File:  [local] / rpl / lapack / lapack / zgesvx.f
Revision 1.3: download - view: text, annotated - select for diffs - revision graph
Fri Aug 6 15:28:52 2010 UTC (13 years, 10 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Cohérence

    1:       SUBROUTINE ZGESVX( FACT, TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV,
    2:      $                   EQUED, R, C, B, LDB, X, LDX, RCOND, FERR, BERR,
    3:      $                   WORK, RWORK, INFO )
    4: *
    5: *  -- LAPACK driver routine (version 3.2) --
    6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    8: *     November 2006
    9: *
   10: *     .. Scalar Arguments ..
   11:       CHARACTER          EQUED, FACT, TRANS
   12:       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS
   13:       DOUBLE PRECISION   RCOND
   14: *     ..
   15: *     .. Array Arguments ..
   16:       INTEGER            IPIV( * )
   17:       DOUBLE PRECISION   BERR( * ), C( * ), FERR( * ), R( * ),
   18:      $                   RWORK( * )
   19:       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
   20:      $                   WORK( * ), X( LDX, * )
   21: *     ..
   22: *
   23: *  Purpose
   24: *  =======
   25: *
   26: *  ZGESVX uses the LU factorization to compute the solution to a complex
   27: *  system of linear equations
   28: *     A * X = B,
   29: *  where A is an N-by-N matrix and X and B are N-by-NRHS matrices.
   30: *
   31: *  Error bounds on the solution and a condition estimate are also
   32: *  provided.
   33: *
   34: *  Description
   35: *  ===========
   36: *
   37: *  The following steps are performed:
   38: *
   39: *  1. If FACT = 'E', real scaling factors are computed to equilibrate
   40: *     the system:
   41: *        TRANS = 'N':  diag(R)*A*diag(C)     *inv(diag(C))*X = diag(R)*B
   42: *        TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B
   43: *        TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B
   44: *     Whether or not the system will be equilibrated depends on the
   45: *     scaling of the matrix A, but if equilibration is used, A is
   46: *     overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N')
   47: *     or diag(C)*B (if TRANS = 'T' or 'C').
   48: *
   49: *  2. If FACT = 'N' or 'E', the LU decomposition is used to factor the
   50: *     matrix A (after equilibration if FACT = 'E') as
   51: *        A = P * L * U,
   52: *     where P is a permutation matrix, L is a unit lower triangular
   53: *     matrix, and U is upper triangular.
   54: *
   55: *  3. If some U(i,i)=0, so that U is exactly singular, then the routine
   56: *     returns with INFO = i. Otherwise, the factored form of A is used
   57: *     to estimate the condition number of the matrix A.  If the
   58: *     reciprocal of the condition number is less than machine precision,
   59: *     INFO = N+1 is returned as a warning, but the routine still goes on
   60: *     to solve for X and compute error bounds as described below.
   61: *
   62: *  4. The system of equations is solved for X using the factored form
   63: *     of A.
   64: *
   65: *  5. Iterative refinement is applied to improve the computed solution
   66: *     matrix and calculate error bounds and backward error estimates
   67: *     for it.
   68: *
   69: *  6. If equilibration was used, the matrix X is premultiplied by
   70: *     diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so
   71: *     that it solves the original system before equilibration.
   72: *
   73: *  Arguments
   74: *  =========
   75: *
   76: *  FACT    (input) CHARACTER*1
   77: *          Specifies whether or not the factored form of the matrix A is
   78: *          supplied on entry, and if not, whether the matrix A should be
   79: *          equilibrated before it is factored.
   80: *          = 'F':  On entry, AF and IPIV contain the factored form of A.
   81: *                  If EQUED is not 'N', the matrix A has been
   82: *                  equilibrated with scaling factors given by R and C.
   83: *                  A, AF, and IPIV are not modified.
   84: *          = 'N':  The matrix A will be copied to AF and factored.
   85: *          = 'E':  The matrix A will be equilibrated if necessary, then
   86: *                  copied to AF and factored.
   87: *
   88: *  TRANS   (input) CHARACTER*1
   89: *          Specifies the form of the system of equations:
   90: *          = 'N':  A * X = B     (No transpose)
   91: *          = 'T':  A**T * X = B  (Transpose)
   92: *          = 'C':  A**H * X = B  (Conjugate transpose)
   93: *
   94: *  N       (input) INTEGER
   95: *          The number of linear equations, i.e., the order of the
   96: *          matrix A.  N >= 0.
