File:  [local] / rpl / lapack / lapack / zgesvx.f
Revision 1.8: download - view: text, annotated - select for diffs - revision graph
Mon Nov 21 20:43:10 2011 UTC (12 years, 6 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour de Lapack.

    1: *> \brief <b> ZGESVX computes the solution to system of linear equations A * X = B for GE matrices</b>
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download ZGESVX + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgesvx.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgesvx.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgesvx.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZGESVX( FACT, TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV,
   22: *                          EQUED, R, C, B, LDB, X, LDX, RCOND, FERR, BERR,
   23: *                          WORK, RWORK, INFO )
   24:    25: *       .. Scalar Arguments ..
   26: *       CHARACTER          EQUED, FACT, TRANS
   27: *       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS
   28: *       DOUBLE PRECISION   RCOND
   29: *       ..
   30: *       .. Array Arguments ..
   31: *       INTEGER            IPIV( * )
   32: *       DOUBLE PRECISION   BERR( * ), C( * ), FERR( * ), R( * ),
   33: *      $                   RWORK( * )
   34: *       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
   35: *      $                   WORK( * ), X( LDX, * )
   36: *       ..
   37: *  
   38: *
   39: *> \par Purpose:
   40: *  =============
   41: *>
   42: *> \verbatim
   43: *>
   44: *> ZGESVX uses the LU factorization to compute the solution to a complex
   45: *> system of linear equations
   46: *>    A * X = B,
   47: *> where A is an N-by-N matrix and X and B are N-by-NRHS matrices.
   48: *>
   49: *> Error bounds on the solution and a condition estimate are also
   50: *> provided.
   51: *> \endverbatim
   52: *
   53: *> \par Description:
   54: *  =================
   55: *>
   56: *> \verbatim
   57: *>
   58: *> The following steps are performed:
   59: *>
   60: *> 1. If FACT = 'E', real scaling factors are computed to equilibrate
   61: *>    the system:
   62: *>       TRANS = 'N':  diag(R)*A*diag(C)     *inv(diag(C))*X = diag(R)*B
   63: *>       TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B
   64: *>       TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B
   65: *>    Whether or not the system will be equilibrated depends on the
   66: *>    scaling of the matrix A, but if equilibration is used, A is
   67: *>    overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N')
   68: *>    or diag(C)*B (if TRANS = 'T' or 'C').
   69: *>
   70: *> 2. If FACT = 'N' or 'E', the LU decomposition is used to factor the
   71: *>    matrix A (after equilibration if FACT = 'E') as
   72: *>       A = P * L * U,
   73: *>    where P is a permutation matrix, L is a unit lower triangular
   74: *>    matrix, and U is upper triangular.
   75: *>
   76: *> 3. If some U(i,i)=0, so that U is exactly singular, then the routine
   77: *>    returns with INFO = i. Otherwise, the factored form of A is used
   78: *>    to estimate the condition number of the matrix A.  If the
   79: *>    reciprocal of the condition number is less than machine precision,
   80: *>    INFO = N+1 is returned as a warning, but the routine still goes on
   81: *>    to solve for X and compute error bounds as described below.
   82: *>
   83: *> 4. The system of equations is solved for X using the factored form
   84: *>    of A.
   85: *>
   86: *> 5. Iterative refinement is applied to improve the computed solution
   87: *>    matrix and calculate error bounds and backward error estimates
   88: *>    for it.
   89: *>
   90: *> 6. If equilibration was used, the matrix X is premultiplied by
   91: *>    diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so
   92: *>    that it solves the original system before equilibration.
   93: *> \endverbatim
   94: *
   95: *  Arguments:
   96: *  ==========
   97: *
   98: *> \param[in] FACT
   99: *> \verbatim
  100: *>          FACT is CHARACTER*1
  101: *>          Specifies whether or not the factored form of the matrix A is
  102: *>          supplied on entry, and if not, whether the matrix A should be
  103: *>          equilibrated before it is factored.
  104: *>          = 'F':  On entry, AF and IPIV contain the factored form of A.
  105: *>                  If EQUED is not 'N', the matrix A has been
  106: *>                  equilibrated with scaling factors given by R and C.
  107: *>                  A, AF, and IPIV are not modified.
  108: *>          = 'N':  The matrix A will be copied to AF and factored.
  109: *>          = 'E':  The matrix A will be equilibrated if necessary, then
  110: *>                  copied to AF and factored.
