Annotation of rpl/lapack/lapack/zgerfsx.f, revision 1.16

1.5       bertrand    1: *> \brief \b ZGERFSX
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.12      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.5       bertrand    7: *
                      8: *> \htmlonly
1.12      bertrand    9: *> Download ZGERFSX + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgerfsx.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgerfsx.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgerfsx.f">
1.5       bertrand   15: *> [TXT]</a>
1.12      bertrand   16: *> \endhtmlonly
1.5       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZGERFSX( TRANS, EQUED, N, NRHS, A, LDA, AF, LDAF, IPIV,
                     22: *                           R, C, B, LDB, X, LDX, RCOND, BERR, N_ERR_BNDS,
                     23: *                           ERR_BNDS_NORM, ERR_BNDS_COMP, NPARAMS, PARAMS,
                     24: *                           WORK, RWORK, INFO )
1.12      bertrand   25: *
1.5       bertrand   26: *       .. Scalar Arguments ..
                     27: *       CHARACTER          TRANS, EQUED
                     28: *       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS, NPARAMS,
                     29: *      $                   N_ERR_BNDS
                     30: *       DOUBLE PRECISION   RCOND
                     31: *       ..
                     32: *       .. Array Arguments ..
                     33: *       INTEGER            IPIV( * )
                     34: *       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
                     35: *      $                   X( LDX , * ), WORK( * )
                     36: *       DOUBLE PRECISION   R( * ), C( * ), PARAMS( * ), BERR( * ),
                     37: *      $                   ERR_BNDS_NORM( NRHS, * ),
                     38: *      $                   ERR_BNDS_COMP( NRHS, * ), RWORK( * )
                     39: *       ..
1.12      bertrand   40: *
1.5       bertrand   41: *
                     42: *> \par Purpose:
                     43: *  =============
                     44: *>
                     45: *> \verbatim
                     46: *>
                     47: *>    ZGERFSX improves the computed solution to a system of linear
                     48: *>    equations and provides error bounds and backward error estimates
                     49: *>    for the solution.  In addition to normwise error bound, the code
                     50: *>    provides maximum componentwise error bound if possible.  See
                     51: *>    comments for ERR_BNDS_NORM and ERR_BNDS_COMP for details of the
                     52: *>    error bounds.
                     53: *>
                     54: *>    The original system of linear equations may have been equilibrated
                     55: *>    before calling this routine, as described by arguments EQUED, R
                     56: *>    and C below. In this case, the solution and error bounds returned
                     57: *>    are for the original unequilibrated system.
                     58: *> \endverbatim
                     59: *
                     60: *  Arguments:
                     61: *  ==========
                     62: *
                     63: *> \verbatim
                     64: *>     Some optional parameters are bundled in the PARAMS array.  These
                     65: *>     settings determine how refinement is performed, but often the
                     66: *>     defaults are acceptable.  If the defaults are acceptable, users
                     67: *>     can pass NPARAMS = 0 which prevents the source code from accessing
                     68: *>     the PARAMS argument.
                     69: *> \endverbatim
                     70: *>
                     71: *> \param[in] TRANS
                     72: *> \verbatim
                     73: *>          TRANS is CHARACTER*1
                     74: *>     Specifies the form of the system of equations:
                     75: *>       = 'N':  A * X = B     (No transpose)
                     76: *>       = 'T':  A**T * X = B  (Transpose)
1.15      bertrand   77: *>       = 'C':  A**H * X = B  (Conjugate transpose)
1.5       bertrand   78: *> \endverbatim
                     79: *>
                     80: *> \param[in] EQUED
                     81: *> \verbatim
                     82: *>          EQUED is CHARACTER*1
                     83: *>     Specifies the form of equilibration that was done to A
                     84: *>     before calling this routine. This is needed to compute
                     85: *>     the solution and error bounds correctly.
                     86: *>       = 'N':  No equilibration
                     87: *>       = 'R':  Row equilibration, i.e., A has been premultiplied by
                     88: *>               diag(R).
                     89: *>       = 'C':  Column equilibration, i.e., A has been postmultiplied
                     90: *>               by diag(C).
                     91: *>       = 'B':  Both row and column equilibration, i.e., A has been
                     92: *>               replaced by diag(R) * A * diag(C).
                     93: *>               The right hand side B has been changed accordingly.
                     94: *> \endverbatim
                     95: *>
                     96: *> \param[in] N
                     97: *> \verbatim
                     98: *>          N is INTEGER
                     99: *>     The order of the matrix A.  N >= 0.
