of the radix.
        !           198: *     If R is input, each element of R should be a power of the radix
        !           199: *     to ensure a reliable solution and error estimates. Scaling by
        !           200: *     powers of the radix does not cause rounding errors unless the
        !           201: *     result underflows or overflows. Rounding errors during scaling
        !           202: *     lead to refining with a matrix that is not equivalent to the
        !           203: *     input matrix, producing error estimates that may not be
        !           204: *     reliable.
        !           205: *
        !           206: *     C       (input or output) DOUBLE PRECISION array, dimension (N)
        !           207: *     The column scale factors for A.  If EQUED = 'C' or 'B', A is
        !           208: *     multiplied on the right by diag(C); if EQUED = 'N' or 'R', C
        !           209: *     is not accessed.  C is an input argument if FACT = 'F';
        !           210: *     otherwise, C is an output argument.  If FACT = 'F' and
        !           211: *     EQUED = 'C' or 'B', each element of C must be positive.
        !           212: *     If C is output, each element of C is a power of the radix.
        !           213: *     If C is input, each element of C should be a power of the radix
        !           214: *     to ensure a reliable solution and error estimates. Scaling by
        !           215: *     powers of the radix does not cause rounding errors unless the
        !           216: *     result underflows or overflows. Rounding errors during scaling
        !           217: *     lead to refining with a matrix that is not equivalent to the
        !           218: *     input matrix, producing error estimates that may not be
        !           219: *     reliable.
        !           220: *
        !           221: *     B       (input/output) COMPLEX*16 array, dimension (LDB,NRHS)
        !           222: *     On entry, the N-by-NRHS right hand side matrix B.
        !           223: *     On exit,
        !           224: *     if EQUED = 'N', B is not modified;
        !           225: *     if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by
        !           226: *        diag(R)*B;
        !           227: *     if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is
        !           228: *        overwritten by diag(C)*B.
        !           229: *
        !           230: *     LDB     (input) INTEGER
        !           231: *     The leading dimension of the array B.  LDB >= max(1,N).
        !           232: *
        !           233: *     X       (output) COMPLEX*16 array, dimension (LDX,NRHS)
        !           234: *     If INFO = 0, the N-by-NRHS solution matrix X to the original
        !           235: *     system of equations.  Note that A and B are modified on exit
        !           236: *     if EQUED .ne. 'N', and the solution to the equilibrated system is
        !           237: *     inv(diag(C))*X if TRANS = 'N' and EQUED = 'C' or 'B', or
        !           238: *     inv(diag(R))*X if TRANS = 'T' or 'C' and EQUED = 'R' or 'B'.
        !           239: *
        !           240: *     LDX     (input) INTEGER
        !           241: *     The leading dimension of the array X.  LDX >= max(1,N).
        !           242: *
        !           243: *     RCOND   (output) DOUBLE PRECISION
        !           244: *     Reciprocal scaled condition number.  This is an estimate of the
        !           245: *     reciprocal Skeel condition number of the matrix A after
        !           246: *     equilibration (if done).  If this is less than the machine
        !           247: *     precision (in particular, if it is zero), the matrix is singular
        !           248: *     to working precision.  Note that the error may still be small even
        !           249: *     if this number is very small and the matrix appears ill-
        !           250: *     conditioned.
        !           251: *
        !           252: *     RPVGRW  (output) DOUBLE PRECISION
        !           253: *     Reciprocal pivot growth.  On exit, this contains the reciprocal
        !           254: *     pivot growth factor norm(A)/norm(U). The "max absolute element"
        !           255: *     norm is used.  If this is much less than 1, then the stability of
        !           256: *     the LU factorization of the (equilibrated) matrix A could be poor.
        !           257: *     This also means that the solution X, estimated condition numbers,
        !           258: *     and error bounds could be unreliable. If factorization fails with
        !           259: *     0<INFO<=N, then this contains the reciprocal pivot growth factor
        !           260: *     for the leading INFO columns of A.  In ZGESVX, this quantity is
        !           261: *     returned in WORK(1).
        !           262: *
        !           263: *     BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
        !           264: *     Componentwise relative backward error.  This is the
        !           265: *     componentwise relative backward error of each solution vector X(j)
        !           266: *     (i.e., the smallest relative change in any element of A or B that
        !           267: *     makes X(j) an exact solution).
        !           268: *
        !           269: *     N_ERR_BNDS (input) INTEGER
        !           270: *     Number of error bounds to return for each right hand side
        !           271: *     and each type (normwise or componentwise).  See ERR_BNDS_NORM and
        !           272: *     ERR_BNDS_COMP below.
