Annotation of rpl/lapack/lapack/zgesvx.f, revision 1.8

1.8     ! bertrand    1: *> \brief <b> ZGESVX computes the solution to system of linear equations A * X = B for GE matrices</b>
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download ZGESVX + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgesvx.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgesvx.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgesvx.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE ZGESVX( FACT, TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV,
        !            22: *                          EQUED, R, C, B, LDB, X, LDX, RCOND, FERR, BERR,
        !            23: *                          WORK, RWORK, INFO )
        !            24: * 
        !            25: *       .. Scalar Arguments ..
        !            26: *       CHARACTER          EQUED, FACT, TRANS
        !            27: *       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS
        !            28: *       DOUBLE PRECISION   RCOND
        !            29: *       ..
        !            30: *       .. Array Arguments ..
        !            31: *       INTEGER            IPIV( * )
        !            32: *       DOUBLE PRECISION   BERR( * ), C( * ), FERR( * ), R( * ),
        !            33: *      $                   RWORK( * )
        !            34: *       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
        !            35: *      $                   WORK( * ), X( LDX, * )
        !            36: *       ..
        !            37: *  
        !            38: *
        !            39: *> \par Purpose:
        !            40: *  =============
        !            41: *>
        !            42: *> \verbatim
        !            43: *>
        !            44: *> ZGESVX uses the LU factorization to compute the solution to a complex
        !            45: *> system of linear equations
        !            46: *>    A * X = B,
        !            47: *> where A is an N-by-N matrix and X and B are N-by-NRHS matrices.
        !            48: *>
        !            49: *> Error bounds on the solution and a condition estimate are also
        !            50: *> provided.
        !            51: *> \endverbatim
        !            52: *
        !            53: *> \par Description:
        !            54: *  =================
        !            55: *>
        !            56: *> \verbatim
        !            57: *>
        !            58: *> The following steps are performed:
        !            59: *>
        !            60: *> 1. If FACT = 'E', real scaling factors are computed to equilibrate
        !            61: *>    the system:
        !            62: *>       TRANS = 'N':  diag(R)*A*diag(C)     *inv(diag(C))*X = diag(R)*B
        !            63: *>       TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B
        !            64: *>       TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B
        !            65: *>    Whether or not the system will be equilibrated depends on the
        !            66: *>    scaling of the matrix A, but if equilibration is used, A is
        !            67: *>    overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N')
        !            68: *>    or diag(C)*B (if TRANS = 'T' or 'C').
        !            69: *>
        !            70: *> 2. If FACT = 'N' or 'E', the LU decomposition is used to factor the
        !            71: *>    matrix A (after equilibration if FACT = 'E') as
        !            72: *>       A = P * L * U,
        !            73: *>    where P is a permutation matrix, L is a unit lower triangular
        !            74: *>    matrix, and U is upper triangular.
        !            75: *>
        !            76: *> 3. If some U(i,i)=0, so that U is exactly singular, then the routine
        !            77: *>    returns with INFO = i. Otherwise, the factored form of A is used
        !            78: *>    to estimate the condition number of the matrix A.  If the
        !            79: *>    reciprocal of the condition number is less than machine precision,
        !            80: *>    INFO = N+1 is returned as a warning, but the routine still goes on
        !            81: *>    to solve for X and compute error bounds as described below.
        !            82: *>
        !            83: *> 4. The system of equations is solved for X using the factored form
        !            84: *>    of A.
        !            85: *>
        !            86: *> 5. Iterative refinement is applied to improve the computed solution
        !            87: *>    matrix and calculate error bounds and backward error estimates
        !            88: *>    for it.
        !            89: *>
        !            90: *> 6. If equilibration was used, the matrix X is premultiplied by
        !            91: *>    diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so
        !            92: *>    that it solves the original system before equilibration.
        !            93: *> \endverbatim
        !            94: *
        !            95: *  Arguments:
        !            96: *  ==========
        !            97: *
        !            98: *> \param[in] FACT
        !            99: *> \verbatim
        !           100: *>          FACT is CHARACTER*1
        !           101: *>          Specifies whether or not the factored form of the matrix A is
        !           102: *>          supplied on entry, and if not, whether the matrix A should be
        !           103: *>          equilibrated before it is factored.