                    100: *> \endverbatim
                    101: *>
                    102: *> \param[in] NRHS
                    103: *> \verbatim
                    104: *>          NRHS is INTEGER
                    105: *>     The number of right hand sides, i.e., the number of columns
                    106: *>     of the matrices B and X.  NRHS >= 0.
                    107: *> \endverbatim
                    108: *>
                    109: *> \param[in] A
                    110: *> \verbatim
                    111: *>          A is COMPLEX*16 array, dimension (LDA,N)
                    112: *>     The original N-by-N matrix A.
                    113: *> \endverbatim
                    114: *>
                    115: *> \param[in] LDA
                    116: *> \verbatim
                    117: *>          LDA is INTEGER
                    118: *>     The leading dimension of the array A.  LDA >= max(1,N).
                    119: *> \endverbatim
                    120: *>
                    121: *> \param[in] AF
                    122: *> \verbatim
                    123: *>          AF is COMPLEX*16 array, dimension (LDAF,N)
                    124: *>     The factors L and U from the factorization A = P*L*U
                    125: *>     as computed by ZGETRF.
                    126: *> \endverbatim
                    127: *>
                    128: *> \param[in] LDAF
                    129: *> \verbatim
                    130: *>          LDAF is INTEGER
                    131: *>     The leading dimension of the array AF.  LDAF >= max(1,N).
                    132: *> \endverbatim
                    133: *>
                    134: *> \param[in] IPIV
                    135: *> \verbatim
                    136: *>          IPIV is INTEGER array, dimension (N)
                    137: *>     The pivot indices from ZGETRF; for 1<=i<=N, row i of the
                    138: *>     matrix was interchanged with row IPIV(i).
                    139: *> \endverbatim
                    140: *>
                    141: *> \param[in] R
                    142: *> \verbatim
                    143: *>          R is DOUBLE PRECISION array, dimension (N)
                    144: *>     The row scale factors for A.  If EQUED = 'R' or 'B', A is
                    145: *>     multiplied on the left by diag(R); if EQUED = 'N' or 'C', R
1.12      bertrand  146: *>     is not accessed.
1.5       bertrand  147: *>     If R is accessed, each element of R should be a power of the radix
                    148: *>     to ensure a reliable solution and error estimates. Scaling by
                    149: *>     powers of the radix does not cause rounding errors unless the
                    150: *>     result underflows or overflows. Rounding errors during scaling
                    151: *>     lead to refining with a matrix that is not equivalent to the
                    152: *>     input matrix, producing error estimates that may not be
                    153: *>     reliable.
                    154: *> \endverbatim
                    155: *>
                    156: *> \param[in] C
                    157: *> \verbatim
                    158: *>          C is DOUBLE PRECISION array, dimension (N)
                    159: *>     The column scale factors for A.  If EQUED = 'C' or 'B', A is
                    160: *>     multiplied on the right by diag(C); if EQUED = 'N' or 'R', C
                    161: *>     is not accessed.
                    162: *>     If C is accessed, each element of C should be a power of the radix
                    163: *>     to ensure a reliable solution and error estimates. Scaling by
                    164: *>     powers of the radix does not cause rounding errors unless the
                    165: *>     result underflows or overflows. Rounding errors during scaling
                    166: *>     lead to refining with a matrix that is not equivalent to the
                    167: *>     input matrix, producing error estimates that may not be
                    168: *>     reliable.
                    169: *> \endverbatim
                    170: *>
                    171: *> \param[in] B
                    172: *> \verbatim
                    173: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
                    174: *>     The right hand side matrix B.
                    175: *> \endverbatim
                    176: *>
                    177: *> \param[in] LDB
                    178: *> \verbatim
                    179: *>          LDB is INTEGER
                    180: *>     The leading dimension of the array B.  LDB >= max(1,N).
                    181: *> \endverbatim
                    182: *>
                    183: *> \param[in,out] X
                    184: *> \verbatim
                    185: *>          X is COMPLEX*16 array, dimension (LDX,NRHS)
                    186: *>     On entry, the solution matrix X, as computed by ZGETRS.
                    187: *>     On exit, the improved solution matrix X.
                    188: *> \endverbatim
                    189: *>
                    190: *> \param[in] LDX
                    191: *> \verbatim
                    192: *>          LDX is INTEGER
                    193: *>     The leading dimension of the array X.  LDX >= max(1,N).
