Annotation of rpl/lapack/lapack/zgesvx.f, revision 1.17

1.8       bertrand    1: *> \brief <b> ZGESVX computes the solution to system of linear equations A * X = B for GE matrices</b>
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.15      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.8       bertrand    7: *
                      8: *> \htmlonly
1.15      bertrand    9: *> Download ZGESVX + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgesvx.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgesvx.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgesvx.f">
1.8       bertrand   15: *> [TXT]</a>
1.15      bertrand   16: *> \endhtmlonly
1.8       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZGESVX( FACT, TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV,
                     22: *                          EQUED, R, C, B, LDB, X, LDX, RCOND, FERR, BERR,
                     23: *                          WORK, RWORK, INFO )
1.15      bertrand   24: *
1.8       bertrand   25: *       .. Scalar Arguments ..
                     26: *       CHARACTER          EQUED, FACT, TRANS
                     27: *       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS
                     28: *       DOUBLE PRECISION   RCOND
                     29: *       ..
                     30: *       .. Array Arguments ..
                     31: *       INTEGER            IPIV( * )
                     32: *       DOUBLE PRECISION   BERR( * ), C( * ), FERR( * ), R( * ),
                     33: *      $                   RWORK( * )
                     34: *       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
                     35: *      $                   WORK( * ), X( LDX, * )
                     36: *       ..
1.15      bertrand   37: *
1.8       bertrand   38: *
                     39: *> \par Purpose:
                     40: *  =============
                     41: *>
                     42: *> \verbatim
                     43: *>
                     44: *> ZGESVX uses the LU factorization to compute the solution to a complex
                     45: *> system of linear equations
                     46: *>    A * X = B,
                     47: *> where A is an N-by-N matrix and X and B are N-by-NRHS matrices.
                     48: *>
                     49: *> Error bounds on the solution and a condition estimate are also
                     50: *> provided.
                     51: *> \endverbatim
                     52: *
                     53: *> \par Description:
                     54: *  =================
                     55: *>
                     56: *> \verbatim
                     57: *>
                     58: *> The following steps are performed:
                     59: *>
                     60: *> 1. If FACT = 'E', real scaling factors are computed to equilibrate
                     61: *>    the system:
                     62: *>       TRANS = 'N':  diag(R)*A*diag(C)     *inv(diag(C))*X = diag(R)*B
                     63: *>       TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B
                     64: *>       TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B
                     65: *>    Whether or not the system will be equilibrated depends on the
                     66: *>    scaling of the matrix A, but if equilibration is used, A is
                     67: *>    overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N')
                     68: *>    or diag(C)*B (if TRANS = 'T' or 'C').
                     69: *>
                     70: *> 2. If FACT = 'N' or 'E', the LU decomposition is used to factor the
                     71: *>    matrix A (after equilibration if FACT = 'E') as
                     72: *>       A = P * L * U,
                     73: *>    where P is a permutation matrix, L is a unit lower triangular
                     74: *>    matrix, and U is upper triangular.
                     75: *>
                     76: *> 3. If some U(i,i)=0, so that U is exactly singular, then the routine
                     77: *>    returns with INFO = i. Otherwise, the factored form of A is used
                     78: *>    to estimate the condition number of the matrix A.  If the
                     79: *>    reciprocal of the condition number is less than machine precision,
                     80: *>    INFO = N+1 is returned as a warning, but the routine still goes on
                     81: *>    to solve for X and compute error bounds as described below.
                     82: *>
                     83: *> 4. The system of equations is solved for X using the factored form
                     84: *>    of A.
                     85: *>
                     86: *> 5. Iterative refinement is applied to improve the computed solution
                     87: *>    matrix and calculate error bounds and backward error estimates
                     88: *>    for it.
                     89: *>
                     90: *> 6. If equilibration was used, the matrix X is premultiplied by
                     91: *>    diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so
                     92: *>    that it solves the original system before equilibration.