        !           104: *>          = 'F':  On entry, AF and IPIV contain the factored form of A.
        !           105: *>                  If EQUED is not 'N', the matrix A has been
        !           106: *>                  equilibrated with scaling factors given by R and C.
        !           107: *>                  A, AF, and IPIV are not modified.
        !           108: *>          = 'N':  The matrix A will be copied to AF and factored.
        !           109: *>          = 'E':  The matrix A will be equilibrated if necessary, then
        !           110: *>                  copied to AF and factored.
        !           111: *> \endverbatim
        !           112: *>
        !           113: *> \param[in] TRANS
        !           114: *> \verbatim
        !           115: *>          TRANS is CHARACTER*1
        !           116: *>          Specifies the form of the system of equations:
        !           117: *>          = 'N':  A * X = B     (No transpose)
        !           118: *>          = 'T':  A**T * X = B  (Transpose)
        !           119: *>          = 'C':  A**H * X = B  (Conjugate transpose)
        !           120: *> \endverbatim
        !           121: *>
        !           122: *> \param[in] N
        !           123: *> \verbatim
        !           124: *>          N is INTEGER
        !           125: *>          The number of linear equations, i.e., the order of the
        !           126: *>          matrix A.  N >= 0.
        !           127: *> \endverbatim
        !           128: *>
        !           129: *> \param[in] NRHS
        !           130: *> \verbatim
        !           131: *>          NRHS is INTEGER
        !           132: *>          The number of right hand sides, i.e., the number of columns
        !           133: *>          of the matrices B and X.  NRHS >= 0.
        !           134: *> \endverbatim
        !           135: *>
        !           136: *> \param[in,out] A
        !           137: *> \verbatim
        !           138: *>          A is COMPLEX*16 array, dimension (LDA,N)
        !           139: *>          On entry, the N-by-N matrix A.  If FACT = 'F' and EQUED is
        !           140: *>          not 'N', then A must have been equilibrated by the scaling
        !           141: *>          factors in R and/or C.  A is not modified if FACT = 'F' or
        !           142: *>          'N', or if FACT = 'E' and EQUED = 'N' on exit.
        !           143: *>
        !           144: *>          On exit, if EQUED .ne. 'N', A is scaled as follows:
        !           145: *>          EQUED = 'R':  A := diag(R) * A
        !           146: *>          EQUED = 'C':  A := A * diag(C)
        !           147: *>          EQUED = 'B':  A := diag(R) * A * diag(C).
        !           148: *> \endverbatim
        !           149: *>
        !           150: *> \param[in] LDA
        !           151: *> \verbatim
        !           152: *>          LDA is INTEGER
        !           153: *>          The leading dimension of the array A.  LDA >= max(1,N).
        !           154: *> \endverbatim
        !           155: *>
        !           156: *> \param[in,out] AF
        !           157: *> \verbatim
        !           158: *>          AF is or output) COMPLEX*16 array, dimension (LDAF,N)
        !           159: *>          If FACT = 'F', then AF is an input argument and on entry
        !           160: *>          contains the factors L and U from the factorization
        !           161: *>          A = P*L*U as computed by ZGETRF.  If EQUED .ne. 'N', then
        !           162: *>          AF is the factored form of the equilibrated matrix A.
        !           163: *>
        !           164: *>          If FACT = 'N', then AF is an output argument and on exit
        !           165: *>          returns the factors L and U from the factorization A = P*L*U
        !           166: *>          of the original matrix A.
        !           167: *>
        !           168: *>          If FACT = 'E', then AF is an output argument and on exit
        !           169: *>          returns the factors L and U from the factorization A = P*L*U
        !           170: *>          of the equilibrated matrix A (see the description of A for
        !           171: *>          the form of the equilibrated matrix).
        !           172: *> \endverbatim
        !           173: *>
        !           174: *> \param[in] LDAF
        !           175: *> \verbatim
        !           176: *>          LDAF is INTEGER
        !           177: *>          The leading dimension of the array AF.  LDAF >= max(1,N).