                    194: *> \endverbatim
                    195: *>
                    196: *> \param[out] RCOND
                    197: *> \verbatim
                    198: *>          RCOND is DOUBLE PRECISION
                    199: *>     Reciprocal scaled condition number.  This is an estimate of the
                    200: *>     reciprocal Skeel condition number of the matrix A after
                    201: *>     equilibration (if done).  If this is less than the machine
                    202: *>     precision (in particular, if it is zero), the matrix is singular
                    203: *>     to working precision.  Note that the error may still be small even
                    204: *>     if this number is very small and the matrix appears ill-
                    205: *>     conditioned.
                    206: *> \endverbatim
                    207: *>
                    208: *> \param[out] BERR
                    209: *> \verbatim
                    210: *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
                    211: *>     Componentwise relative backward error.  This is the
                    212: *>     componentwise relative backward error of each solution vector X(j)
                    213: *>     (i.e., the smallest relative change in any element of A or B that
                    214: *>     makes X(j) an exact solution).
                    215: *> \endverbatim
                    216: *>
                    217: *> \param[in] N_ERR_BNDS
                    218: *> \verbatim
                    219: *>          N_ERR_BNDS is INTEGER
                    220: *>     Number of error bounds to return for each right hand side
                    221: *>     and each type (normwise or componentwise).  See ERR_BNDS_NORM and
                    222: *>     ERR_BNDS_COMP below.
                    223: *> \endverbatim
                    224: *>
                    225: *> \param[out] ERR_BNDS_NORM
                    226: *> \verbatim
                    227: *>          ERR_BNDS_NORM is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
                    228: *>     For each right-hand side, this array contains information about
                    229: *>     various error bounds and condition numbers corresponding to the
                    230: *>     normwise relative error, which is defined as follows:
                    231: *>
                    232: *>     Normwise relative error in the ith solution vector:
                    233: *>             max_j (abs(XTRUE(j,i) - X(j,i)))
                    234: *>            ------------------------------
                    235: *>                  max_j abs(X(j,i))
                    236: *>
                    237: *>     The array is indexed by the type of error information as described
                    238: *>     below. There currently are up to three pieces of information
                    239: *>     returned.
                    240: *>
                    241: *>     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
                    242: *>     right-hand side.
                    243: *>
                    244: *>     The second index in ERR_BNDS_NORM(:,err) contains the following
                    245: *>     three fields:
                    246: *>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
                    247: *>              reciprocal condition number is less than the threshold
                    248: *>              sqrt(n) * dlamch('Epsilon').
                    249: *>
                    250: *>     err = 2 "Guaranteed" error bound: The estimated forward error,
                    251: *>              almost certainly within a factor of 10 of the true error
                    252: *>              so long as the next entry is greater than the threshold
                    253: *>              sqrt(n) * dlamch('Epsilon'). This error bound should only
                    254: *>              be trusted if the previous boolean is true.
                    255: *>
                    256: *>     err = 3  Reciprocal condition number: Estimated normwise
                    257: *>              reciprocal condition number.  Compared with the threshold
                    258: *>              sqrt(n) * dlamch('Epsilon') to determine if the error
                    259: *>              estimate is "guaranteed". These reciprocal condition
                    260: *>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
                    261: *>              appropriately scaled matrix Z.
                    262: *>              Let Z = S*A, where S scales each row by a power of the
                    263: *>              radix so all absolute row sums of Z are approximately 1.
                    264: *>
                    265: *>     See Lapack Working Note 165 for further details and extra
                    266: *>     cautions.
                    267: *> \endverbatim
                    268: *>
                    269: *> \param[out] ERR_BNDS_COMP
                    270: *> \verbatim
                    271: *>          ERR_BNDS_COMP is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
                    272: *>     For each right-hand side, this array contains information about
                    273: *>     various error bounds and condition numbers corresponding to the
                    274: *>     componentwise relative error, which is defined as follows:
                    275: *>
                    276: *>     Componentwise relative error in the ith solution vector:
                    277: *>                    abs(XTRUE(j,i) - X(j,i))
                    278: *>             max_j ----------------------
                    279: *>                         abs(X(j,i))
                    280: *>
                    281: *>     The array is indexed by the right-hand side i (on which the
                    282: *>     componentwise relative error depends), and the type of error
                    283: *>     information as described below. There currently are up to three
                    284: *>     pieces of information returned for each right-hand side. If
                    285: *>     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
1.15      bertrand  286: *>     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS < 3, then at most
1.5       bertrand  287: *>     the first (:,N_ERR_BNDS) entries are returned.
                    288: *>
                    289: *>     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
                    290: *>     right-hand side.