   97: *
   98: *  NRHS    (input) INTEGER
   99: *          The number of right hand sides, i.e., the number of columns
  100: *          of the matrices B and X.  NRHS >= 0.
  101: *
  102: *  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
  103: *          On entry, the N-by-N matrix A.  If FACT = 'F' and EQUED is
  104: *          not 'N', then A must have been equilibrated by the scaling
  105: *          factors in R and/or C.  A is not modified if FACT = 'F' or
  106: *          'N', or if FACT = 'E' and EQUED = 'N' on exit.
  107: *
  108: *          On exit, if EQUED .ne. 'N', A is scaled as follows:
  109: *          EQUED = 'R':  A := diag(R) * A
  110: *          EQUED = 'C':  A := A * diag(C)
  111: *          EQUED = 'B':  A := diag(R) * A * diag(C).
  112: *
  113: *  LDA     (input) INTEGER
  114: *          The leading dimension of the array A.  LDA >= max(1,N).
  115: *
  116: *  AF      (input or output) COMPLEX*16 array, dimension (LDAF,N)
  117: *          If FACT = 'F', then AF is an input argument and on entry
  118: *          contains the factors L and U from the factorization
  119: *          A = P*L*U as computed by ZGETRF.  If EQUED .ne. 'N', then
  120: *          AF is the factored form of the equilibrated matrix A.
  121: *
  122: *          If FACT = 'N', then AF is an output argument and on exit
  123: *          returns the factors L and U from the factorization A = P*L*U
  124: *          of the original matrix A.
  125: *
  126: *          If FACT = 'E', then AF is an output argument and on exit
  127: *          returns the factors L and U from the factorization A = P*L*U
  128: *          of the equilibrated matrix A (see the description of A for
  129: *          the form of the equilibrated matrix).
  130: *
  131: *  LDAF    (input) INTEGER
  132: *          The leading dimension of the array AF.  LDAF >= max(1,N).
  133: *
  134: *  IPIV    (input or output) INTEGER array, dimension (N)
  135: *          If FACT = 'F', then IPIV is an input argument and on entry
  136: *          contains the pivot indices from the factorization A = P*L*U
  137: *          as computed by ZGETRF; row i of the matrix was interchanged
  138: *          with row IPIV(i).
  139: *
  140: *          If FACT = 'N', then IPIV is an output argument and on exit
  141: *          contains the pivot indices from the factorization A = P*L*U
  142: *          of the original matrix A.
  143: *
  144: *          If FACT = 'E', then IPIV is an output argument and on exit
  145: *          contains the pivot indices from the factorization A = P*L*U
  146: *          of the equilibrated matrix A.
  147: *
  148: *  EQUED   (input or output) CHARACTER*1
  149: *          Specifies the form of equilibration that was done.
  150: *          = 'N':  No equilibration (always true if FACT = 'N').
  151: *          = 'R':  Row equilibration, i.e., A has been premultiplied by
  152: *                  diag(R).
  153: *          = 'C':  Column equilibration, i.e., A has been postmultiplied
  154: *                  by diag(C).
  155: *          = 'B':  Both row and column equilibration, i.e., A has been
  156: *                  replaced by diag(R) * A * diag(C).
  157: *          EQUED is an input argument if FACT = 'F'; otherwise, it is an
  158: *          output argument.
  159: *
  160: *  R       (input or output) DOUBLE PRECISION array, dimension (N)
  161: *          The row scale factors for A.  If EQUED = 'R' or 'B', A is
  162: *          multiplied on the left by diag(R); if EQUED = 'N' or 'C', R
  163: *          is not accessed.  R is an input argument if FACT = 'F';
  164: *          otherwise, R is an output argument.  If FACT = 'F' and
  165: *          EQUED = 'R' or 'B', each element of R must be positive.
  166: *
  167: *  C       (input or output) DOUBLE PRECISION array, dimension (N)
  168: *          The column scale factors for A.  If EQUED = 'C' or 'B', A is
  169: *          multiplied on the right by diag(C); if EQUED = 'N' or 'R', C
  170: *          is not accessed.  C is an input argument if FACT = 'F';
  171: *          otherwise, C is an output argument.  If FACT = 'F' and
  172: *          EQUED = 'C' or 'B', each element of C must be positive.
  173: *
  174: *  B       (input/output) COMPLEX*16 array, dimension (LDB,NRHS)
  175: *          On entry, the N-by-NRHS right hand side matrix B.