        !           178: *> \endverbatim
        !           179: *>
        !           180: *> \param[in,out] IPIV
        !           181: *> \verbatim
        !           182: *>          IPIV is or output) INTEGER array, dimension (N)
        !           183: *>          If FACT = 'F', then IPIV is an input argument and on entry
        !           184: *>          contains the pivot indices from the factorization A = P*L*U
        !           185: *>          as computed by ZGETRF; row i of the matrix was interchanged
        !           186: *>          with row IPIV(i).
        !           187: *>
        !           188: *>          If FACT = 'N', then IPIV is an output argument and on exit
        !           189: *>          contains the pivot indices from the factorization A = P*L*U
        !           190: *>          of the original matrix A.
        !           191: *>
        !           192: *>          If FACT = 'E', then IPIV is an output argument and on exit
        !           193: *>          contains the pivot indices from the factorization A = P*L*U
        !           194: *>          of the equilibrated matrix A.
        !           195: *> \endverbatim
        !           196: *>
        !           197: *> \param[in,out] EQUED
        !           198: *> \verbatim
        !           199: *>          EQUED is or output) CHARACTER*1
        !           200: *>          Specifies the form of equilibration that was done.
        !           201: *>          = 'N':  No equilibration (always true if FACT = 'N').
        !           202: *>          = 'R':  Row equilibration, i.e., A has been premultiplied by
        !           203: *>                  diag(R).
        !           204: *>          = 'C':  Column equilibration, i.e., A has been postmultiplied
        !           205: *>                  by diag(C).
        !           206: *>          = 'B':  Both row and column equilibration, i.e., A has been
        !           207: *>                  replaced by diag(R) * A * diag(C).
        !           208: *>          EQUED is an input argument if FACT = 'F'; otherwise, it is an
        !           209: *>          output argument.
        !           210: *> \endverbatim
        !           211: *>
        !           212: *> \param[in,out] R
        !           213: *> \verbatim
        !           214: *>          R is or output) DOUBLE PRECISION array, dimension (N)
        !           215: *>          The row scale factors for A.  If EQUED = 'R' or 'B', A is
        !           216: *>          multiplied on the left by diag(R); if EQUED = 'N' or 'C', R
        !           217: *>          is not accessed.  R is an input argument if FACT = 'F';
        !           218: *>          otherwise, R is an output argument.  If FACT = 'F' and
        !           219: *>          EQUED = 'R' or 'B', each element of R must be positive.
        !           220: *> \endverbatim
        !           221: *>
        !           222: *> \param[in,out] C
        !           223: *> \verbatim
        !           224: *>          C is or output) DOUBLE PRECISION array, dimension (N)
        !           225: *>          The column scale factors for A.  If EQUED = 'C' or 'B', A is
        !           226: *>          multiplied on the right by diag(C); if EQUED = 'N' or 'R', C
        !           227: *>          is not accessed.  C is an input argument if FACT = 'F';
        !           228: *>          otherwise, C is an output argument.  If FACT = 'F' and
        !           229: *>          EQUED = 'C' or 'B', each element of C must be positive.
        !           230: *> \endverbatim
        !           231: *>
        !           232: *> \param[in,out] B
        !           233: *> \verbatim
        !           234: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
        !           235: *>          On entry, the N-by-NRHS right hand side matrix B.
        !           236: *>          On exit,
        !           237: *>          if EQUED = 'N', B is not modified;
        !           238: *>          if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by
        !           239: *>          diag(R)*B;
        !           240: *>          if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is
        !           241: *>          overwritten by diag(C)*B.
        !           242: *> \endverbatim
        !           243: *>
        !           244: *> \param[in] LDB
        !           245: *> \verbatim
        !           246: *>          LDB is INTEGER
        !           247: *>          The leading dimension of the array B.  LDB >= max(1,N).