                    291: *>
                    292: *>     The second index in ERR_BNDS_COMP(:,err) contains the following
                    293: *>     three fields:
                    294: *>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
                    295: *>              reciprocal condition number is less than the threshold
                    296: *>              sqrt(n) * dlamch('Epsilon').
                    297: *>
                    298: *>     err = 2 "Guaranteed" error bound: The estimated forward error,
                    299: *>              almost certainly within a factor of 10 of the true error
                    300: *>              so long as the next entry is greater than the threshold
                    301: *>              sqrt(n) * dlamch('Epsilon'). This error bound should only
                    302: *>              be trusted if the previous boolean is true.
                    303: *>
                    304: *>     err = 3  Reciprocal condition number: Estimated componentwise
                    305: *>              reciprocal condition number.  Compared with the threshold
                    306: *>              sqrt(n) * dlamch('Epsilon') to determine if the error
                    307: *>              estimate is "guaranteed". These reciprocal condition
                    308: *>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
                    309: *>              appropriately scaled matrix Z.
                    310: *>              Let Z = S*(A*diag(x)), where x is the solution for the
                    311: *>              current right-hand side and S scales each row of
                    312: *>              A*diag(x) by a power of the radix so all absolute row
                    313: *>              sums of Z are approximately 1.
                    314: *>
                    315: *>     See Lapack Working Note 165 for further details and extra
                    316: *>     cautions.
                    317: *> \endverbatim
                    318: *>
                    319: *> \param[in] NPARAMS
                    320: *> \verbatim
                    321: *>          NPARAMS is INTEGER
1.15      bertrand  322: *>     Specifies the number of parameters set in PARAMS.  If <= 0, the
1.5       bertrand  323: *>     PARAMS array is never referenced and default values are used.
                    324: *> \endverbatim
                    325: *>
                    326: *> \param[in,out] PARAMS
                    327: *> \verbatim
1.7       bertrand  328: *>          PARAMS is DOUBLE PRECISION array, dimension NPARAMS
1.15      bertrand  329: *>     Specifies algorithm parameters.  If an entry is < 0.0, then
1.5       bertrand  330: *>     that entry will be filled with default value used for that
                    331: *>     parameter.  Only positions up to NPARAMS are accessed; defaults
                    332: *>     are used for higher-numbered parameters.
                    333: *>
                    334: *>       PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
                    335: *>            refinement or not.
                    336: *>         Default: 1.0D+0
1.15      bertrand  337: *>            = 0.0:  No refinement is performed, and no error bounds are
1.5       bertrand  338: *>                    computed.
1.15      bertrand  339: *>            = 1.0:  Use the double-precision refinement algorithm,
1.5       bertrand  340: *>                    possibly with doubled-single computations if the
                    341: *>                    compilation environment does not support DOUBLE
                    342: *>                    PRECISION.
                    343: *>              (other values are reserved for future use)
                    344: *>
                    345: *>       PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
                    346: *>            computations allowed for refinement.
                    347: *>         Default: 10
                    348: *>         Aggressive: Set to 100 to permit convergence using approximate
                    349: *>                     factorizations or factorizations other than LU. If
                    350: *>                     the factorization uses a technique other than
                    351: *>                     Gaussian elimination, the guarantees in
                    352: *>                     err_bnds_norm and err_bnds_comp may no longer be
                    353: *>                     trustworthy.
                    354: *>
                    355: *>       PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
                    356: *>            will attempt to find a solution with small componentwise
                    357: *>            relative error in the double-precision algorithm.  Positive
                    358: *>            is true, 0.0 is false.
                    359: *>         Default: 1.0 (attempt componentwise convergence)
                    360: *> \endverbatim
                    361: *>
                    362: *> \param[out] WORK
                    363: *> \verbatim
                    364: *>          WORK is COMPLEX*16 array, dimension (2*N)
                    365: *> \endverbatim
                    366: *>
                    367: *> \param[out] RWORK
                    368: *> \verbatim
                    369: *>          RWORK is DOUBLE PRECISION array, dimension (2*N)
                    370: *> \endverbatim
                    371: *>
                    372: *> \param[out] INFO
                    373: *> \verbatim
                    374: *>          INFO is INTEGER
                    375: *>       = 0:  Successful exit. The solution to every right-hand side is
                    376: *>         guaranteed.
                    377: *>       < 0:  If INFO = -i, the i-th argument had an illegal value
                    378: *>       > 0 and <= N:  U(INFO,INFO) is exactly zero.  The factorization
                    379: *>         has been completed, but the factor U is exactly singular, so
                    380: *>         the solution and error bounds could not be computed. RCOND = 0
                    381: *>         is returned.