  111: *> \endverbatim
  112: *>
  113: *> \param[in] TRANS
  114: *> \verbatim
  115: *>          TRANS is CHARACTER*1
  116: *>          Specifies the form of the system of equations:
  117: *>          = 'N':  A * X = B     (No transpose)
  118: *>          = 'T':  A**T * X = B  (Transpose)
  119: *>          = 'C':  A**H * X = B  (Conjugate transpose)
  120: *> \endverbatim
  121: *>
  122: *> \param[in] N
  123: *> \verbatim
  124: *>          N is INTEGER
  125: *>          The number of linear equations, i.e., the order of the
  126: *>          matrix A.  N >= 0.
  127: *> \endverbatim
  128: *>
  129: *> \param[in] NRHS
  130: *> \verbatim
  131: *>          NRHS is INTEGER
  132: *>          The number of right hand sides, i.e., the number of columns
  133: *>          of the matrices B and X.  NRHS >= 0.
  134: *> \endverbatim
  135: *>
  136: *> \param[in,out] A
  137: *> \verbatim
  138: *>          A is COMPLEX*16 array, dimension (LDA,N)
  139: *>          On entry, the N-by-N matrix A.  If FACT = 'F' and EQUED is
  140: *>          not 'N', then A must have been equilibrated by the scaling
  141: *>          factors in R and/or C.  A is not modified if FACT = 'F' or
  142: *>          'N', or if FACT = 'E' and EQUED = 'N' on exit.
  143: *>
  144: *>          On exit, if EQUED .ne. 'N', A is scaled as follows:
  145: *>          EQUED = 'R':  A := diag(R) * A
  146: *>          EQUED = 'C':  A := A * diag(C)
  147: *>          EQUED = 'B':  A := diag(R) * A * diag(C).
  148: *> \endverbatim
  149: *>
  150: *> \param[in] LDA
  151: *> \verbatim
  152: *>          LDA is INTEGER
  153: *>          The leading dimension of the array A.  LDA >= max(1,N).
  154: *> \endverbatim
  155: *>
  156: *> \param[in,out] AF
  157: *> \verbatim
  158: *>          AF is or output) COMPLEX*16 array, dimension (LDAF,N)
  159: *>          If FACT = 'F', then AF is an input argument and on entry
  160: *>          contains the factors L and U from the factorization
  161: *>          A = P*L*U as computed by ZGETRF.  If EQUED .ne. 'N', then
  162: *>          AF is the factored form of the equilibrated matrix A.
  163: *>
  164: *>          If FACT = 'N', then AF is an output argument and on exit
  165: *>          returns the factors L and U from the factorization A = P*L*U
  166: *>          of the original matrix A.
  167: *>
  168: *>          If FACT = 'E', then AF is an output argument and on exit
  169: *>          returns the factors L and U from the factorization A = P*L*U
  170: *>          of the equilibrated matrix A (see the description of A for
  171: *>          the form of the equilibrated matrix).
  172: *> \endverbatim
  173: *>
  174: *> \param[in] LDAF
  175: *> \verbatim
  176: *>          LDAF is INTEGER
  177: *>          The leading dimension of the array AF.  LDAF >= max(1,N).
  178: *> \endverbatim
  179: *>
  180: *> \param[in,out] IPIV
  181: *> \verbatim
  182: *>          IPIV is or output) INTEGER array, dimension (N)
  183: *>          If FACT = 'F', then IPIV is an input argument and on entry
  184: *>          contains the pivot indices from the factorization A = P*L*U
  185: *>          as computed by ZGETRF; row i of the matrix was interchanged
  186: *>          with row IPIV(i).
  187: *>
  188: *>          If FACT = 'N', then IPIV is an output argument and on exit
  189: *>          contains the pivot indices from the factorization A = P*L*U
  190: *>          of the original matrix A.
  191: *>
  192: *>          If FACT = 'E', then IPIV is an output argument and on exit
  193: *>          contains the pivot indices from the factorization A = P*L*U
  194: *>          of the equilibrated matrix A.
  195: *> \endverbatim
  196: *>
  197: *> \param[in,out] EQUED
  198: *> \verbatim
  199: *>          EQUED is or output) CHARACTER*1
  200: *>          Specifies the form of equilibration that was done.
  201: *>          = 'N':  No equilibration (always true if FACT = 'N').