        !           248: *> \endverbatim
        !           249: *>
        !           250: *> \param[out] X
        !           251: *> \verbatim
        !           252: *>          X is COMPLEX*16 array, dimension (LDX,NRHS)
        !           253: *>          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X
        !           254: *>          to the original system of equations.  Note that A and B are
        !           255: *>          modified on exit if EQUED .ne. 'N', and the solution to the
        !           256: *>          equilibrated system is inv(diag(C))*X if TRANS = 'N' and
        !           257: *>          EQUED = 'C' or 'B', or inv(diag(R))*X if TRANS = 'T' or 'C'
        !           258: *>          and EQUED = 'R' or 'B'.
        !           259: *> \endverbatim
        !           260: *>
        !           261: *> \param[in] LDX
        !           262: *> \verbatim
        !           263: *>          LDX is INTEGER
        !           264: *>          The leading dimension of the array X.  LDX >= max(1,N).
        !           265: *> \endverbatim
        !           266: *>
        !           267: *> \param[out] RCOND
        !           268: *> \verbatim
        !           269: *>          RCOND is DOUBLE PRECISION
        !           270: *>          The estimate of the reciprocal condition number of the matrix
        !           271: *>          A after equilibration (if done).  If RCOND is less than the
        !           272: *>          machine precision (in particular, if RCOND = 0), the matrix
        !           273: *>          is singular to working precision.  This condition is
        !           274: *>          indicated by a return code of INFO > 0.
        !           275: *> \endverbatim
        !           276: *>
        !           277: *> \param[out] FERR
        !           278: *> \verbatim
        !           279: *>          FERR is DOUBLE PRECISION array, dimension (NRHS)
        !           280: *>          The estimated forward error bound for each solution vector
        !           281: *>          X(j) (the j-th column of the solution matrix X).
        !           282: *>          If XTRUE is the true solution corresponding to X(j), FERR(j)
        !           283: *>          is an estimated upper bound for the magnitude of the largest
        !           284: *>          element in (X(j) - XTRUE) divided by the magnitude of the
        !           285: *>          largest element in X(j).  The estimate is as reliable as
        !           286: *>          the estimate for RCOND, and is almost always a slight
        !           287: *>          overestimate of the true error.
        !           288: *> \endverbatim
        !           289: *>
        !           290: *> \param[out] BERR
        !           291: *> \verbatim
        !           292: *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
        !           293: *>          The componentwise relative backward error of each solution
        !           294: *>          vector X(j) (i.e., the smallest relative change in
        !           295: *>          any element of A or B that makes X(j) an exact solution).
        !           296: *> \endverbatim
        !           297: *>
        !           298: *> \param[out] WORK
        !           299: *> \verbatim
        !           300: *>          WORK is COMPLEX*16 array, dimension (2*N)
        !           301: *> \endverbatim
        !           302: *>
        !           303: *> \param[out] RWORK
        !           304: *> \verbatim
        !           305: *>          RWORK is DOUBLE PRECISION array, dimension (2*N)
        !           306: *>          On exit, RWORK(1) contains the reciprocal pivot growth
        !           307: *>          factor norm(A)/norm(U). The "max absolute element" norm is
        !           308: *>          used. If RWORK(1) is much less than 1, then the stability
        !           309: *>          of the LU factorization of the (equilibrated) matrix A
        !           310: *>          could be poor. This also means that the solution X, condition
        !           311: *>          estimator RCOND, and forward error bound FERR could be
        !           312: *>          unreliable. If factorization fails with 0<INFO<=N, then
        !           313: *>          RWORK(1) contains the reciprocal pivot growth factor for the
        !           314: *>          leading INFO columns of A.
        !           315: *> \endverbatim
        !           316: *>
        !           317: *> \param[out] INFO
        !           318: *> \verbatim
        !           319: *>          INFO is INTEGER
        !           320: *>          = 0:  successful exit
        !           321: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
        !           322: *>          > 0:  if INFO = i, and i is
        !           323: *>                <= N:  U(i,i) is exactly zero.  The factorization has
        !           324: *>                       been completed, but the factor U is exactly
        !           325: *>                       singular, so the solution and error bounds
        !           326: *>                       could not be computed. RCOND = 0 is returned.