                    382: *>       = N+J: The solution corresponding to the Jth right-hand side is
                    383: *>         not guaranteed. The solutions corresponding to other right-
                    384: *>         hand sides K with K > J may not be guaranteed as well, but
                    385: *>         only the first such right-hand side is reported. If a small
                    386: *>         componentwise error is not requested (PARAMS(3) = 0.0) then
                    387: *>         the Jth right-hand side is the first with a normwise error
                    388: *>         bound that is not guaranteed (the smallest J such
                    389: *>         that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0)
                    390: *>         the Jth right-hand side is the first with either a normwise or
                    391: *>         componentwise error bound that is not guaranteed (the smallest
                    392: *>         J such that either ERR_BNDS_NORM(J,1) = 0.0 or
                    393: *>         ERR_BNDS_COMP(J,1) = 0.0). See the definition of
                    394: *>         ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information
                    395: *>         about all of the right-hand sides check ERR_BNDS_NORM or
                    396: *>         ERR_BNDS_COMP.
                    397: *> \endverbatim
                    398: *
                    399: *  Authors:
                    400: *  ========
                    401: *
1.12      bertrand  402: *> \author Univ. of Tennessee
                    403: *> \author Univ. of California Berkeley
                    404: *> \author Univ. of Colorado Denver
                    405: *> \author NAG Ltd.
1.5       bertrand  406: *
                    407: *> \ingroup complex16GEcomputational
                    408: *
                    409: *  =====================================================================
1.1       bertrand  410:       SUBROUTINE ZGERFSX( TRANS, EQUED, N, NRHS, A, LDA, AF, LDAF, IPIV,
                    411:      $                    R, C, B, LDB, X, LDX, RCOND, BERR, N_ERR_BNDS,
                    412:      $                    ERR_BNDS_NORM, ERR_BNDS_COMP, NPARAMS, PARAMS,
                    413:      $                    WORK, RWORK, INFO )
                    414: *
1.16    ! bertrand  415: *  -- LAPACK computational routine --
1.5       bertrand  416: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    417: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.1       bertrand  418: *
                    419: *     .. Scalar Arguments ..
                    420:       CHARACTER          TRANS, EQUED
                    421:       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS, NPARAMS,
                    422:      $                   N_ERR_BNDS
                    423:       DOUBLE PRECISION   RCOND
                    424: *     ..
                    425: *     .. Array Arguments ..
                    426:       INTEGER            IPIV( * )
                    427:       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
                    428:      $                   X( LDX , * ), WORK( * )
                    429:       DOUBLE PRECISION   R( * ), C( * ), PARAMS( * ), BERR( * ),
                    430:      $                   ERR_BNDS_NORM( NRHS, * ),
                    431:      $                   ERR_BNDS_COMP( NRHS, * ), RWORK( * )
                    432: *     ..
                    433: *
1.5       bertrand  434: *  ==================================================================
1.1       bertrand  435: *
                    436: *     .. Parameters ..
                    437:       DOUBLE PRECISION   ZERO, ONE
                    438:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    439:       DOUBLE PRECISION   ITREF_DEFAULT, ITHRESH_DEFAULT
                    440:       DOUBLE PRECISION   COMPONENTWISE_DEFAULT, RTHRESH_DEFAULT
                    441:       DOUBLE PRECISION   DZTHRESH_DEFAULT
                    442:       PARAMETER          ( ITREF_DEFAULT = 1.0D+0 )
                    443:       PARAMETER          ( ITHRESH_DEFAULT = 10.0D+0 )
                    444:       PARAMETER          ( COMPONENTWISE_DEFAULT = 1.0D+0 )
                    445:       PARAMETER          ( RTHRESH_DEFAULT = 0.5D+0 )
                    446:       PARAMETER          ( DZTHRESH_DEFAULT = 0.25D+0 )
                    447:       INTEGER            LA_LINRX_ITREF_I, LA_LINRX_ITHRESH_I,
                    448:      $                   LA_LINRX_CWISE_I
                    449:       PARAMETER          ( LA_LINRX_ITREF_I = 1,
                    450:      $                   LA_LINRX_ITHRESH_I = 2 )
                    451:       PARAMETER          ( LA_LINRX_CWISE_I = 3 )
                    452:       INTEGER            LA_LINRX_TRUST_I, LA_LINRX_ERR_I,
                    453:      $                   LA_LINRX_RCOND_I
                    454:       PARAMETER          ( LA_LINRX_TRUST_I = 1, LA_LINRX_ERR_I = 2 )
                    455:       PARAMETER          ( LA_LINRX_RCOND_I = 3 )
                    456: *     ..