  202: *>          = 'R':  Row equilibration, i.e., A has been premultiplied by
  203: *>                  diag(R).
  204: *>          = 'C':  Column equilibration, i.e., A has been postmultiplied
  205: *>                  by diag(C).
  206: *>          = 'B':  Both row and column equilibration, i.e., A has been
  207: *>                  replaced by diag(R) * A * diag(C).
  208: *>          EQUED is an input argument if FACT = 'F'; otherwise, it is an
  209: *>          output argument.
  210: *> \endverbatim
  211: *>
  212: *> \param[in,out] R
  213: *> \verbatim
  214: *>          R is or output) DOUBLE PRECISION array, dimension (N)
  215: *>          The row scale factors for A.  If EQUED = 'R' or 'B', A is
  216: *>          multiplied on the left by diag(R); if EQUED = 'N' or 'C', R
  217: *>          is not accessed.  R is an input argument if FACT = 'F';
  218: *>          otherwise, R is an output argument.  If FACT = 'F' and
  219: *>          EQUED = 'R' or 'B', each element of R must be positive.
  220: *> \endverbatim
  221: *>
  222: *> \param[in,out] C
  223: *> \verbatim
  224: *>          C is or output) DOUBLE PRECISION array, dimension (N)
  225: *>          The column scale factors for A.  If EQUED = 'C' or 'B', A is
  226: *>          multiplied on the right by diag(C); if EQUED = 'N' or 'R', C
  227: *>          is not accessed.  C is an input argument if FACT = 'F';
  228: *>          otherwise, C is an output argument.  If FACT = 'F' and
  229: *>          EQUED = 'C' or 'B', each element of C must be positive.
  230: *> \endverbatim
  231: *>
  232: *> \param[in,out] B
  233: *> \verbatim
  234: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
  235: *>          On entry, the N-by-NRHS right hand side matrix B.
  236: *>          On exit,
  237: *>          if EQUED = 'N', B is not modified;
  238: *>          if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by
  239: *>          diag(R)*B;
  240: *>          if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is
  241: *>          overwritten by diag(C)*B.
  242: *> \endverbatim
  243: *>
  244: *> \param[in] LDB
  245: *> \verbatim
  246: *>          LDB is INTEGER
  247: *>          The leading dimension of the array B.  LDB >= max(1,N).
  248: *> \endverbatim
  249: *>
  250: *> \param[out] X
  251: *> \verbatim
  252: *>          X is COMPLEX*16 array, dimension (LDX,NRHS)
  253: *>          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X
  254: *>          to the original system of equations.  Note that A and B are
  255: *>          modified on exit if EQUED .ne. 'N', and the solution to the
  256: *>          equilibrated system is inv(diag(C))*X if TRANS = 'N' and
  257: *>          EQUED = 'C' or 'B', or inv(diag(R))*X if TRANS = 'T' or 'C'
  258: *>          and EQUED = 'R' or 'B'.
  259: *> \endverbatim
  260: *>
  261: *> \param[in] LDX
  262: *> \verbatim
  263: *>          LDX is INTEGER
  264: *>          The leading dimension of the array X.  LDX >= max(1,N).
  265: *> \endverbatim
  266: *>
  267: *> \param[out] RCOND
  268: *> \verbatim
  269: *>          RCOND is DOUBLE PRECISION
  270: *>          The estimate of the reciprocal condition number of the matrix
  271: *>          A after equilibration (if done).  If RCOND is less than the
  272: *>          machine precision (in particular, if RCOND = 0), the matrix
  273: *>          is singular to working precision.  This condition is
  274: *>          indicated by a return code of INFO > 0.
  275: *> \endverbatim
  276: *>
  277: *> \param[out] FERR
  278: *> \verbatim
  279: *>          FERR is DOUBLE PRECISION array, dimension (NRHS)
  280: *>          The estimated forward error bound for each solution vector
  281: *>          X(j) (the j-th column of the solution matrix X).
  282: *>          If XTRUE is the true solution corresponding to X(j), FERR(j)
  283: *>          is an estimated upper bound for the magnitude of the largest
  284: *>          element in (X(j) - XTRUE) divided by the magnitude of the
  285: *>          largest element in X(j).  The estimate is as reliable as
  286: *>          the estimate for RCOND, and is almost always a slight
  287: *>          overestimate of the true error.