        !           327: *>                = N+1: U is nonsingular, but RCOND is less than machine
        !           328: *>                       precision, meaning that the matrix is singular
        !           329: *>                       to working precision.  Nevertheless, the
        !           330: *>                       solution and error bounds are computed because
        !           331: *>                       there are a number of situations where the
        !           332: *>                       computed solution can be more accurate than the
        !           333: *>                       value of RCOND would suggest.
        !           334: *> \endverbatim
        !           335: *
        !           336: *  Authors:
        !           337: *  ========
        !           338: *
        !           339: *> \author Univ. of Tennessee 
        !           340: *> \author Univ. of California Berkeley 
        !           341: *> \author Univ. of Colorado Denver 
        !           342: *> \author NAG Ltd. 
        !           343: *
        !           344: *> \date November 2011
        !           345: *
        !           346: *> \ingroup complex16GEsolve
        !           347: *
        !           348: *  =====================================================================
1.1       bertrand  349:       SUBROUTINE ZGESVX( FACT, TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV,
                    350:      $                   EQUED, R, C, B, LDB, X, LDX, RCOND, FERR, BERR,
                    351:      $                   WORK, RWORK, INFO )
                    352: *
1.8     ! bertrand  353: *  -- LAPACK driver routine (version 3.4.0) --
1.1       bertrand  354: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    355: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.8     ! bertrand  356: *     November 2011
1.1       bertrand  357: *
                    358: *     .. Scalar Arguments ..
                    359:       CHARACTER          EQUED, FACT, TRANS
                    360:       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS
                    361:       DOUBLE PRECISION   RCOND
                    362: *     ..
                    363: *     .. Array Arguments ..
                    364:       INTEGER            IPIV( * )
                    365:       DOUBLE PRECISION   BERR( * ), C( * ), FERR( * ), R( * ),
                    366:      $                   RWORK( * )
                    367:       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
                    368:      $                   WORK( * ), X( LDX, * )
                    369: *     ..
                    370: *
                    371: *  =====================================================================
                    372: *
                    373: *     .. Parameters ..
                    374:       DOUBLE PRECISION   ZERO, ONE
                    375:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    376: *     ..
                    377: *     .. Local Scalars ..
                    378:       LOGICAL            COLEQU, EQUIL, NOFACT, NOTRAN, ROWEQU
                    379:       CHARACTER          NORM
                    380:       INTEGER            I, INFEQU, J
                    381:       DOUBLE PRECISION   AMAX, ANORM, BIGNUM, COLCND, RCMAX, RCMIN,
                    382:      $                   ROWCND, RPVGRW, SMLNUM
                    383: *     ..
                    384: *     .. External Functions ..
                    385:       LOGICAL            LSAME
                    386:       DOUBLE PRECISION   DLAMCH, ZLANGE, ZLANTR
                    387:       EXTERNAL           LSAME, DLAMCH, ZLANGE, ZLANTR
                    388: *     ..
                    389: *     .. External Subroutines ..
                    390:       EXTERNAL           XERBLA, ZGECON, ZGEEQU, ZGERFS, ZGETRF, ZGETRS,
                    391:      $                   ZLACPY, ZLAQGE
                    392: *     ..
                    393: *     .. Intrinsic Functions ..
                    394:       INTRINSIC          MAX, MIN
                    395: *     ..
                    396: *     .. Executable Statements ..
                    397: *
                    398:       INFO = 0
                    399:       NOFACT = LSAME( FACT, 'N' )
                    400:       EQUIL = LSAME( FACT, 'E' )
                    401:       NOTRAN = LSAME( TRANS, 'N' )
                    402:       IF( NOFACT .OR. EQUIL ) THEN
                    403:          EQUED = 'N'
                    404:          ROWEQU = .FALSE.
                    405:          COLEQU = .FALSE.
                    406:       ELSE
                    407:          ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
                    408:          COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
                    409:          SMLNUM = DLAMCH( 'Safe minimum' )
                    410:          BIGNUM = ONE / SMLNUM
                    411:       END IF
                    412: *
                    413: *     Test the input parameters.
