Annotation of rpl/lapack/lapack/zgesvx.f, revision 1.7

1.1       bertrand    1:       SUBROUTINE ZGESVX( FACT, TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV,
                      2:      $                   EQUED, R, C, B, LDB, X, LDX, RCOND, FERR, BERR,
                      3:      $                   WORK, RWORK, INFO )
                      4: *
                      5: *  -- LAPACK driver routine (version 3.2) --
                      6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      8: *     November 2006
                      9: *
                     10: *     .. Scalar Arguments ..
                     11:       CHARACTER          EQUED, FACT, TRANS
                     12:       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS
                     13:       DOUBLE PRECISION   RCOND
                     14: *     ..
                     15: *     .. Array Arguments ..
                     16:       INTEGER            IPIV( * )
                     17:       DOUBLE PRECISION   BERR( * ), C( * ), FERR( * ), R( * ),
                     18:      $                   RWORK( * )
                     19:       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
                     20:      $                   WORK( * ), X( LDX, * )
                     21: *     ..
                     22: *
                     23: *  Purpose
                     24: *  =======
                     25: *
                     26: *  ZGESVX uses the LU factorization to compute the solution to a complex
                     27: *  system of linear equations
                     28: *     A * X = B,
                     29: *  where A is an N-by-N matrix and X and B are N-by-NRHS matrices.
                     30: *
                     31: *  Error bounds on the solution and a condition estimate are also
                     32: *  provided.
                     33: *
                     34: *  Description
                     35: *  ===========
                     36: *
                     37: *  The following steps are performed:
                     38: *
                     39: *  1. If FACT = 'E', real scaling factors are computed to equilibrate
                     40: *     the system:
                     41: *        TRANS = 'N':  diag(R)*A*diag(C)     *inv(diag(C))*X = diag(R)*B
                     42: *        TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B
                     43: *        TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B
                     44: *     Whether or not the system will be equilibrated depends on the
                     45: *     scaling of the matrix A, but if equilibration is used, A is
                     46: *     overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N')
                     47: *     or diag(C)*B (if TRANS = 'T' or 'C').
                     48: *
                     49: *  2. If FACT = 'N' or 'E', the LU decomposition is used to factor the
                     50: *     matrix A (after equilibration if FACT = 'E') as
                     51: *        A = P * L * U,
                     52: *     where P is a permutation matrix, L is a unit lower triangular
                     53: *     matrix, and U is upper triangular.
                     54: *
                     55: *  3. If some U(i,i)=0, so that U is exactly singular, then the routine
                     56: *     returns with INFO = i. Otherwise, the factored form of A is used
                     57: *     to estimate the condition number of the matrix A.  If the
                     58: *     reciprocal of the condition number is less than machine precision,
                     59: *     INFO = N+1 is returned as a warning, but the routine still goes on
                     60: *     to solve for X and compute error bounds as described below.
                     61: *
                     62: *  4. The system of equations is solved for X using the factored form
                     63: *     of A.
                     64: *
                     65: *  5. Iterative refinement is applied to improve the computed solution
                     66: *     matrix and calculate error bounds and backward error estimates
                     67: *     for it.
                     68: *
                     69: *  6. If equilibration was used, the matrix X is premultiplied by
                     70: *     diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so
                     71: *     that it solves the original system before equilibration.
                     72: *
                     73: *  Arguments
                     74: *  =========
                     75: *
                     76: *  FACT    (input) CHARACTER*1
                     77: *          Specifies whether or not the factored form of the matrix A is
                     78: *          supplied on entry, and if not, whether the matrix A should be
                     79: *          equilibrated before it is factored.
                     80: *          = 'F':  On entry, AF and IPIV contain the factored form of A.
                     81: *                  If EQUED is not 'N', the matrix A has been
                     82: *                  equilibrated with scaling factors given by R and C.
                     83: *                  A, AF, and IPIV are not modified.
                     84: *          = 'N':  The matrix A will be copied to AF and factored.