                    457: *     .. Local Scalars ..
                    458:       CHARACTER(1)       NORM
                    459:       LOGICAL            ROWEQU, COLEQU, NOTRAN
                    460:       INTEGER            J, TRANS_TYPE, PREC_TYPE, REF_TYPE
                    461:       INTEGER            N_NORMS
                    462:       DOUBLE PRECISION   ANORM, RCOND_TMP
                    463:       DOUBLE PRECISION   ILLRCOND_THRESH, ERR_LBND, CWISE_WRONG
                    464:       LOGICAL            IGNORE_CWISE
                    465:       INTEGER            ITHRESH
                    466:       DOUBLE PRECISION   RTHRESH, UNSTABLE_THRESH
                    467: *     ..
                    468: *     .. External Subroutines ..
                    469:       EXTERNAL           XERBLA, ZGECON, ZLA_GERFSX_EXTENDED
                    470: *     ..
                    471: *     .. Intrinsic Functions ..
                    472:       INTRINSIC          MAX, SQRT, TRANSFER
                    473: *     ..
                    474: *     .. External Functions ..
1.12      bertrand  475:       EXTERNAL           LSAME, ILATRANS, ILAPREC
1.1       bertrand  476:       EXTERNAL           DLAMCH, ZLANGE, ZLA_GERCOND_X, ZLA_GERCOND_C
                    477:       DOUBLE PRECISION   DLAMCH, ZLANGE, ZLA_GERCOND_X, ZLA_GERCOND_C
                    478:       LOGICAL            LSAME
                    479:       INTEGER            ILATRANS, ILAPREC
                    480: *     ..
                    481: *     .. Executable Statements ..
                    482: *
                    483: *     Check the input parameters.
                    484: *
                    485:       INFO = 0
                    486:       TRANS_TYPE = ILATRANS( TRANS )
                    487:       REF_TYPE = INT( ITREF_DEFAULT )
                    488:       IF ( NPARAMS .GE. LA_LINRX_ITREF_I ) THEN
                    489:          IF ( PARAMS( LA_LINRX_ITREF_I ) .LT. 0.0D+0 ) THEN
                    490:             PARAMS( LA_LINRX_ITREF_I ) = ITREF_DEFAULT
                    491:          ELSE
                    492:             REF_TYPE = PARAMS( LA_LINRX_ITREF_I )
                    493:          END IF
                    494:       END IF
                    495: *
                    496: *     Set default parameters.
                    497: *
                    498:       ILLRCOND_THRESH = DBLE( N ) * DLAMCH( 'Epsilon' )
                    499:       ITHRESH = INT( ITHRESH_DEFAULT )
                    500:       RTHRESH = RTHRESH_DEFAULT
                    501:       UNSTABLE_THRESH = DZTHRESH_DEFAULT
                    502:       IGNORE_CWISE = COMPONENTWISE_DEFAULT .EQ. 0.0D+0
                    503: *
                    504:       IF ( NPARAMS.GE.LA_LINRX_ITHRESH_I ) THEN
                    505:          IF ( PARAMS( LA_LINRX_ITHRESH_I ).LT.0.0D+0 ) THEN
                    506:             PARAMS(LA_LINRX_ITHRESH_I) = ITHRESH
                    507:          ELSE
                    508:             ITHRESH = INT( PARAMS( LA_LINRX_ITHRESH_I ) )
                    509:          END IF
                    510:       END IF
                    511:       IF ( NPARAMS.GE.LA_LINRX_CWISE_I ) THEN
                    512:          IF ( PARAMS( LA_LINRX_CWISE_I ).LT.0.0D+0 ) THEN
                    513:             IF ( IGNORE_CWISE ) THEN
                    514:                PARAMS( LA_LINRX_CWISE_I ) = 0.0D+0
                    515:             ELSE
                    516:                PARAMS( LA_LINRX_CWISE_I ) = 1.0D+0
                    517:             END IF
                    518:          ELSE
                    519:             IGNORE_CWISE = PARAMS( LA_LINRX_CWISE_I ) .EQ. 0.0D+0
                    520:          END IF
                    521:       END IF
                    522:       IF ( REF_TYPE .EQ. 0 .OR. N_ERR_BNDS .EQ. 0 ) THEN
                    523:          N_NORMS = 0
                    524:       ELSE IF ( IGNORE_CWISE ) THEN
                    525:          N_NORMS = 1
                    526:       ELSE
                    527:          N_NORMS = 2
                    528:       END IF
                    529: *
                    530:       NOTRAN = LSAME( TRANS, 'N' )
                    531:       ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
                    532:       COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
                    533: *
                    534: *     Test input parameters.