                     93: *> \endverbatim
                     94: *
                     95: *  Arguments:
                     96: *  ==========
                     97: *
                     98: *> \param[in] FACT
                     99: *> \verbatim
                    100: *>          FACT is CHARACTER*1
                    101: *>          Specifies whether or not the factored form of the matrix A is
                    102: *>          supplied on entry, and if not, whether the matrix A should be
                    103: *>          equilibrated before it is factored.
                    104: *>          = 'F':  On entry, AF and IPIV contain the factored form of A.
                    105: *>                  If EQUED is not 'N', the matrix A has been
                    106: *>                  equilibrated with scaling factors given by R and C.
                    107: *>                  A, AF, and IPIV are not modified.
                    108: *>          = 'N':  The matrix A will be copied to AF and factored.
                    109: *>          = 'E':  The matrix A will be equilibrated if necessary, then
                    110: *>                  copied to AF and factored.
                    111: *> \endverbatim
                    112: *>
                    113: *> \param[in] TRANS
                    114: *> \verbatim
                    115: *>          TRANS is CHARACTER*1
                    116: *>          Specifies the form of the system of equations:
                    117: *>          = 'N':  A * X = B     (No transpose)
                    118: *>          = 'T':  A**T * X = B  (Transpose)
                    119: *>          = 'C':  A**H * X = B  (Conjugate transpose)
                    120: *> \endverbatim
                    121: *>
                    122: *> \param[in] N
                    123: *> \verbatim
                    124: *>          N is INTEGER
                    125: *>          The number of linear equations, i.e., the order of the
                    126: *>          matrix A.  N >= 0.
                    127: *> \endverbatim
                    128: *>
                    129: *> \param[in] NRHS
                    130: *> \verbatim
                    131: *>          NRHS is INTEGER
                    132: *>          The number of right hand sides, i.e., the number of columns
                    133: *>          of the matrices B and X.  NRHS >= 0.
                    134: *> \endverbatim
                    135: *>
                    136: *> \param[in,out] A
                    137: *> \verbatim
                    138: *>          A is COMPLEX*16 array, dimension (LDA,N)
                    139: *>          On entry, the N-by-N matrix A.  If FACT = 'F' and EQUED is
                    140: *>          not 'N', then A must have been equilibrated by the scaling
                    141: *>          factors in R and/or C.  A is not modified if FACT = 'F' or
                    142: *>          'N', or if FACT = 'E' and EQUED = 'N' on exit.
                    143: *>
                    144: *>          On exit, if EQUED .ne. 'N', A is scaled as follows:
                    145: *>          EQUED = 'R':  A := diag(R) * A
                    146: *>          EQUED = 'C':  A := A * diag(C)
                    147: *>          EQUED = 'B':  A := diag(R) * A * diag(C).
                    148: *> \endverbatim
                    149: *>
                    150: *> \param[in] LDA
                    151: *> \verbatim
                    152: *>          LDA is INTEGER
                    153: *>          The leading dimension of the array A.  LDA >= max(1,N).
                    154: *> \endverbatim
                    155: *>
                    156: *> \param[in,out] AF
                    157: *> \verbatim
1.10      bertrand  158: *>          AF is COMPLEX*16 array, dimension (LDAF,N)
1.8       bertrand  159: *>          If FACT = 'F', then AF is an input argument and on entry
                    160: *>          contains the factors L and U from the factorization
                    161: *>          A = P*L*U as computed by ZGETRF.  If EQUED .ne. 'N', then
                    162: *>          AF is the factored form of the equilibrated matrix A.
                    163: *>
                    164: *>          If FACT = 'N', then AF is an output argument and on exit
                    165: *>          returns the factors L and U from the factorization A = P*L*U
                    166: *>          of the original matrix A.
                    167: *>
                    168: *>          If FACT = 'E', then AF is an output argument and on exit
                    169: *>          returns the factors L and U from the factorization A = P*L*U
                    170: *>          of the equilibrated matrix A (see the description of A for
                    171: *>          the form of the equilibrated matrix).
                    172: *> \endverbatim
                    173: *>
                    174: *> \param[in] LDAF
                    175: *> \verbatim
                    176: *>          LDAF is INTEGER
                    177: *>          The leading dimension of the array AF.  LDAF >= max(1,N).