                     85: *          = 'E':  The matrix A will be equilibrated if necessary, then
                     86: *                  copied to AF and factored.
                     87: *
                     88: *  TRANS   (input) CHARACTER*1
                     89: *          Specifies the form of the system of equations:
                     90: *          = 'N':  A * X = B     (No transpose)
                     91: *          = 'T':  A**T * X = B  (Transpose)
                     92: *          = 'C':  A**H * X = B  (Conjugate transpose)
                     93: *
                     94: *  N       (input) INTEGER
                     95: *          The number of linear equations, i.e., the order of the
                     96: *          matrix A.  N >= 0.
                     97: *
                     98: *  NRHS    (input) INTEGER
                     99: *          The number of right hand sides, i.e., the number of columns
                    100: *          of the matrices B and X.  NRHS >= 0.
                    101: *
                    102: *  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
                    103: *          On entry, the N-by-N matrix A.  If FACT = 'F' and EQUED is
                    104: *          not 'N', then A must have been equilibrated by the scaling
                    105: *          factors in R and/or C.  A is not modified if FACT = 'F' or
                    106: *          'N', or if FACT = 'E' and EQUED = 'N' on exit.
                    107: *
                    108: *          On exit, if EQUED .ne. 'N', A is scaled as follows:
                    109: *          EQUED = 'R':  A := diag(R) * A
                    110: *          EQUED = 'C':  A := A * diag(C)
                    111: *          EQUED = 'B':  A := diag(R) * A * diag(C).
                    112: *
                    113: *  LDA     (input) INTEGER
                    114: *          The leading dimension of the array A.  LDA >= max(1,N).
                    115: *
                    116: *  AF      (input or output) COMPLEX*16 array, dimension (LDAF,N)
                    117: *          If FACT = 'F', then AF is an input argument and on entry
                    118: *          contains the factors L and U from the factorization
                    119: *          A = P*L*U as computed by ZGETRF.  If EQUED .ne. 'N', then
                    120: *          AF is the factored form of the equilibrated matrix A.
                    121: *
                    122: *          If FACT = 'N', then AF is an output argument and on exit
                    123: *          returns the factors L and U from the factorization A = P*L*U
                    124: *          of the original matrix A.
                    125: *
                    126: *          If FACT = 'E', then AF is an output argument and on exit
                    127: *          returns the factors L and U from the factorization A = P*L*U
                    128: *          of the equilibrated matrix A (see the description of A for
                    129: *          the form of the equilibrated matrix).
                    130: *
                    131: *  LDAF    (input) INTEGER
                    132: *          The leading dimension of the array AF.  LDAF >= max(1,N).
                    133: *
                    134: *  IPIV    (input or output) INTEGER array, dimension (N)
                    135: *          If FACT = 'F', then IPIV is an input argument and on entry
                    136: *          contains the pivot indices from the factorization A = P*L*U
                    137: *          as computed by ZGETRF; row i of the matrix was interchanged
                    138: *          with row IPIV(i).
                    139: *
                    140: *          If FACT = 'N', then IPIV is an output argument and on exit
                    141: *          contains the pivot indices from the factorization A = P*L*U
                    142: *          of the original matrix A.
                    143: *
                    144: *          If FACT = 'E', then IPIV is an output argument and on exit
                    145: *          contains the pivot indices from the factorization A = P*L*U
                    146: *          of the equilibrated matrix A.
                    147: *
                    148: *  EQUED   (input or output) CHARACTER*1
                    149: *          Specifies the form of equilibration that was done.
                    150: *          = 'N':  No equilibration (always true if FACT = 'N').
                    151: *          = 'R':  Row equilibration, i.e., A has been premultiplied by
                    152: *                  diag(R).
                    153: *          = 'C':  Column equilibration, i.e., A has been postmultiplied
                    154: *                  by diag(C).
                    155: *          = 'B':  Both row and column equilibration, i.e., A has been
                    156: *                  replaced by diag(R) * A * diag(C).