        !           273: *
        !           274: *     ERR_BNDS_NORM  (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
        !           275: *     For each right-hand side, this array contains information about
        !           276: *     various error bounds and condition numbers corresponding to the
        !           277: *     normwise relative error, which is defined as follows:
        !           278: *
        !           279: *     Normwise relative error in the ith solution vector:
        !           280: *             max_j (abs(XTRUE(j,i) - X(j,i)))
        !           281: *            ------------------------------
        !           282: *                  max_j abs(X(j,i))
        !           283: *
        !           284: *     The array is indexed by the type of error information as described
        !           285: *     below. There currently are up to three pieces of information
        !           286: *     returned.
        !           287: *
        !           288: *     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
        !           289: *     right-hand side.
        !           290: *
        !           291: *     The second index in ERR_BNDS_NORM(:,err) contains the following
        !           292: *     three fields:
        !           293: *     err = 1 "Trust/don't trust" boolean. Trust the answer if the
        !           294: *              reciprocal condition number is less than the threshold
        !           295: *              sqrt(n) * dlamch('Epsilon').
        !           296: *
        !           297: *     err = 2 "Guaranteed" error bound: The estimated forward error,
        !           298: *              almost certainly within a factor of 10 of the true error
        !           299: *              so long as the next entry is greater than the threshold
        !           300: *              sqrt(n) * dlamch('Epsilon'). This error bound should only
        !           301: *              be trusted if the previous boolean is true.
        !           302: *
        !           303: *     err = 3  Reciprocal condition number: Estimated normwise
        !           304: *              reciprocal condition number.  Compared with the threshold
        !           305: *              sqrt(n) * dlamch('Epsilon') to determine if the error
        !           306: *              estimate is "guaranteed". These reciprocal condition
        !           307: *              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
        !           308: *              appropriately scaled matrix Z.
        !           309: *              Let Z = S*A, where S scales each row by a power of the
        !           310: *              radix so all absolute row sums of Z are approximately 1.
        !           311: *
        !           312: *     See Lapack Working Note 165 for further details and extra
        !           313: *     cautions.
        !           314: *
        !           315: *     ERR_BNDS_COMP  (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
        !           316: *     For each right-hand side, this array contains information about
        !           317: *     various error bounds and condition numbers corresponding to the
        !           318: *     componentwise relative error, which is defined as follows:
        !           319: *
        !           320: *     Componentwise relative error in the ith solution vector:
        !           321: *                    abs(XTRUE(j,i) - X(j,i))
        !           322: *             max_j ----------------------
        !           323: *                         abs(X(j,i))
        !           324: *
        !           325: *     The array is indexed by the right-hand side i (on which the
        !           326: *     componentwise relative error depends), and the type of error
        !           327: *     information as described below. There currently are up to three
        !           328: *     pieces of information returned for each right-hand side. If
        !           329: *     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
        !           330: *     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS .LT. 3, then at most
        !           331: *     the first (:,N_ERR_BNDS) entries are returned.
        !           332: *
        !           333: *     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
        !           334: *     right-hand side.
        !           335: *
        !           336: *     The second index in ERR_BNDS_COMP(:,err) contains the following
        !           337: *     three fields:
        !           338: *     err = 1 "Trust/don't trust" boolean. Trust the answer if the
        !           339: *              reciprocal condition number is less than the threshold
        !           340: *              sqrt(n) * dlamch('Epsilon').
        !           341: *
        !           342: *     err = 2 "Guaranteed" error bound: The estimated forward error,
        !           343: *              almost certainly within a factor of 10 of the true error
        !           344: *              so long as the next entry is greater than the threshold
        !           345: *              sqrt(n) * dlamch('Epsilon'). This error bound should only
        !           346: *              be trusted if the previous boolean is true.
        !           347: *
        !           348: *     err = 3  Reciprocal condition number: Estimated componentwise
        !           349: *              reciprocal condition number.  Compared with the threshold
        !           350: *              sqrt(n) * dlamch('Epsilon') to determine if the error
        !           351: *              estimate is "guaranteed". These reciprocal condition
        !           352: *              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
        !           353: *              appropriately scaled matrix Z.
        !           354: *              Let Z = S*(A*diag(x)), where x is the solution for the
        !           355: *              current right-hand side and S scales each row of
        !           356: *              A*diag(x) by a power of the radix so all absolute row
        !           357: *              sums of Z are approximately 1.
        !           358: *
        !           359: *     See Lapack Working Note 165 for further details and extra
        !           360: *     cautions.