                    414: *
                    415:       IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.LSAME( FACT, 'F' ) )
                    416:      $     THEN
                    417:          INFO = -1
                    418:       ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
                    419:      $         LSAME( TRANS, 'C' ) ) THEN
                    420:          INFO = -2
                    421:       ELSE IF( N.LT.0 ) THEN
                    422:          INFO = -3
                    423:       ELSE IF( NRHS.LT.0 ) THEN
                    424:          INFO = -4
                    425:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    426:          INFO = -6
                    427:       ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
                    428:          INFO = -8
                    429:       ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
                    430:      $         ( ROWEQU .OR. COLEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
                    431:          INFO = -10
                    432:       ELSE
                    433:          IF( ROWEQU ) THEN
                    434:             RCMIN = BIGNUM
                    435:             RCMAX = ZERO
                    436:             DO 10 J = 1, N
                    437:                RCMIN = MIN( RCMIN, R( J ) )
                    438:                RCMAX = MAX( RCMAX, R( J ) )
                    439:    10       CONTINUE
                    440:             IF( RCMIN.LE.ZERO ) THEN
                    441:                INFO = -11
                    442:             ELSE IF( N.GT.0 ) THEN
                    443:                ROWCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
                    444:             ELSE
                    445:                ROWCND = ONE
                    446:             END IF
                    447:          END IF
                    448:          IF( COLEQU .AND. INFO.EQ.0 ) THEN
                    449:             RCMIN = BIGNUM
                    450:             RCMAX = ZERO
                    451:             DO 20 J = 1, N
                    452:                RCMIN = MIN( RCMIN, C( J ) )
                    453:                RCMAX = MAX( RCMAX, C( J ) )
                    454:    20       CONTINUE
                    455:             IF( RCMIN.LE.ZERO ) THEN
                    456:                INFO = -12
                    457:             ELSE IF( N.GT.0 ) THEN
                    458:                COLCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
                    459:             ELSE
                    460:                COLCND = ONE
                    461:             END IF
                    462:          END IF
                    463:          IF( INFO.EQ.0 ) THEN
                    464:             IF( LDB.LT.MAX( 1, N ) ) THEN
                    465:                INFO = -14
                    466:             ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
                    467:                INFO = -16
                    468:             END IF
                    469:          END IF
                    470:       END IF
                    471: *
                    472:       IF( INFO.NE.0 ) THEN
                    473:          CALL XERBLA( 'ZGESVX', -INFO )
                    474:          RETURN
                    475:       END IF
                    476: *
                    477:       IF( EQUIL ) THEN
                    478: *
                    479: *        Compute row and column scalings to equilibrate the matrix A.
                    480: *
                    481:          CALL ZGEEQU( N, N, A, LDA, R, C, ROWCND, COLCND, AMAX, INFEQU )
                    482:          IF( INFEQU.EQ.0 ) THEN
                    483: *
                    484: *           Equilibrate the matrix.
                    485: *
                    486:             CALL ZLAQGE( N, N, A, LDA, R, C, ROWCND, COLCND, AMAX,
                    487:      $                   EQUED )
                    488:             ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
                    489:             COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
                    490:          END IF
                    491:       END IF
                    492: *
                    493: *     Scale the right hand side.
                    494: *
                    495:       IF( NOTRAN ) THEN
                    496:          IF( ROWEQU ) THEN
                    497:             DO 40 J = 1, NRHS
                    498:                DO 30 I = 1, N
                    499:                   B( I, J ) = R( I )*B( I, J )
                    500:    30          CONTINUE
                    501:    40       CONTINUE
                    502:          END IF
                    503:       ELSE IF( COLEQU ) THEN
                    504:          DO 60 J = 1, NRHS
                    505:             DO 50 I = 1, N
                    506:                B( I, J ) = C( I )*B( I, J )
                    507:    50       CONTINUE
                    508:    60    CONTINUE
                    509:       END IF
                    510: *
                    511:       IF( NOFACT .OR. EQUIL ) THEN
                    512: *
                    513: *        Compute the LU factorization of A.
                    514: *
                    515:          CALL ZLACPY( 'Full', N, N, A, LDA, AF, LDAF )
                    516:          CALL ZGETRF( N, N, AF, LDAF, IPIV, INFO )
                    517: *
                    518: *        Return if INFO is non-zero.