                    157: *          EQUED is an input argument if FACT = 'F'; otherwise, it is an
                    158: *          output argument.
                    159: *
                    160: *  R       (input or output) DOUBLE PRECISION array, dimension (N)
                    161: *          The row scale factors for A.  If EQUED = 'R' or 'B', A is
                    162: *          multiplied on the left by diag(R); if EQUED = 'N' or 'C', R
                    163: *          is not accessed.  R is an input argument if FACT = 'F';
                    164: *          otherwise, R is an output argument.  If FACT = 'F' and
                    165: *          EQUED = 'R' or 'B', each element of R must be positive.
                    166: *
                    167: *  C       (input or output) DOUBLE PRECISION array, dimension (N)
                    168: *          The column scale factors for A.  If EQUED = 'C' or 'B', A is
                    169: *          multiplied on the right by diag(C); if EQUED = 'N' or 'R', C
                    170: *          is not accessed.  C is an input argument if FACT = 'F';
                    171: *          otherwise, C is an output argument.  If FACT = 'F' and
                    172: *          EQUED = 'C' or 'B', each element of C must be positive.
                    173: *
                    174: *  B       (input/output) COMPLEX*16 array, dimension (LDB,NRHS)
                    175: *          On entry, the N-by-NRHS right hand side matrix B.
                    176: *          On exit,
                    177: *          if EQUED = 'N', B is not modified;
                    178: *          if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by
                    179: *          diag(R)*B;
                    180: *          if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is
                    181: *          overwritten by diag(C)*B.
                    182: *
                    183: *  LDB     (input) INTEGER
                    184: *          The leading dimension of the array B.  LDB >= max(1,N).
                    185: *
                    186: *  X       (output) COMPLEX*16 array, dimension (LDX,NRHS)
                    187: *          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X
                    188: *          to the original system of equations.  Note that A and B are
                    189: *          modified on exit if EQUED .ne. 'N', and the solution to the
                    190: *          equilibrated system is inv(diag(C))*X if TRANS = 'N' and
                    191: *          EQUED = 'C' or 'B', or inv(diag(R))*X if TRANS = 'T' or 'C'
                    192: *          and EQUED = 'R' or 'B'.
                    193: *
                    194: *  LDX     (input) INTEGER
                    195: *          The leading dimension of the array X.  LDX >= max(1,N).
                    196: *
                    197: *  RCOND   (output) DOUBLE PRECISION
                    198: *          The estimate of the reciprocal condition number of the matrix
                    199: *          A after equilibration (if done).  If RCOND is less than the
                    200: *          machine precision (in particular, if RCOND = 0), the matrix
                    201: *          is singular to working precision.  This condition is
                    202: *          indicated by a return code of INFO > 0.
                    203: *
                    204: *  FERR    (output) DOUBLE PRECISION array, dimension (NRHS)
                    205: *          The estimated forward error bound for each solution vector
                    206: *          X(j) (the j-th column of the solution matrix X).
                    207: *          If XTRUE is the true solution corresponding to X(j), FERR(j)
                    208: *          is an estimated upper bound for the magnitude of the largest
                    209: *          element in (X(j) - XTRUE) divided by the magnitude of the
                    210: *          largest element in X(j).  The estimate is as reliable as
                    211: *          the estimate for RCOND, and is almost always a slight
                    212: *          overestimate of the true error.
                    213: *
                    214: *  BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
                    215: *          The componentwise relative backward error of each solution
                    216: *          vector X(j) (i.e., the smallest relative change in
                    217: *          any element of A or B that makes X(j) an exact solution).