                    535: *
                    536:       IF( TRANS_TYPE.EQ.-1 ) THEN
                    537:         INFO = -1
                    538:       ELSE IF( .NOT.ROWEQU .AND. .NOT.COLEQU .AND.
                    539:      $         .NOT.LSAME( EQUED, 'N' ) ) THEN
                    540:         INFO = -2
                    541:       ELSE IF( N.LT.0 ) THEN
                    542:         INFO = -3
                    543:       ELSE IF( NRHS.LT.0 ) THEN
                    544:         INFO = -4
                    545:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    546:         INFO = -6
                    547:       ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
                    548:         INFO = -8
                    549:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    550:         INFO = -13
                    551:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
                    552:         INFO = -15
                    553:       END IF
                    554:       IF( INFO.NE.0 ) THEN
                    555:         CALL XERBLA( 'ZGERFSX', -INFO )
                    556:         RETURN
                    557:       END IF
                    558: *
                    559: *     Quick return if possible.
                    560: *
                    561:       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
                    562:          RCOND = 1.0D+0
                    563:          DO J = 1, NRHS
                    564:             BERR( J ) = 0.0D+0
                    565:             IF ( N_ERR_BNDS .GE. 1 ) THEN
                    566:                ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) =  1.0D+0
                    567:                ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 1.0D+0
                    568:             END IF
                    569:             IF ( N_ERR_BNDS .GE. 2 ) THEN
                    570:                ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 0.0D+0
                    571:                ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 0.0D+0
                    572:             END IF
                    573:             IF ( N_ERR_BNDS .GE. 3 ) THEN
                    574:                ERR_BNDS_NORM( J, LA_LINRX_RCOND_I ) = 1.0D+0
                    575:                ERR_BNDS_COMP( J, LA_LINRX_RCOND_I ) = 1.0D+0
                    576:             END IF
                    577:          END DO
                    578:          RETURN
                    579:       END IF
                    580: *
                    581: *     Default to failure.
                    582: *
                    583:       RCOND = 0.0D+0
                    584:       DO J = 1, NRHS
                    585:          BERR( J ) = 1.0D+0
                    586:          IF ( N_ERR_BNDS .GE. 1 ) THEN
                    587:             ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 1.0D+0
                    588:             ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 1.0D+0
                    589:          END IF
                    590:          IF ( N_ERR_BNDS .GE. 2 ) THEN
                    591:             ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 1.0D+0
                    592:             ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 1.0D+0
                    593:          END IF
                    594:          IF ( N_ERR_BNDS .GE. 3 ) THEN
                    595:             ERR_BNDS_NORM( J, LA_LINRX_RCOND_I ) = 0.0D+0
                    596:             ERR_BNDS_COMP( J, LA_LINRX_RCOND_I ) = 0.0D+0
                    597:          END IF
                    598:       END DO
                    599: *
                    600: *     Compute the norm of A and the reciprocal of the condition
                    601: *     number of A.
                    602: *
                    603:       IF( NOTRAN ) THEN
                    604:          NORM = 'I'
                    605:       ELSE
                    606:          NORM = '1'
                    607:       END IF
                    608:       ANORM = ZLANGE( NORM, N, N, A, LDA, RWORK )
                    609:       CALL ZGECON( NORM, N, AF, LDAF, ANORM, RCOND, WORK, RWORK, INFO )
                    610: *
                    611: *     Perform refinement on each right-hand side
                    612: *
                    613:       IF ( REF_TYPE .NE. 0 ) THEN
                    614: 
                    615:          PREC_TYPE = ILAPREC( 'E' )
                    616: 
                    617:          IF ( NOTRAN ) THEN
                    618:             CALL ZLA_GERFSX_EXTENDED( PREC_TYPE, TRANS_TYPE,  N,
                    619:      $           NRHS, A, LDA, AF, LDAF, IPIV, COLEQU, C, B,
                    620:      $           LDB, X, LDX, BERR, N_NORMS, ERR_BNDS_NORM,
                    621:      $           ERR_BNDS_COMP, WORK, RWORK, WORK(N+1),
                    622:      $           TRANSFER (RWORK(1:2*N), (/ (ZERO, ZERO) /), N),
                    623:      $           RCOND, ITHRESH, RTHRESH, UNSTABLE_THRESH, IGNORE_CWISE,
                    624:      $           INFO )
                    625:          ELSE
                    626:             CALL ZLA_GERFSX_EXTENDED( PREC_TYPE, TRANS_TYPE,  N,
                    627:      $           NRHS, A, LDA, AF, LDAF, IPIV, ROWEQU, R, B,
                    628:      $           LDB, X, LDX, BERR, N_NORMS, ERR_BNDS_NORM,
                    629:      $           ERR_BNDS_COMP, WORK, RWORK, WORK(N+1),
                    630:      $           TRANSFER (RWORK(1:2*N), (/ (ZERO, ZERO) /), N),
                    631:      $           RCOND, ITHRESH, RTHRESH, UNSTABLE_THRESH, IGNORE_CWISE,
                    632:      $           INFO )
                    633:          END IF
                    634:       END IF
                    635: 
                    636:       ERR_LBND = MAX( 10.0D+0, SQRT( DBLE( N ) ) ) * DLAMCH( 'Epsilon' )
                    637:       IF ( N_ERR_BNDS .GE. 1 .AND. N_NORMS .GE. 1 ) THEN
                    638: *
                    639: *     Compute scaled normwise condition number cond(A*C).