                    519: *
                    520:          IF( INFO.GT.0 ) THEN
                    521: *
                    522: *           Compute the reciprocal pivot growth factor of the
                    523: *           leading rank-deficient INFO columns of A.
                    524: *
                    525:             RPVGRW = ZLANTR( 'M', 'U', 'N', INFO, INFO, AF, LDAF,
                    526:      $               RWORK )
                    527:             IF( RPVGRW.EQ.ZERO ) THEN
                    528:                RPVGRW = ONE
                    529:             ELSE
                    530:                RPVGRW = ZLANGE( 'M', N, INFO, A, LDA, RWORK ) /
                    531:      $                  RPVGRW
                    532:             END IF
                    533:             RWORK( 1 ) = RPVGRW
                    534:             RCOND = ZERO
                    535:             RETURN
                    536:          END IF
                    537:       END IF
                    538: *
                    539: *     Compute the norm of the matrix A and the
                    540: *     reciprocal pivot growth factor RPVGRW.
                    541: *
                    542:       IF( NOTRAN ) THEN
                    543:          NORM = '1'
                    544:       ELSE
                    545:          NORM = 'I'
                    546:       END IF
                    547:       ANORM = ZLANGE( NORM, N, N, A, LDA, RWORK )
                    548:       RPVGRW = ZLANTR( 'M', 'U', 'N', N, N, AF, LDAF, RWORK )
                    549:       IF( RPVGRW.EQ.ZERO ) THEN
                    550:          RPVGRW = ONE
                    551:       ELSE
                    552:          RPVGRW = ZLANGE( 'M', N, N, A, LDA, RWORK ) / RPVGRW
                    553:       END IF
                    554: *
                    555: *     Compute the reciprocal of the condition number of A.
                    556: *
                    557:       CALL ZGECON( NORM, N, AF, LDAF, ANORM, RCOND, WORK, RWORK, INFO )
                    558: *
                    559: *     Compute the solution matrix X.
                    560: *
                    561:       CALL ZLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
                    562:       CALL ZGETRS( TRANS, N, NRHS, AF, LDAF, IPIV, X, LDX, INFO )
                    563: *
                    564: *     Use iterative refinement to improve the computed solution and
                    565: *     compute error bounds and backward error estimates for it.
                    566: *
                    567:       CALL ZGERFS( TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB, X,
                    568:      $             LDX, FERR, BERR, WORK, RWORK, INFO )
                    569: *
                    570: *     Transform the solution matrix X to a solution of the original
                    571: *     system.
                    572: *
                    573:       IF( NOTRAN ) THEN
                    574:          IF( COLEQU ) THEN
                    575:             DO 80 J = 1, NRHS
                    576:                DO 70 I = 1, N
                    577:                   X( I, J ) = C( I )*X( I, J )
                    578:    70          CONTINUE
                    579:    80       CONTINUE
                    580:             DO 90 J = 1, NRHS
                    581:                FERR( J ) = FERR( J ) / COLCND
                    582:    90       CONTINUE
                    583:          END IF
                    584:       ELSE IF( ROWEQU ) THEN
                    585:          DO 110 J = 1, NRHS
                    586:             DO 100 I = 1, N
                    587:                X( I, J ) = R( I )*X( I, J )
                    588:   100       CONTINUE
                    589:   110    CONTINUE
                    590:          DO 120 J = 1, NRHS
                    591:             FERR( J ) = FERR( J ) / ROWCND
                    592:   120    CONTINUE
                    593:       END IF
                    594: *
                    595: *     Set INFO = N+1 if the matrix is singular to working precision.
                    596: *
                    597:       IF( RCOND.LT.DLAMCH( 'Epsilon' ) )
                    598:      $   INFO = N + 1
                    599: *
                    600:       RWORK( 1 ) = RPVGRW
                    601:       RETURN
                    602: *
                    603: *     End of ZGESVX
                    604: *
                    605:       END

CVSweb interface <joel.bertrand@systella.fr>