                    218: *
                    219: *  WORK    (workspace) COMPLEX*16 array, dimension (2*N)
                    220: *
                    221: *  RWORK   (workspace/output) DOUBLE PRECISION array, dimension (2*N)
                    222: *          On exit, RWORK(1) contains the reciprocal pivot growth
                    223: *          factor norm(A)/norm(U). The "max absolute element" norm is
                    224: *          used. If RWORK(1) is much less than 1, then the stability
                    225: *          of the LU factorization of the (equilibrated) matrix A
                    226: *          could be poor. This also means that the solution X, condition
                    227: *          estimator RCOND, and forward error bound FERR could be
                    228: *          unreliable. If factorization fails with 0<INFO<=N, then
                    229: *          RWORK(1) contains the reciprocal pivot growth factor for the
                    230: *          leading INFO columns of A.
                    231: *
                    232: *  INFO    (output) INTEGER
                    233: *          = 0:  successful exit
                    234: *          < 0:  if INFO = -i, the i-th argument had an illegal value
                    235: *          > 0:  if INFO = i, and i is
                    236: *                <= N:  U(i,i) is exactly zero.  The factorization has
                    237: *                       been completed, but the factor U is exactly
                    238: *                       singular, so the solution and error bounds
                    239: *                       could not be computed. RCOND = 0 is returned.
                    240: *                = N+1: U is nonsingular, but RCOND is less than machine
                    241: *                       precision, meaning that the matrix is singular
                    242: *                       to working precision.  Nevertheless, the
                    243: *                       solution and error bounds are computed because
                    244: *                       there are a number of situations where the
                    245: *                       computed solution can be more accurate than the
                    246: *                       value of RCOND would suggest.
                    247: *
                    248: *  =====================================================================
                    249: *
                    250: *     .. Parameters ..
                    251:       DOUBLE PRECISION   ZERO, ONE
                    252:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    253: *     ..
                    254: *     .. Local Scalars ..
                    255:       LOGICAL            COLEQU, EQUIL, NOFACT, NOTRAN, ROWEQU
                    256:       CHARACTER          NORM
                    257:       INTEGER            I, INFEQU, J
                    258:       DOUBLE PRECISION   AMAX, ANORM, BIGNUM, COLCND, RCMAX, RCMIN,
                    259:      $                   ROWCND, RPVGRW, SMLNUM
                    260: *     ..
                    261: *     .. External Functions ..
                    262:       LOGICAL            LSAME
                    263:       DOUBLE PRECISION   DLAMCH, ZLANGE, ZLANTR
                    264:       EXTERNAL           LSAME, DLAMCH, ZLANGE, ZLANTR
                    265: *     ..
                    266: *     .. External Subroutines ..
                    267:       EXTERNAL           XERBLA, ZGECON, ZGEEQU, ZGERFS, ZGETRF, ZGETRS,
                    268:      $                   ZLACPY, ZLAQGE
                    269: *     ..
                    270: *     .. Intrinsic Functions ..
                    271:       INTRINSIC          MAX, MIN
                    272: *     ..
                    273: *     .. Executable Statements ..
                    274: *
                    275:       INFO = 0
                    276:       NOFACT = LSAME( FACT, 'N' )
                    277:       EQUIL = LSAME( FACT, 'E' )
                    278:       NOTRAN = LSAME( TRANS, 'N' )
                    279:       IF( NOFACT .OR. EQUIL ) THEN
                    280:          EQUED = 'N'
                    281:          ROWEQU = .FALSE.
                    282:          COLEQU = .FALSE.
                    283:       ELSE
                    284:          ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
                    285:          COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
                    286:          SMLNUM = DLAMCH( 'Safe minimum' )
                    287:          BIGNUM = ONE / SMLNUM
                    288:       END IF
                    289: *
                    290: *     Test the input parameters.