                    178: *> \endverbatim
                    179: *>
                    180: *> \param[in,out] IPIV
                    181: *> \verbatim
1.10      bertrand  182: *>          IPIV is INTEGER array, dimension (N)
1.8       bertrand  183: *>          If FACT = 'F', then IPIV is an input argument and on entry
                    184: *>          contains the pivot indices from the factorization A = P*L*U
                    185: *>          as computed by ZGETRF; row i of the matrix was interchanged
                    186: *>          with row IPIV(i).
                    187: *>
                    188: *>          If FACT = 'N', then IPIV is an output argument and on exit
                    189: *>          contains the pivot indices from the factorization A = P*L*U
                    190: *>          of the original matrix A.
                    191: *>
                    192: *>          If FACT = 'E', then IPIV is an output argument and on exit
                    193: *>          contains the pivot indices from the factorization A = P*L*U
                    194: *>          of the equilibrated matrix A.
                    195: *> \endverbatim
                    196: *>
                    197: *> \param[in,out] EQUED
                    198: *> \verbatim
1.10      bertrand  199: *>          EQUED is CHARACTER*1
1.8       bertrand  200: *>          Specifies the form of equilibration that was done.
                    201: *>          = 'N':  No equilibration (always true if FACT = 'N').
                    202: *>          = 'R':  Row equilibration, i.e., A has been premultiplied by
                    203: *>                  diag(R).
                    204: *>          = 'C':  Column equilibration, i.e., A has been postmultiplied
                    205: *>                  by diag(C).
                    206: *>          = 'B':  Both row and column equilibration, i.e., A has been
                    207: *>                  replaced by diag(R) * A * diag(C).
                    208: *>          EQUED is an input argument if FACT = 'F'; otherwise, it is an
                    209: *>          output argument.
                    210: *> \endverbatim
                    211: *>
                    212: *> \param[in,out] R
                    213: *> \verbatim
1.10      bertrand  214: *>          R is DOUBLE PRECISION array, dimension (N)
1.8       bertrand  215: *>          The row scale factors for A.  If EQUED = 'R' or 'B', A is
                    216: *>          multiplied on the left by diag(R); if EQUED = 'N' or 'C', R
                    217: *>          is not accessed.  R is an input argument if FACT = 'F';
                    218: *>          otherwise, R is an output argument.  If FACT = 'F' and
                    219: *>          EQUED = 'R' or 'B', each element of R must be positive.
                    220: *> \endverbatim
                    221: *>
                    222: *> \param[in,out] C
                    223: *> \verbatim
1.10      bertrand  224: *>          C is DOUBLE PRECISION array, dimension (N)
1.8       bertrand  225: *>          The column scale factors for A.  If EQUED = 'C' or 'B', A is
                    226: *>          multiplied on the right by diag(C); if EQUED = 'N' or 'R', C
                    227: *>          is not accessed.  C is an input argument if FACT = 'F';
                    228: *>          otherwise, C is an output argument.  If FACT = 'F' and
                    229: *>          EQUED = 'C' or 'B', each element of C must be positive.
                    230: *> \endverbatim
                    231: *>
                    232: *> \param[in,out] B
                    233: *> \verbatim
                    234: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
                    235: *>          On entry, the N-by-NRHS right hand side matrix B.
                    236: *>          On exit,
                    237: *>          if EQUED = 'N', B is not modified;
                    238: *>          if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by
                    239: *>          diag(R)*B;
                    240: *>          if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is
                    241: *>          overwritten by diag(C)*B.
                    242: *> \endverbatim
                    243: *>
                    244: *> \param[in] LDB
                    245: *> \verbatim
                    246: *>          LDB is INTEGER
                    247: *>          The leading dimension of the array B.  LDB >= max(1,N).