        !           361: *
        !           362: *     NPARAMS (input) INTEGER
        !           363: *     Specifies the number of parameters set in PARAMS.  If .LE. 0, the
        !           364: *     PARAMS array is never referenced and default values are used.
        !           365: *
        !           366: *     PARAMS  (input / output) DOUBLE PRECISION array, dimension NPARAMS
        !           367: *     Specifies algorithm parameters.  If an entry is .LT. 0.0, then
        !           368: *     that entry will be filled with default value used for that
        !           369: *     parameter.  Only positions up to NPARAMS are accessed; defaults
        !           370: *     are used for higher-numbered parameters.
        !           371: *
        !           372: *       PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
        !           373: *            refinement or not.
        !           374: *         Default: 1.0D+0
        !           375: *            = 0.0 : No refinement is performed, and no error bounds are
        !           376: *                    computed.
        !           377: *            = 1.0 : Use the extra-precise refinement algorithm.
        !           378: *              (other values are reserved for future use)
        !           379: *
        !           380: *       PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
        !           381: *            computations allowed for refinement.
        !           382: *         Default: 10
        !           383: *         Aggressive: Set to 100 to permit convergence using approximate
        !           384: *                     factorizations or factorizations other than LU. If
        !           385: *                     the factorization uses a technique other than
        !           386: *                     Gaussian elimination, the guarantees in
        !           387: *                     err_bnds_norm and err_bnds_comp may no longer be
        !           388: *                     trustworthy.
        !           389: *
        !           390: *       PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
        !           391: *            will attempt to find a solution with small componentwise
        !           392: *            relative error in the double-precision algorithm.  Positive
        !           393: *            is true, 0.0 is false.
        !           394: *         Default: 1.0 (attempt componentwise convergence)
        !           395: *
        !           396: *     WORK    (workspace) COMPLEX*16 array, dimension (2*N)
        !           397: *
        !           398: *     RWORK   (workspace) DOUBLE PRECISION array, dimension (2*N)
        !           399: *
        !           400: *     INFO    (output) INTEGER
        !           401: *       = 0:  Successful exit. The solution to every right-hand side is
        !           402: *         guaranteed.
        !           403: *       < 0:  If INFO = -i, the i-th argument had an illegal value
        !           404: *       > 0 and <= N:  U(INFO,INFO) is exactly zero.  The factorization
        !           405: *         has been completed, but the factor U is exactly singular, so
        !           406: *         the solution and error bounds could not be computed. RCOND = 0
        !           407: *         is returned.
        !           408: *       = N+J: The solution corresponding to the Jth right-hand side is
        !           409: *         not guaranteed. The solutions corresponding to other right-
        !           410: *         hand sides K with K > J may not be guaranteed as well, but
        !           411: *         only the first such right-hand side is reported. If a small
        !           412: *         componentwise error is not requested (PARAMS(3) = 0.0) then
        !           413: *         the Jth right-hand side is the first with a normwise error
        !           414: *         bound that is not guaranteed (the smallest J such
        !           415: *         that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0)
        !           416: *         the Jth right-hand side is the first with either a normwise or
        !           417: *         componentwise error bound that is not guaranteed (the smallest
        !           418: *         J such that either ERR_BNDS_NORM(J,1) = 0.0 or
        !           419: *         ERR_BNDS_COMP(J,1) = 0.0). See the definition of
        !           420: *         ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information
        !           421: *         about all of the right-hand sides check ERR_BNDS_NORM or
        !           422: *         ERR_BNDS_COMP.
        !           423: *
        !           424: *     ==================================================================
        !           425: *
        !           426: *     .. Parameters ..
        !           427:       DOUBLE PRECISION   ZERO, ONE
        !           428:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
        !           429:       INTEGER            FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
        !           430:       INTEGER            RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
        !           431:       INTEGER            CMP_ERR_I, PIV_GROWTH_I
        !           432:       PARAMETER          ( FINAL_NRM_ERR_I = 1, FINAL_CMP_ERR_I = 2,
        !           433:      $                   BERR_I = 3 )
        !           434:       PARAMETER          ( RCOND_I = 4, NRM_RCOND_I = 5, NRM_ERR_I = 6 )
        !           435:       PARAMETER          ( CMP_RCOND_I = 7, CMP_ERR_I = 8,
        !           436:      $                   PIV_GROWTH_I = 9 )
        !           437: *     ..
        !           438: *     .. Local Scalars ..