  288: *> \endverbatim
  289: *>
  290: *> \param[out] BERR
  291: *> \verbatim
  292: *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
  293: *>          The componentwise relative backward error of each solution
  294: *>          vector X(j) (i.e., the smallest relative change in
  295: *>          any element of A or B that makes X(j) an exact solution).
  296: *> \endverbatim
  297: *>
  298: *> \param[out] WORK
  299: *> \verbatim
  300: *>          WORK is COMPLEX*16 array, dimension (2*N)
  301: *> \endverbatim
  302: *>
  303: *> \param[out] RWORK
  304: *> \verbatim
  305: *>          RWORK is DOUBLE PRECISION array, dimension (2*N)
  306: *>          On exit, RWORK(1) contains the reciprocal pivot growth
  307: *>          factor norm(A)/norm(U). The "max absolute element" norm is
  308: *>          used. If RWORK(1) is much less than 1, then the stability
  309: *>          of the LU factorization of the (equilibrated) matrix A
  310: *>          could be poor. This also means that the solution X, condition
  311: *>          estimator RCOND, and forward error bound FERR could be
  312: *>          unreliable. If factorization fails with 0<INFO<=N, then
  313: *>          RWORK(1) contains the reciprocal pivot growth factor for the
  314: *>          leading INFO columns of A.
  315: *> \endverbatim
  316: *>
  317: *> \param[out] INFO
  318: *> \verbatim
  319: *>          INFO is INTEGER
  320: *>          = 0:  successful exit
  321: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  322: *>          > 0:  if INFO = i, and i is
  323: *>                <= N:  U(i,i) is exactly zero.  The factorization has
  324: *>                       been completed, but the factor U is exactly
  325: *>                       singular, so the solution and error bounds
  326: *>                       could not be computed. RCOND = 0 is returned.
  327: *>                = N+1: U is nonsingular, but RCOND is less than machine
  328: *>                       precision, meaning that the matrix is singular
  329: *>                       to working precision.  Nevertheless, the
  330: *>                       solution and error bounds are computed because
  331: *>                       there are a number of situations where the
  332: *>                       computed solution can be more accurate than the
  333: *>                       value of RCOND would suggest.
  334: *> \endverbatim
  335: *
  336: *  Authors:
  337: *  ========
  338: *
  339: *> \author Univ. of Tennessee 
  340: *> \author Univ. of California Berkeley 
  341: *> \author Univ. of Colorado Denver 
  342: *> \author NAG Ltd. 
  343: *
  344: *> \date November 2011
  345: *
  346: *> \ingroup complex16GEsolve
  347: *
  348: *  =====================================================================
  349:       SUBROUTINE ZGESVX( FACT, TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV,
  350:      $                   EQUED, R, C, B, LDB, X, LDX, RCOND, FERR, BERR,
  351:      $                   WORK, RWORK, INFO )
  352: *
  353: *  -- LAPACK driver routine (version 3.4.0) --
  354: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  355: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  356: *     November 2011
  357: *
  358: *     .. Scalar Arguments ..
  359:       CHARACTER          EQUED, FACT, TRANS
  360:       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS
  361:       DOUBLE PRECISION   RCOND
  362: *     ..
  363: *     .. Array Arguments ..
  364:       INTEGER            IPIV( * )
  365:       DOUBLE PRECISION   BERR( * ), C( * ), FERR( * ), R( * ),
  366:      $                   RWORK( * )
  367:       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
  368:      $                   WORK( * ), X( LDX, * )
  369: *     ..
  370: *
  371: *  =====================================================================
  372: *
  373: *     .. Parameters ..
  374:       DOUBLE PRECISION   ZERO, ONE
  375:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  376: *     ..
  377: *     .. Local Scalars ..
  378:       LOGICAL            COLEQU, EQUIL, NOFACT, NOTRAN, ROWEQU
  379:       CHARACTER          NORM
  380:       INTEGER            I, INFEQU, J
  381:       DOUBLE PRECISION   AMAX, ANORM, BIGNUM, COLCND, RCMAX, RCMIN,
  382:      $                   ROWCND, RPVGRW, SMLNUM
  383: *     ..
  384: *     .. External Functions ..
  385:       LOGICAL            LSAME
  386:       DOUBLE PRECISION   DLAMCH, ZLANGE, ZLANTR
  387:       EXTERNAL           LSAME, DLAMCH, ZLANGE, ZLANTR
  388: *     ..
  389: *     .. External Subroutines ..