                    248: *> \endverbatim
                    249: *>
                    250: *> \param[out] X
                    251: *> \verbatim
                    252: *>          X is COMPLEX*16 array, dimension (LDX,NRHS)
                    253: *>          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X
                    254: *>          to the original system of equations.  Note that A and B are
                    255: *>          modified on exit if EQUED .ne. 'N', and the solution to the
                    256: *>          equilibrated system is inv(diag(C))*X if TRANS = 'N' and
                    257: *>          EQUED = 'C' or 'B', or inv(diag(R))*X if TRANS = 'T' or 'C'
                    258: *>          and EQUED = 'R' or 'B'.
                    259: *> \endverbatim
                    260: *>
                    261: *> \param[in] LDX
                    262: *> \verbatim
                    263: *>          LDX is INTEGER
                    264: *>          The leading dimension of the array X.  LDX >= max(1,N).
                    265: *> \endverbatim
                    266: *>
                    267: *> \param[out] RCOND
                    268: *> \verbatim
                    269: *>          RCOND is DOUBLE PRECISION
                    270: *>          The estimate of the reciprocal condition number of the matrix
                    271: *>          A after equilibration (if done).  If RCOND is less than the
                    272: *>          machine precision (in particular, if RCOND = 0), the matrix
                    273: *>          is singular to working precision.  This condition is
                    274: *>          indicated by a return code of INFO > 0.
                    275: *> \endverbatim
                    276: *>
                    277: *> \param[out] FERR
                    278: *> \verbatim
                    279: *>          FERR is DOUBLE PRECISION array, dimension (NRHS)
                    280: *>          The estimated forward error bound for each solution vector
                    281: *>          X(j) (the j-th column of the solution matrix X).
                    282: *>          If XTRUE is the true solution corresponding to X(j), FERR(j)
                    283: *>          is an estimated upper bound for the magnitude of the largest
                    284: *>          element in (X(j) - XTRUE) divided by the magnitude of the
                    285: *>          largest element in X(j).  The estimate is as reliable as
                    286: *>          the estimate for RCOND, and is almost always a slight
                    287: *>          overestimate of the true error.
                    288: *> \endverbatim
                    289: *>
                    290: *> \param[out] BERR
                    291: *> \verbatim
                    292: *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
                    293: *>          The componentwise relative backward error of each solution
                    294: *>          vector X(j) (i.e., the smallest relative change in
                    295: *>          any element of A or B that makes X(j) an exact solution).
                    296: *> \endverbatim
                    297: *>
                    298: *> \param[out] WORK
                    299: *> \verbatim
                    300: *>          WORK is COMPLEX*16 array, dimension (2*N)
                    301: *> \endverbatim
                    302: *>
                    303: *> \param[out] RWORK
                    304: *> \verbatim
                    305: *>          RWORK is DOUBLE PRECISION array, dimension (2*N)
                    306: *>          On exit, RWORK(1) contains the reciprocal pivot growth
                    307: *>          factor norm(A)/norm(U). The "max absolute element" norm is
                    308: *>          used. If RWORK(1) is much less than 1, then the stability
                    309: *>          of the LU factorization of the (equilibrated) matrix A
                    310: *>          could be poor. This also means that the solution X, condition
                    311: *>          estimator RCOND, and forward error bound FERR could be
                    312: *>          unreliable. If factorization fails with 0<INFO<=N, then
                    313: *>          RWORK(1) contains the reciprocal pivot growth factor for the
                    314: *>          leading INFO columns of A.
                    315: *> \endverbatim
                    316: *>
                    317: *> \param[out] INFO
                    318: *> \verbatim
                    319: *>          INFO is INTEGER
                    320: *>          = 0:  successful exit
                    321: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    322: *>          > 0:  if INFO = i, and i is
                    323: *>                <= N:  U(i,i) is exactly zero.  The factorization has
                    324: *>                       been completed, but the factor U is exactly
                    325: *>                       singular, so the solution and error bounds
                    326: *>                       could not be computed. RCOND = 0 is returned.
                    327: *>                = N+1: U is nonsingular, but RCOND is less than machine
                    328: *>                       precision, meaning that the matrix is singular
                    329: *>                       to working precision.  Nevertheless, the
                    330: *>                       solution and error bounds are computed because
                    331: *>                       there are a number of situations where the
                    332: *>                       computed solution can be more accurate than the
                    333: *>                       value of RCOND would suggest.