        !           439:       LOGICAL            COLEQU, EQUIL, NOFACT, NOTRAN, ROWEQU
        !           440:       INTEGER            INFEQU, J
        !           441:       DOUBLE PRECISION   AMAX, BIGNUM, COLCND, RCMAX, RCMIN,
        !           442:      $                   ROWCND, SMLNUM
        !           443: *     ..
        !           444: *     .. External Functions ..
        !           445:       EXTERNAL           LSAME, DLAMCH, ZLA_RPVGRW
        !           446:       LOGICAL            LSAME
        !           447:       DOUBLE PRECISION   DLAMCH, ZLA_RPVGRW
        !           448: *     ..
        !           449: *     .. External Subroutines ..
        !           450:       EXTERNAL           ZGEEQUB, ZGETRF, ZGETRS, ZLACPY, ZLAQGE,
        !           451:      $                   XERBLA, ZLASCL2, ZGERFSX
        !           452: *     ..
        !           453: *     .. Intrinsic Functions ..
        !           454:       INTRINSIC          MAX, MIN
        !           455: *     ..
        !           456: *     .. Executable Statements ..
        !           457: *
        !           458:       INFO = 0
        !           459:       NOFACT = LSAME( FACT, 'N' )
        !           460:       EQUIL = LSAME( FACT, 'E' )
        !           461:       NOTRAN = LSAME( TRANS, 'N' )
        !           462:       SMLNUM = DLAMCH( 'Safe minimum' )
        !           463:       BIGNUM = ONE / SMLNUM
        !           464:       IF( NOFACT .OR. EQUIL ) THEN
        !           465:          EQUED = 'N'
        !           466:          ROWEQU = .FALSE.
        !           467:          COLEQU = .FALSE.
        !           468:       ELSE
        !           469:          ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
        !           470:          COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
        !           471:       END IF
        !           472: *
        !           473: *     Default is failure.  If an input parameter is wrong or
        !           474: *     factorization fails, make everything look horrible.  Only the
        !           475: *     pivot growth is set here, the rest is initialized in ZGERFSX.
        !           476: *
        !           477:       RPVGRW = ZERO
        !           478: *
        !           479: *     Test the input parameters.  PARAMS is not tested until ZGERFSX.
        !           480: *
        !           481:       IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.
        !           482:      $     LSAME( FACT, 'F' ) ) THEN
        !           483:          INFO = -1
        !           484:       ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
        !           485:      $        LSAME( TRANS, 'C' ) ) THEN
        !           486:          INFO = -2
        !           487:       ELSE IF( N.LT.0 ) THEN
        !           488:          INFO = -3
        !           489:       ELSE IF( NRHS.LT.0 ) THEN
        !           490:          INFO = -4
        !           491:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
        !           492:          INFO = -6
        !           493:       ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
        !           494:          INFO = -8
        !           495:       ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
        !           496:      $        ( ROWEQU .OR. COLEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
        !           497:          INFO = -10
        !           498:       ELSE
        !           499:          IF( ROWEQU ) THEN
        !           500:             RCMIN = BIGNUM
        !           501:             RCMAX = ZERO
        !           502:             DO 10 J = 1, N
        !           503:                RCMIN = MIN( RCMIN, R( J ) )
        !           504:                RCMAX = MAX( RCMAX, R( J ) )
        !           505:  10         CONTINUE
        !           506:             IF( RCMIN.LE.ZERO ) THEN
        !           507:                INFO = -11
        !           508:             ELSE IF( N.GT.0 ) THEN
        !           509:                ROWCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
        !           510:             ELSE
        !           511:                ROWCND = ONE
        !           512:             END IF
        !           513:          END IF
        !           514:          IF( COLEQU .AND. INFO.EQ.0 ) THEN
        !           515:             RCMIN = BIGNUM
        !           516:             RCMAX = ZERO
        !           517:             DO 20 J = 1, N
        !           518:                RCMIN = MIN( RCMIN, C( J ) )
        !           519:                RCMAX = MAX( RCMAX, C( J ) )
        !           520:  20         CONTINUE
        !           521:             IF( RCMIN.LE.ZERO ) THEN
        !           522:                INFO = -12
        !           523:             ELSE IF( N.GT.0 ) THEN
        !           524:                COLCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
        !           525:             ELSE
        !           526:                COLCND = ONE
        !           527:             END IF
        !           528:          END IF
        !           529:          IF( INFO.EQ.0 ) THEN
        !           530:             IF( LDB.LT.MAX( 1, N ) ) THEN
        !           531:                INFO = -14
        !           532:             ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
        !           533:                INFO = -16
        !           534:             END IF
        !           535:          END IF
        !           536:       END IF
        !           537: *
        !           538:       IF( INFO.NE.0 ) THEN
        !           539:          CALL XERBLA( 'ZGESVXX', -INFO )
        !           540:          RETURN
        !           541:       END IF
        !           542: *
        !           543:       IF( EQUIL ) THEN
        !           544: *
        !           545: *     Compute row and column scalings to equilibrate the matrix A.