  390:       EXTERNAL           XERBLA, ZGECON, ZGEEQU, ZGERFS, ZGETRF, ZGETRS,
  391:      $                   ZLACPY, ZLAQGE
  392: *     ..
  393: *     .. Intrinsic Functions ..
  394:       INTRINSIC          MAX, MIN
  395: *     ..
  396: *     .. Executable Statements ..
  397: *
  398:       INFO = 0
  399:       NOFACT = LSAME( FACT, 'N' )
  400:       EQUIL = LSAME( FACT, 'E' )
  401:       NOTRAN = LSAME( TRANS, 'N' )
  402:       IF( NOFACT .OR. EQUIL ) THEN
  403:          EQUED = 'N'
  404:          ROWEQU = .FALSE.
  405:          COLEQU = .FALSE.
  406:       ELSE
  407:          ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
  408:          COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
  409:          SMLNUM = DLAMCH( 'Safe minimum' )
  410:          BIGNUM = ONE / SMLNUM
  411:       END IF
  412: *
  413: *     Test the input parameters.
  414: *
  415:       IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.LSAME( FACT, 'F' ) )
  416:      $     THEN
  417:          INFO = -1
  418:       ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
  419:      $         LSAME( TRANS, 'C' ) ) THEN
  420:          INFO = -2
  421:       ELSE IF( N.LT.0 ) THEN
  422:          INFO = -3
  423:       ELSE IF( NRHS.LT.0 ) THEN
  424:          INFO = -4
  425:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  426:          INFO = -6
  427:       ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
  428:          INFO = -8
  429:       ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
  430:      $         ( ROWEQU .OR. COLEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
  431:          INFO = -10
  432:       ELSE
  433:          IF( ROWEQU ) THEN
  434:             RCMIN = BIGNUM
  435:             RCMAX = ZERO
  436:             DO 10 J = 1, N
  437:                RCMIN = MIN( RCMIN, R( J ) )
  438:                RCMAX = MAX( RCMAX, R( J ) )
  439:    10       CONTINUE
  440:             IF( RCMIN.LE.ZERO ) THEN
  441:                INFO = -11
  442:             ELSE IF( N.GT.0 ) THEN
  443:                ROWCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
  444:             ELSE
  445:                ROWCND = ONE
  446:             END IF
  447:          END IF
  448:          IF( COLEQU .AND. INFO.EQ.0 ) THEN
  449:             RCMIN = BIGNUM
  450:             RCMAX = ZERO
  451:             DO 20 J = 1, N
  452:                RCMIN = MIN( RCMIN, C( J ) )
  453:                RCMAX = MAX( RCMAX, C( J ) )
  454:    20       CONTINUE
  455:             IF( RCMIN.LE.ZERO ) THEN
  456:                INFO = -12
  457:             ELSE IF( N.GT.0 ) THEN
  458:                COLCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
  459:             ELSE
  460:                COLCND = ONE
  461:             END IF
  462:          END IF
  463:          IF( INFO.EQ.0 ) THEN
  464:             IF( LDB.LT.MAX( 1, N ) ) THEN
  465:                INFO = -14
  466:             ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  467:                INFO = -16
  468:             END IF
  469:          END IF
  470:       END IF
  471: *
  472:       IF( INFO.NE.0 ) THEN
  473:          CALL XERBLA( 'ZGESVX', -INFO )
  474:          RETURN
  475:       END IF
  476: *
  477:       IF( EQUIL ) THEN
  478: *
  479: *        Compute row and column scalings to equilibrate the matrix A.
  480: *
  481:          CALL ZGEEQU( N, N, A, LDA, R, C, ROWCND, COLCND, AMAX, INFEQU )
  482:          IF( INFEQU.EQ.0 ) THEN
  483: *
  484: *           Equilibrate the matrix.
  485: *
  486:             CALL ZLAQGE( N, N, A, LDA, R, C, ROWCND, COLCND, AMAX,
  487:      $                   EQUED )
  488:             ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
  489:             COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
  490:          END IF
  491:       END IF
  492: *
  493: *     Scale the right hand side.