                    291: *
                    292:       IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.LSAME( FACT, 'F' ) )
                    293:      $     THEN
                    294:          INFO = -1
                    295:       ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
                    296:      $         LSAME( TRANS, 'C' ) ) THEN
                    297:          INFO = -2
                    298:       ELSE IF( N.LT.0 ) THEN
                    299:          INFO = -3
                    300:       ELSE IF( NRHS.LT.0 ) THEN
                    301:          INFO = -4
                    302:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    303:          INFO = -6
                    304:       ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
                    305:          INFO = -8
                    306:       ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
                    307:      $         ( ROWEQU .OR. COLEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
                    308:          INFO = -10
                    309:       ELSE
                    310:          IF( ROWEQU ) THEN
                    311:             RCMIN = BIGNUM
                    312:             RCMAX = ZERO
                    313:             DO 10 J = 1, N
                    314:                RCMIN = MIN( RCMIN, R( J ) )
                    315:                RCMAX = MAX( RCMAX, R( J ) )
                    316:    10       CONTINUE
                    317:             IF( RCMIN.LE.ZERO ) THEN
                    318:                INFO = -11
                    319:             ELSE IF( N.GT.0 ) THEN
                    320:                ROWCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
                    321:             ELSE
                    322:                ROWCND = ONE
                    323:             END IF
                    324:          END IF
                    325:          IF( COLEQU .AND. INFO.EQ.0 ) THEN
                    326:             RCMIN = BIGNUM
                    327:             RCMAX = ZERO
                    328:             DO 20 J = 1, N
                    329:                RCMIN = MIN( RCMIN, C( J ) )
                    330:                RCMAX = MAX( RCMAX, C( J ) )
                    331:    20       CONTINUE
                    332:             IF( RCMIN.LE.ZERO ) THEN
                    333:                INFO = -12
                    334:             ELSE IF( N.GT.0 ) THEN
                    335:                COLCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
                    336:             ELSE
                    337:                COLCND = ONE
                    338:             END IF
                    339:          END IF
                    340:          IF( INFO.EQ.0 ) THEN
                    341:             IF( LDB.LT.MAX( 1, N ) ) THEN
                    342:                INFO = -14
                    343:             ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
                    344:                INFO = -16
                    345:             END IF
                    346:          END IF
                    347:       END IF
                    348: *
                    349:       IF( INFO.NE.0 ) THEN
                    350:          CALL XERBLA( 'ZGESVX', -INFO )
                    351:          RETURN
                    352:       END IF
                    353: *
                    354:       IF( EQUIL ) THEN
                    355: *
                    356: *        Compute row and column scalings to equilibrate the matrix A.
                    357: *
                    358:          CALL ZGEEQU( N, N, A, LDA, R, C, ROWCND, COLCND, AMAX, INFEQU )
                    359:          IF( INFEQU.EQ.0 ) THEN
                    360: *
                    361: *           Equilibrate the matrix.
                    362: *
                    363:             CALL ZLAQGE( N, N, A, LDA, R, C, ROWCND, COLCND, AMAX,
                    364:      $                   EQUED )
                    365:             ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
                    366:             COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
                    367:          END IF
                    368:       END IF
                    369: *
                    370: *     Scale the right hand side.
                    371: *
                    372:       IF( NOTRAN ) THEN
                    373:          IF( ROWEQU ) THEN
                    374:             DO 40 J = 1, NRHS
                    375:                DO 30 I = 1, N
                    376:                   B( I, J ) = R( I )*B( I, J )
                    377:    30          CONTINUE
                    378:    40       CONTINUE
                    379:          END IF
                    380:       ELSE IF( COLEQU ) THEN
                    381:          DO 60 J = 1, NRHS
                    382:             DO 50 I = 1, N
                    383:                B( I, J ) = C( I )*B( I, J )
                    384:    50       CONTINUE
                    385:    60    CONTINUE
                    386:       END IF
                    387: *
                    388:       IF( NOFACT .OR. EQUIL ) THEN
                    389: *
                    390: *        Compute the LU factorization of A.
                    391: *
                    392:          CALL ZLACPY( 'Full', N, N, A, LDA, AF, LDAF )
                    393:          CALL ZGETRF( N, N, AF, LDAF, IPIV, INFO )
                    394: *
                    395: *        Return if INFO is non-zero.