                    334: *> \endverbatim
                    335: *
                    336: *  Authors:
                    337: *  ========
                    338: *
1.15      bertrand  339: *> \author Univ. of Tennessee
                    340: *> \author Univ. of California Berkeley
                    341: *> \author Univ. of Colorado Denver
                    342: *> \author NAG Ltd.
1.8       bertrand  343: *
1.10      bertrand  344: *> \date April 2012
1.8       bertrand  345: *
                    346: *> \ingroup complex16GEsolve
                    347: *
                    348: *  =====================================================================
1.1       bertrand  349:       SUBROUTINE ZGESVX( FACT, TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV,
                    350:      $                   EQUED, R, C, B, LDB, X, LDX, RCOND, FERR, BERR,
                    351:      $                   WORK, RWORK, INFO )
                    352: *
1.15      bertrand  353: *  -- LAPACK driver routine (version 3.7.0) --
1.1       bertrand  354: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    355: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.10      bertrand  356: *     April 2012
1.1       bertrand  357: *
                    358: *     .. Scalar Arguments ..
                    359:       CHARACTER          EQUED, FACT, TRANS
                    360:       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS
                    361:       DOUBLE PRECISION   RCOND
                    362: *     ..
                    363: *     .. Array Arguments ..
                    364:       INTEGER            IPIV( * )
                    365:       DOUBLE PRECISION   BERR( * ), C( * ), FERR( * ), R( * ),
                    366:      $                   RWORK( * )
                    367:       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
                    368:      $                   WORK( * ), X( LDX, * )
                    369: *     ..
                    370: *
                    371: *  =====================================================================
                    372: *
                    373: *     .. Parameters ..
                    374:       DOUBLE PRECISION   ZERO, ONE
                    375:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    376: *     ..
                    377: *     .. Local Scalars ..
                    378:       LOGICAL            COLEQU, EQUIL, NOFACT, NOTRAN, ROWEQU
                    379:       CHARACTER          NORM
                    380:       INTEGER            I, INFEQU, J
                    381:       DOUBLE PRECISION   AMAX, ANORM, BIGNUM, COLCND, RCMAX, RCMIN,
                    382:      $                   ROWCND, RPVGRW, SMLNUM
                    383: *     ..
                    384: *     .. External Functions ..
                    385:       LOGICAL            LSAME
                    386:       DOUBLE PRECISION   DLAMCH, ZLANGE, ZLANTR
                    387:       EXTERNAL           LSAME, DLAMCH, ZLANGE, ZLANTR
                    388: *     ..
                    389: *     .. External Subroutines ..
                    390:       EXTERNAL           XERBLA, ZGECON, ZGEEQU, ZGERFS, ZGETRF, ZGETRS,
                    391:      $                   ZLACPY, ZLAQGE
                    392: *     ..
                    393: *     .. Intrinsic Functions ..
                    394:       INTRINSIC          MAX, MIN
                    395: *     ..
                    396: *     .. Executable Statements ..
                    397: *
                    398:       INFO = 0
                    399:       NOFACT = LSAME( FACT, 'N' )
                    400:       EQUIL = LSAME( FACT, 'E' )
                    401:       NOTRAN = LSAME( TRANS, 'N' )
                    402:       IF( NOFACT .OR. EQUIL ) THEN
                    403:          EQUED = 'N'
                    404:          ROWEQU = .FALSE.
                    405:          COLEQU = .FALSE.
                    406:       ELSE
                    407:          ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
                    408:          COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
                    409:          SMLNUM = DLAMCH( 'Safe minimum' )
                    410:          BIGNUM = ONE / SMLNUM
                    411:       END IF
                    412: *
                    413: *     Test the input parameters.