  494: *
  495:       IF( NOTRAN ) THEN
  496:          IF( ROWEQU ) THEN
  497:             DO 40 J = 1, NRHS
  498:                DO 30 I = 1, N
  499:                   B( I, J ) = R( I )*B( I, J )
  500:    30          CONTINUE
  501:    40       CONTINUE
  502:          END IF
  503:       ELSE IF( COLEQU ) THEN
  504:          DO 60 J = 1, NRHS
  505:             DO 50 I = 1, N
  506:                B( I, J ) = C( I )*B( I, J )
  507:    50       CONTINUE
  508:    60    CONTINUE
  509:       END IF
  510: *
  511:       IF( NOFACT .OR. EQUIL ) THEN
  512: *
  513: *        Compute the LU factorization of A.
  514: *
  515:          CALL ZLACPY( 'Full', N, N, A, LDA, AF, LDAF )
  516:          CALL ZGETRF( N, N, AF, LDAF, IPIV, INFO )
  517: *
  518: *        Return if INFO is non-zero.
  519: *
  520:          IF( INFO.GT.0 ) THEN
  521: *
  522: *           Compute the reciprocal pivot growth factor of the
  523: *           leading rank-deficient INFO columns of A.
  524: *
  525:             RPVGRW = ZLANTR( 'M', 'U', 'N', INFO, INFO, AF, LDAF,
  526:      $               RWORK )
  527:             IF( RPVGRW.EQ.ZERO ) THEN
  528:                RPVGRW = ONE
  529:             ELSE
  530:                RPVGRW = ZLANGE( 'M', N, INFO, A, LDA, RWORK ) /
  531:      $                  RPVGRW
  532:             END IF
  533:             RWORK( 1 ) = RPVGRW
  534:             RCOND = ZERO
  535:             RETURN
  536:          END IF
  537:       END IF
  538: *
  539: *     Compute the norm of the matrix A and the
  540: *     reciprocal pivot growth factor RPVGRW.
  541: *
  542:       IF( NOTRAN ) THEN
  543:          NORM = '1'
  544:       ELSE
  545:          NORM = 'I'
  546:       END IF
  547:       ANORM = ZLANGE( NORM, N, N, A, LDA, RWORK )
  548:       RPVGRW = ZLANTR( 'M', 'U', 'N', N, N, AF, LDAF, RWORK )
  549:       IF( RPVGRW.EQ.ZERO ) THEN
  550:          RPVGRW = ONE
  551:       ELSE
  552:          RPVGRW = ZLANGE( 'M', N, N, A, LDA, RWORK ) / RPVGRW
  553:       END IF
  554: *
  555: *     Compute the reciprocal of the condition number of A.
  556: *
  557:       CALL ZGECON( NORM, N, AF, LDAF, ANORM, RCOND, WORK, RWORK, INFO )
  558: *
  559: *     Compute the solution matrix X.
  560: *
  561:       CALL ZLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
  562:       CALL ZGETRS( TRANS, N, NRHS, AF, LDAF, IPIV, X, LDX, INFO )
  563: *
  564: *     Use iterative refinement to improve the computed solution and
  565: *     compute error bounds and backward error estimates for it.
  566: *
  567:       CALL ZGERFS( TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB, X,
  568:      $             LDX, FERR, BERR, WORK, RWORK, INFO )
  569: *
  570: *     Transform the solution matrix X to a solution of the original
  571: *     system.
  572: *
  573:       IF( NOTRAN ) THEN
  574:          IF( COLEQU ) THEN
  575:             DO 80 J = 1, NRHS
  576:                DO 70 I = 1, N
  577:                   X( I, J ) = C( I )*X( I, J )
  578:    70          CONTINUE
  579:    80       CONTINUE
  580:             DO 90 J = 1, NRHS
  581:                FERR( J ) = FERR( J ) / COLCND
  582:    90       CONTINUE
  583:          END IF
  584:       ELSE IF( ROWEQU ) THEN
  585:          DO 110 J = 1, NRHS
  586:             DO 100 I = 1, N
  587:                X( I, J ) = R( I )*X( I, J )
  588:   100       CONTINUE
  589:   110    CONTINUE
  590:          DO 120 J = 1, NRHS
  591:             FERR( J ) = FERR( J ) / ROWCND
  592:   120    CONTINUE
  593:       END IF
  594: *
  595: *     Set INFO = N+1 if the matrix is singular to working precision.
  596: *
  597:       IF( RCOND.LT.DLAMCH( 'Epsilon' ) )
  598:      $   INFO = N + 1
  599: *
  600:       RWORK( 1 ) = RPVGRW
  601:       RETURN
  602: *
  603: *     End of ZGESVX
  604: *
  605:       END

CVSweb interface <joel.bertrand@systella.fr>