        !           546: *
        !           547:          CALL ZGEEQUB( N, N, A, LDA, R, C, ROWCND, COLCND, AMAX,
        !           548:      $        INFEQU )
        !           549:          IF( INFEQU.EQ.0 ) THEN
        !           550: *
        !           551: *     Equilibrate the matrix.
        !           552: *
        !           553:             CALL ZLAQGE( N, N, A, LDA, R, C, ROWCND, COLCND, AMAX,
        !           554:      $           EQUED )
        !           555:             ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
        !           556:             COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
        !           557:          END IF
        !           558: *
        !           559: *     If the scaling factors are not applied, set them to 1.0.
        !           560: *
        !           561:          IF ( .NOT.ROWEQU ) THEN
        !           562:             DO J = 1, N
        !           563:                R( J ) = 1.0D+0
        !           564:             END DO
        !           565:          END IF
        !           566:          IF ( .NOT.COLEQU ) THEN
        !           567:             DO J = 1, N
        !           568:                C( J ) = 1.0D+0
        !           569:             END DO
        !           570:          END IF
        !           571:       END IF
        !           572: *
        !           573: *     Scale the right-hand side.
        !           574: *
        !           575:       IF( NOTRAN ) THEN
        !           576:          IF( ROWEQU ) CALL ZLASCL2( N, NRHS, R, B, LDB )
        !           577:       ELSE
        !           578:          IF( COLEQU ) CALL ZLASCL2( N, NRHS, C, B, LDB )
        !           579:       END IF
        !           580: *
        !           581:       IF( NOFACT .OR. EQUIL ) THEN
        !           582: *
        !           583: *        Compute the LU factorization of A.
        !           584: *
        !           585:          CALL ZLACPY( 'Full', N, N, A, LDA, AF, LDAF )
        !           586:          CALL ZGETRF( N, N, AF, LDAF, IPIV, INFO )
        !           587: *
        !           588: *        Return if INFO is non-zero.
        !           589: *
        !           590:          IF( INFO.GT.0 ) THEN
        !           591: *
        !           592: *           Pivot in column INFO is exactly 0
        !           593: *           Compute the reciprocal pivot growth factor of the
        !           594: *           leading rank-deficient INFO columns of A.
        !           595: *
        !           596:             RPVGRW = ZLA_RPVGRW( N, INFO, A, LDA, AF, LDAF )
        !           597:             RETURN
        !           598:          END IF
        !           599:       END IF
        !           600: *
        !           601: *     Compute the reciprocal pivot growth factor RPVGRW.
        !           602: *
        !           603:       RPVGRW = ZLA_RPVGRW( N, N, A, LDA, AF, LDAF )
        !           604: *
        !           605: *     Compute the solution matrix X.
        !           606: *
        !           607:       CALL ZLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
        !           608:       CALL ZGETRS( TRANS, N, NRHS, AF, LDAF, IPIV, X, LDX, INFO )
        !           609: *
        !           610: *     Use iterative refinement to improve the computed solution and
        !           611: *     compute error bounds and backward error estimates for it.
        !           612: *
        !           613:       CALL ZGERFSX( TRANS, EQUED, N, NRHS, A, LDA, AF, LDAF,
        !           614:      $     IPIV, R, C, B, LDB, X, LDX, RCOND, BERR,
        !           615:      $     N_ERR_BNDS, ERR_BNDS_NORM, ERR_BNDS_COMP, NPARAMS, PARAMS,
        !           616:      $     WORK, RWORK, INFO )
        !           617: *
        !           618: *     Scale solutions.
        !           619: *
        !           620:       IF ( COLEQU .AND. NOTRAN ) THEN
        !           621:          CALL ZLASCL2 ( N, NRHS, C, X, LDX )
        !           622:       ELSE IF ( ROWEQU .AND. .NOT.NOTRAN ) THEN
        !           623:          CALL ZLASCL2 ( N, NRHS, R, X, LDX )
        !           624:       END IF
        !           625: *
        !           626:       RETURN
        !           627: *
        !           628: *     End of ZGESVXX
        !           629: *
        !           630:       END

CVSweb interface <joel.bertrand@systella.fr>