                    414: *
                    415:       IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.LSAME( FACT, 'F' ) )
                    416:      $     THEN
                    417:          INFO = -1
                    418:       ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
                    419:      $         LSAME( TRANS, 'C' ) ) THEN
                    420:          INFO = -2
                    421:       ELSE IF( N.LT.0 ) THEN
                    422:          INFO = -3
                    423:       ELSE IF( NRHS.LT.0 ) THEN
                    424:          INFO = -4
                    425:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    426:          INFO = -6
                    427:       ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
                    428:          INFO = -8
                    429:       ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
                    430:      $         ( ROWEQU .OR. COLEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
                    431:          INFO = -10
                    432:       ELSE
                    433:          IF( ROWEQU ) THEN
                    434:             RCMIN = BIGNUM
                    435:             RCMAX = ZERO
                    436:             DO 10 J = 1, N
                    437:                RCMIN = MIN( RCMIN, R( J ) )
                    438:                RCMAX = MAX( RCMAX, R( J ) )
                    439:    10       CONTINUE
                    440:             IF( RCMIN.LE.ZERO ) THEN
                    441:                INFO = -11
                    442:             ELSE IF( N.GT.0 ) THEN
                    443:                ROWCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
                    444:             ELSE
                    445:                ROWCND = ONE
                    446:             END IF
                    447:          END IF
                    448:          IF( COLEQU .AND. INFO.EQ.0 ) THEN
                    449:             RCMIN = BIGNUM
                    450:             RCMAX = ZERO
                    451:             DO 20 J = 1, N
                    452:                RCMIN = MIN( RCMIN, C( J ) )
                    453:                RCMAX = MAX( RCMAX, C( J ) )
                    454:    20       CONTINUE
                    455:             IF( RCMIN.LE.ZERO ) THEN
                    456:                INFO = -12
                    457:             ELSE IF( N.GT.0 ) THEN
                    458:                COLCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
                    459:             ELSE
                    460:                COLCND = ONE
                    461:             END IF
                    462:          END IF
                    463:          IF( INFO.EQ.0 ) THEN
                    464:             IF( LDB.LT.MAX( 1, N ) ) THEN
                    465:                INFO = -14
                    466:             ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
                    467:                INFO = -16
                    468:             END IF
                    469:          END IF
                    470:       END IF
                    471: *
                    472:       IF( INFO.NE.0 ) THEN
                    473:          CALL XERBLA( 'ZGESVX', -INFO )
                    474:          RETURN
                    475:       END IF
                    476: *
                    477:       IF( EQUIL ) THEN
                    478: *
                    479: *        Compute row and column scalings to equilibrate the matrix A.
                    480: *
                    481:          CALL ZGEEQU( N, N, A, LDA, R, C, ROWCND, COLCND, AMAX, INFEQU )
                    482:          IF( INFEQU.EQ.0 ) THEN
                    483: *
                    484: *           Equilibrate the matrix.
                    485: *
                    486:             CALL ZLAQGE( N, N, A, LDA, R, C, ROWCND, COLCND, AMAX,
                    487:      $                   EQUED )
                    488:             ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
                    489:             COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
                    490:          END IF
                    491:       END IF
                    492: *
                    493: *     Scale the right hand side.
                    494: *
                    495:       IF( NOTRAN ) THEN
                    496:          IF( ROWEQU ) THEN
                    497:             DO 40 J = 1, NRHS
                    498:                DO 30 I = 1, N
                    499:                   B( I, J ) = R( I )*B( I, J )
                    500:    30          CONTINUE
                    501:    40       CONTINUE
                    502:          END IF
                    503:       ELSE IF( COLEQU ) THEN
                    504:          DO 60 J = 1, NRHS
                    505:             DO 50 I = 1, N
                    506:                B( I, J ) = C( I )*B( I, J )
                    507:    50       CONTINUE
                    508:    60    CONTINUE
                    509:       END IF
                    510: *
                    511:       IF( NOFACT .OR. EQUIL ) THEN
                    512: *
                    513: *        Compute the LU factorization of A.
                    514: *
                    515:          CALL ZLACPY( 'Full', N, N, A, LDA, AF, LDAF )
                    516:          CALL ZGETRF( N, N, AF, LDAF, IPIV, INFO )
                    517: *
                    518: *        Return if INFO is non-zero.