  176: *          On exit,
  177: *          if EQUED = 'N', B is not modified;
  178: *          if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by
  179: *          diag(R)*B;
  180: *          if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is
  181: *          overwritten by diag(C)*B.
  182: *
  183: *  LDB     (input) INTEGER
  184: *          The leading dimension of the array B.  LDB >= max(1,N).
  185: *
  186: *  X       (output) COMPLEX*16 array, dimension (LDX,NRHS)
  187: *          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X
  188: *          to the original system of equations.  Note that A and B are
  189: *          modified on exit if EQUED .ne. 'N', and the solution to the
  190: *          equilibrated system is inv(diag(C))*X if TRANS = 'N' and
  191: *          EQUED = 'C' or 'B', or inv(diag(R))*X if TRANS = 'T' or 'C'
  192: *          and EQUED = 'R' or 'B'.
  193: *
  194: *  LDX     (input) INTEGER
  195: *          The leading dimension of the array X.  LDX >= max(1,N).
  196: *
  197: *  RCOND   (output) DOUBLE PRECISION
  198: *          The estimate of the reciprocal condition number of the matrix
  199: *          A after equilibration (if done).  If RCOND is less than the
  200: *          machine precision (in particular, if RCOND = 0), the matrix
  201: *          is singular to working precision.  This condition is
  202: *          indicated by a return code of INFO > 0.
  203: *
  204: *  FERR    (output) DOUBLE PRECISION array, dimension (NRHS)
  205: *          The estimated forward error bound for each solution vector
  206: *          X(j) (the j-th column of the solution matrix X).
  207: *          If XTRUE is the true solution corresponding to X(j), FERR(j)
  208: *          is an estimated upper bound for the magnitude of the largest
  209: *          element in (X(j) - XTRUE) divided by the magnitude of the
  210: *          largest element in X(j).  The estimate is as reliable as
  211: *          the estimate for RCOND, and is almost always a slight
  212: *          overestimate of the true error.
  213: *
  214: *  BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
  215: *          The componentwise relative backward error of each solution
  216: *          vector X(j) (i.e., the smallest relative change in
  217: *          any element of A or B that makes X(j) an exact solution).
  218: *
  219: *  WORK    (workspace) COMPLEX*16 array, dimension (2*N)
  220: *
  221: *  RWORK   (workspace/output) DOUBLE PRECISION array, dimension (2*N)
  222: *          On exit, RWORK(1) contains the reciprocal pivot growth
  223: *          factor norm(A)/norm(U). The "max absolute element" norm is
  224: *          used. If RWORK(1) is much less than 1, then the stability
  225: *          of the LU factorization of the (equilibrated) matrix A
  226: *          could be poor. This also means that the solution X, condition
  227: *          estimator RCOND, and forward error bound FERR could be
  228: *          unreliable. If factorization fails with 0<INFO<=N, then
  229: *          RWORK(1) contains the reciprocal pivot growth factor for the
  230: *          leading INFO columns of A.
  231: *
  232: *  INFO    (output) INTEGER
  233: *          = 0:  successful exit
  234: *          < 0:  if INFO = -i, the i-th argument had an illegal value
  235: *          > 0:  if INFO = i, and i is
  236: *                <= N:  U(i,i) is exactly zero.  The factorization has
  237: *                       been completed, but the factor U is exactly
  238: *                       singular, so the solution and error bounds
  239: *                       could not be computed. RCOND = 0 is returned.
  240: *                = N+1: U is nonsingular, but RCOND is less than machine
  241: *                       precision, meaning that the matrix is singular
  242: *                       to working precision.  Nevertheless, the
  243: *                       solution and error bounds are computed because
  244: *                       there are a number of situations where the
  245: *                       computed solution can be more accurate than the
  246: *                       value of RCOND would suggest.
  247: *
  248: *  =====================================================================
  249: *
  250: *     .. Parameters ..
  251:       DOUBLE PRECISION   ZERO, ONE
  252:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  253: *     ..
  254: *     .. Local Scalars ..
  255:       LOGICAL            COLEQU, EQUIL, NOFACT, NOTRAN, ROWEQU
  256:       CHARACTER          NORM
  257:       INTEGER            I, INFEQU, J
  258:       DOUBLE PRECISION   AMAX, ANORM, BIGNUM, COLCND, RCMAX, RCMIN,
  259:      $                   ROWCND, RPVGRW, SMLNUM
  260: *     ..
  261: *     .. External Functions ..
  262:       LOGICAL            LSAME
  263:       DOUBLE PRECISION   DLAMCH, ZLANGE, ZLANTR
  264:       EXTERNAL           LSAME, DLAMCH, ZLANGE, ZLANTR
  265: *     ..