                    396: *
                    397:          IF( INFO.GT.0 ) THEN
                    398: *
                    399: *           Compute the reciprocal pivot growth factor of the
                    400: *           leading rank-deficient INFO columns of A.
                    401: *
                    402:             RPVGRW = ZLANTR( 'M', 'U', 'N', INFO, INFO, AF, LDAF,
                    403:      $               RWORK )
                    404:             IF( RPVGRW.EQ.ZERO ) THEN
                    405:                RPVGRW = ONE
                    406:             ELSE
                    407:                RPVGRW = ZLANGE( 'M', N, INFO, A, LDA, RWORK ) /
                    408:      $                  RPVGRW
                    409:             END IF
                    410:             RWORK( 1 ) = RPVGRW
                    411:             RCOND = ZERO
                    412:             RETURN
                    413:          END IF
                    414:       END IF
                    415: *
                    416: *     Compute the norm of the matrix A and the
                    417: *     reciprocal pivot growth factor RPVGRW.
                    418: *
                    419:       IF( NOTRAN ) THEN
                    420:          NORM = '1'
                    421:       ELSE
                    422:          NORM = 'I'
                    423:       END IF
                    424:       ANORM = ZLANGE( NORM, N, N, A, LDA, RWORK )
                    425:       RPVGRW = ZLANTR( 'M', 'U', 'N', N, N, AF, LDAF, RWORK )
                    426:       IF( RPVGRW.EQ.ZERO ) THEN
                    427:          RPVGRW = ONE
                    428:       ELSE
                    429:          RPVGRW = ZLANGE( 'M', N, N, A, LDA, RWORK ) / RPVGRW
                    430:       END IF
                    431: *
                    432: *     Compute the reciprocal of the condition number of A.
                    433: *
                    434:       CALL ZGECON( NORM, N, AF, LDAF, ANORM, RCOND, WORK, RWORK, INFO )
                    435: *
                    436: *     Compute the solution matrix X.
                    437: *
                    438:       CALL ZLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
                    439:       CALL ZGETRS( TRANS, N, NRHS, AF, LDAF, IPIV, X, LDX, INFO )
                    440: *
                    441: *     Use iterative refinement to improve the computed solution and
                    442: *     compute error bounds and backward error estimates for it.
                    443: *
                    444:       CALL ZGERFS( TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB, X,
                    445:      $             LDX, FERR, BERR, WORK, RWORK, INFO )
                    446: *
                    447: *     Transform the solution matrix X to a solution of the original
                    448: *     system.
                    449: *
                    450:       IF( NOTRAN ) THEN
                    451:          IF( COLEQU ) THEN
                    452:             DO 80 J = 1, NRHS
                    453:                DO 70 I = 1, N
                    454:                   X( I, J ) = C( I )*X( I, J )
                    455:    70          CONTINUE
                    456:    80       CONTINUE
                    457:             DO 90 J = 1, NRHS
                    458:                FERR( J ) = FERR( J ) / COLCND
                    459:    90       CONTINUE
                    460:          END IF
                    461:       ELSE IF( ROWEQU ) THEN
                    462:          DO 110 J = 1, NRHS
                    463:             DO 100 I = 1, N
                    464:                X( I, J ) = R( I )*X( I, J )
                    465:   100       CONTINUE
                    466:   110    CONTINUE
                    467:          DO 120 J = 1, NRHS
                    468:             FERR( J ) = FERR( J ) / ROWCND
                    469:   120    CONTINUE
                    470:       END IF
                    471: *
                    472: *     Set INFO = N+1 if the matrix is singular to working precision.
                    473: *
                    474:       IF( RCOND.LT.DLAMCH( 'Epsilon' ) )
                    475:      $   INFO = N + 1
                    476: *
                    477:       RWORK( 1 ) = RPVGRW
                    478:       RETURN
                    479: *
                    480: *     End of ZGESVX
                    481: *
                    482:       END

CVSweb interface <joel.bertrand@systella.fr>