                    519: *
                    520:          IF( INFO.GT.0 ) THEN
                    521: *
                    522: *           Compute the reciprocal pivot growth factor of the
                    523: *           leading rank-deficient INFO columns of A.
                    524: *
                    525:             RPVGRW = ZLANTR( 'M', 'U', 'N', INFO, INFO, AF, LDAF,
                    526:      $               RWORK )
                    527:             IF( RPVGRW.EQ.ZERO ) THEN
                    528:                RPVGRW = ONE
                    529:             ELSE
                    530:                RPVGRW = ZLANGE( 'M', N, INFO, A, LDA, RWORK ) /
                    531:      $                  RPVGRW
                    532:             END IF
                    533:             RWORK( 1 ) = RPVGRW
                    534:             RCOND = ZERO
                    535:             RETURN
                    536:          END IF
                    537:       END IF
                    538: *
                    539: *     Compute the norm of the matrix A and the
                    540: *     reciprocal pivot growth factor RPVGRW.
                    541: *
                    542:       IF( NOTRAN ) THEN
                    543:          NORM = '1'
                    544:       ELSE
                    545:          NORM = 'I'
                    546:       END IF
                    547:       ANORM = ZLANGE( NORM, N, N, A, LDA, RWORK )
                    548:       RPVGRW = ZLANTR( 'M', 'U', 'N', N, N, AF, LDAF, RWORK )
                    549:       IF( RPVGRW.EQ.ZERO ) THEN
                    550:          RPVGRW = ONE
                    551:       ELSE
                    552:          RPVGRW = ZLANGE( 'M', N, N, A, LDA, RWORK ) / RPVGRW
                    553:       END IF
                    554: *
                    555: *     Compute the reciprocal of the condition number of A.
                    556: *
                    557:       CALL ZGECON( NORM, N, AF, LDAF, ANORM, RCOND, WORK, RWORK, INFO )
                    558: *
                    559: *     Compute the solution matrix X.
                    560: *
                    561:       CALL ZLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
                    562:       CALL ZGETRS( TRANS, N, NRHS, AF, LDAF, IPIV, X, LDX, INFO )
                    563: *
                    564: *     Use iterative refinement to improve the computed solution and
                    565: *     compute error bounds and backward error estimates for it.
                    566: *
                    567:       CALL ZGERFS( TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB, X,
                    568:      $             LDX, FERR, BERR, WORK, RWORK, INFO )
                    569: *
                    570: *     Transform the solution matrix X to a solution of the original
                    571: *     system.
                    572: *
                    573:       IF( NOTRAN ) THEN
                    574:          IF( COLEQU ) THEN
                    575:             DO 80 J = 1, NRHS
                    576:                DO 70 I = 1, N
                    577:                   X( I, J ) = C( I )*X( I, J )
                    578:    70          CONTINUE
                    579:    80       CONTINUE
                    580:             DO 90 J = 1, NRHS
                    581:                FERR( J ) = FERR( J ) / COLCND
                    582:    90       CONTINUE
                    583:          END IF
                    584:       ELSE IF( ROWEQU ) THEN
                    585:          DO 110 J = 1, NRHS
                    586:             DO 100 I = 1, N
                    587:                X( I, J ) = R( I )*X( I, J )
                    588:   100       CONTINUE
                    589:   110    CONTINUE
                    590:          DO 120 J = 1, NRHS
                    591:             FERR( J ) = FERR( J ) / ROWCND
                    592:   120    CONTINUE
                    593:       END IF
                    594: *
                    595: *     Set INFO = N+1 if the matrix is singular to working precision.
                    596: *
                    597:       IF( RCOND.LT.DLAMCH( 'Epsilon' ) )
                    598:      $   INFO = N + 1
                    599: *
                    600:       RWORK( 1 ) = RPVGRW
                    601:       RETURN
                    602: *
                    603: *     End of ZGESVX
                    604: *
                    605:       END

CVSweb interface <joel.bertrand@systella.fr>