  266: *     .. External Subroutines ..
  267:       EXTERNAL           XERBLA, ZGECON, ZGEEQU, ZGERFS, ZGETRF, ZGETRS,
  268:      $                   ZLACPY, ZLAQGE
  269: *     ..
  270: *     .. Intrinsic Functions ..
  271:       INTRINSIC          MAX, MIN
  272: *     ..
  273: *     .. Executable Statements ..
  274: *
  275:       INFO = 0
  276:       NOFACT = LSAME( FACT, 'N' )
  277:       EQUIL = LSAME( FACT, 'E' )
  278:       NOTRAN = LSAME( TRANS, 'N' )
  279:       IF( NOFACT .OR. EQUIL ) THEN
  280:          EQUED = 'N'
  281:          ROWEQU = .FALSE.
  282:          COLEQU = .FALSE.
  283:       ELSE
  284:          ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
  285:          COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
  286:          SMLNUM = DLAMCH( 'Safe minimum' )
  287:          BIGNUM = ONE / SMLNUM
  288:       END IF
  289: *
  290: *     Test the input parameters.
  291: *
  292:       IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.LSAME( FACT, 'F' ) )
  293:      $     THEN
  294:          INFO = -1
  295:       ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
  296:      $         LSAME( TRANS, 'C' ) ) THEN
  297:          INFO = -2
  298:       ELSE IF( N.LT.0 ) THEN
  299:          INFO = -3
  300:       ELSE IF( NRHS.LT.0 ) THEN
  301:          INFO = -4
  302:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  303:          INFO = -6
  304:       ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
  305:          INFO = -8
  306:       ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
  307:      $         ( ROWEQU .OR. COLEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
  308:          INFO = -10
  309:       ELSE
  310:          IF( ROWEQU ) THEN
  311:             RCMIN = BIGNUM
  312:             RCMAX = ZERO
  313:             DO 10 J = 1, N
  314:                RCMIN = MIN( RCMIN, R( J ) )
  315:                RCMAX = MAX( RCMAX, R( J ) )
  316:    10       CONTINUE
  317:             IF( RCMIN.LE.ZERO ) THEN
  318:                INFO = -11
  319:             ELSE IF( N.GT.0 ) THEN
  320:                ROWCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
  321:             ELSE
  322:                ROWCND = ONE
  323:             END IF
  324:          END IF
  325:          IF( COLEQU .AND. INFO.EQ.0 ) THEN
  326:             RCMIN = BIGNUM
  327:             RCMAX = ZERO
  328:             DO 20 J = 1, N
  329:                RCMIN = MIN( RCMIN, C( J ) )
  330:                RCMAX = MAX( RCMAX, C( J ) )
  331:    20       CONTINUE
  332:             IF( RCMIN.LE.ZERO ) THEN
  333:                INFO = -12
  334:             ELSE IF( N.GT.0 ) THEN
  335:                COLCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
  336:             ELSE
  337:                COLCND = ONE
  338:             END IF
  339:          END IF
  340:          IF( INFO.EQ.0 ) THEN
  341:             IF( LDB.LT.MAX( 1, N ) ) THEN
  342:                INFO = -14
  343:             ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  344:                INFO = -16
  345:             END IF
  346:          END IF
  347:       END IF
  348: *
  349:       IF( INFO.NE.0 ) THEN
  350:          CALL XERBLA( 'ZGESVX', -INFO )
  351:          RETURN
  352:       END IF
  353: *
  354:       IF( EQUIL ) THEN
  355: *
  356: *        Compute row and column scalings to equilibrate the matrix A.
  357: *
  358:          CALL ZGEEQU( N, N, A, LDA, R, C, ROWCND, COLCND, AMAX, INFEQU )
  359:          IF( INFEQU.EQ.0 ) THEN
  360: *
  361: *           Equilibrate the matrix.
  362: *
  363:             CALL ZLAQGE( N, N, A, LDA, R, C, ROWCND, COLCND, AMAX,
  364:      $                   EQUED )
  365:             ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
  366:             COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
  367:          END IF
  368:       END IF
  369: *
  370: *     Scale the right hand side.
  371: *
  372:       IF( NOTRAN ) THEN
  373:          IF( ROWEQU ) THEN
  374:             DO 40 J = 1, NRHS
  375:                DO 30 I = 1, N
  376:                   B( I, J ) = R( I )*B( I, J )
  377:    30          CONTINUE
  378:    40       CONTINUE
  379:          END IF
  380:       ELSE IF( COLEQU ) THEN
  381:          DO 60 J = 1, NRHS
  382:             DO 50 I = 1, N
  383:                B( I, J ) = C( I )*B( I, J )
  384:    50       CONTINUE
  385:    60    CONTINUE
  386:       END IF
  387: *
  388:       IF( NOFACT .OR. EQUIL ) THEN
  389: *
  390: *        Compute the LU factorization of A.
  391: *
  392:          CALL ZLACPY( 'Full', N, N, A, LDA, AF, LDAF )
  393:          CALL ZGETRF( N, N, AF, LDAF, IPIV, INFO )
  394: *
  395: *        Return if INFO is non-zero.
  396: *
  397:          IF( INFO.GT.0 ) THEN
  398: *
  399: *           Compute the reciprocal pivot growth factor of the
  400: *           leading rank-deficient INFO columns of A.
  401: *
  402:             RPVGRW = ZLANTR( 'M', 'U', 'N', INFO, INFO, AF, LDAF,
  403:      $               RWORK )
  404:             IF( RPVGRW.EQ.ZERO ) THEN
  405:                RPVGRW = ONE
  406:             ELSE
  407:                RPVGRW = ZLANGE( 'M', N, INFO, A, LDA, RWORK ) /
  408:      $                  RPVGRW
  409:             END IF
  410:             RWORK( 1 ) = RPVGRW
  411:             RCOND = ZERO
  412:             RETURN
  413:          END IF
  414:       END IF
  415: *
  416: *     Compute the norm of the matrix A and the
  417: *     reciprocal pivot growth factor RPVGRW.
  418: *
  419:       IF( NOTRAN ) THEN
  420:          NORM = '1'
  421:       ELSE
  422:          NORM = 'I'
  423:       END IF
  424:       ANORM = ZLANGE( NORM, N, N, A, LDA, RWORK )
  425:       RPVGRW = ZLANTR( 'M', 'U', 'N', N, N, AF, LDAF, RWORK )
  426:       IF( RPVGRW.EQ.ZERO ) THEN
  427:          RPVGRW = ONE
  428:       ELSE
  429:          RPVGRW = ZLANGE( 'M', N, N, A, LDA, RWORK ) / RPVGRW
  430:       END IF
  431: *
  432: *     Compute the reciprocal of the condition number of A.
  433: *
  434:       CALL ZGECON( NORM, N, AF, LDAF, ANORM, RCOND, WORK, RWORK, INFO )
  435: *
  436: *     Compute the solution matrix X.
  437: *
  438:       CALL ZLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
  439:       CALL ZGETRS( TRANS, N, NRHS, AF, LDAF, IPIV, X, LDX, INFO )
  440: *
  441: *     Use iterative refinement to improve the computed solution and
  442: *     compute error bounds and backward error estimates for it.
  443: *
  444:       CALL ZGERFS( TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB, X,
  445:      $             LDX, FERR, BERR, WORK, RWORK, INFO )
  446: *
  447: *     Transform the solution matrix X to a solution of the original
  448: *     system.
  449: *
  450:       IF( NOTRAN ) THEN
  451:          IF( COLEQU ) THEN
  452:             DO 80 J = 1, NRHS
  453:                DO 70 I = 1, N
  454:                   X( I, J ) = C( I )*X( I, J )
  455:    70          CONTINUE
  456:    80       CONTINUE
  457:             DO 90 J = 1, NRHS
  458:                FERR( J ) = FERR( J ) / COLCND
  459:    90       CONTINUE
  460:          END IF
  461:       ELSE IF( ROWEQU ) THEN
  462:          DO 110 J = 1, NRHS
  463:             DO 100 I = 1, N
  464:                X( I, J ) = R( I )*X( I, J )
  465:   100       CONTINUE
  466:   110    CONTINUE
  467:          DO 120 J = 1, NRHS
  468:             FERR( J ) = FERR( J ) / ROWCND
  469:   120    CONTINUE
  470:       END IF
  471: *
  472: *     Set INFO = N+1 if the matrix is singular to working precision.
  473: *
  474:       IF( RCOND.LT.DLAMCH( 'Epsilon' ) )
  475:      $   INFO = N + 1
  476: *
  477:       RWORK( 1 ) = RPVGRW
  478:       RETURN
  479: *
  480: *     End of ZGESVX
  481: *
  482:       END

CVSweb interface <joel.bertrand@systella.fr>