                    640: *
                    641:          IF ( COLEQU .AND. NOTRAN ) THEN
                    642:             RCOND_TMP = ZLA_GERCOND_C( TRANS, N, A, LDA, AF, LDAF, IPIV,
                    643:      $           C, .TRUE., INFO, WORK, RWORK )
                    644:          ELSE IF ( ROWEQU .AND. .NOT. NOTRAN ) THEN
                    645:             RCOND_TMP = ZLA_GERCOND_C( TRANS, N, A, LDA, AF, LDAF, IPIV,
                    646:      $           R, .TRUE., INFO, WORK, RWORK )
                    647:          ELSE
                    648:             RCOND_TMP = ZLA_GERCOND_C( TRANS, N, A, LDA, AF, LDAF, IPIV,
                    649:      $           C, .FALSE., INFO, WORK, RWORK )
                    650:          END IF
                    651:          DO J = 1, NRHS
                    652: *
                    653: *     Cap the error at 1.0.
                    654: *
                    655:             IF ( N_ERR_BNDS .GE. LA_LINRX_ERR_I
                    656:      $           .AND. ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) .GT. 1.0D+0 )
                    657:      $           ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 1.0D+0
                    658: *
                    659: *     Threshold the error (see LAWN).
                    660: *
                    661:             IF ( RCOND_TMP .LT. ILLRCOND_THRESH ) THEN
                    662:                ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 1.0D+0
                    663:                ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 0.0D+0
                    664:                IF ( INFO .LE. N ) INFO = N + J
                    665:             ELSE IF (ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) .LT. ERR_LBND)
                    666:      $              THEN
                    667:                ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = ERR_LBND
                    668:                ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 1.0D+0
                    669:             END IF
                    670: *
                    671: *     Save the condition number.
                    672: *
                    673:             IF ( N_ERR_BNDS .GE. LA_LINRX_RCOND_I ) THEN
                    674:                ERR_BNDS_NORM( J, LA_LINRX_RCOND_I ) = RCOND_TMP
                    675:             END IF
                    676:          END DO
                    677:       END IF
                    678: 
                    679:       IF ( N_ERR_BNDS .GE. 1 .AND. N_NORMS .GE. 2 ) THEN
                    680: *
                    681: *     Compute componentwise condition number cond(A*diag(Y(:,J))) for
                    682: *     each right-hand side using the current solution as an estimate of
                    683: *     the true solution.  If the componentwise error estimate is too
                    684: *     large, then the solution is a lousy estimate of truth and the
                    685: *     estimated RCOND may be too optimistic.  To avoid misleading users,
                    686: *     the inverse condition number is set to 0.0 when the estimated
                    687: *     cwise error is at least CWISE_WRONG.
                    688: *
                    689:          CWISE_WRONG = SQRT( DLAMCH( 'Epsilon' ) )
                    690:          DO J = 1, NRHS
                    691:             IF ( ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) .LT. CWISE_WRONG )
                    692:      $     THEN
                    693:                RCOND_TMP = ZLA_GERCOND_X( TRANS, N, A, LDA, AF, LDAF,
                    694:      $              IPIV, X(1,J), INFO, WORK, RWORK )
                    695:             ELSE
                    696:                RCOND_TMP = 0.0D+0
                    697:             END IF
                    698: *
                    699: *     Cap the error at 1.0.
                    700: *
                    701:             IF ( N_ERR_BNDS .GE. LA_LINRX_ERR_I
                    702:      $           .AND. ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) .GT. 1.0D+0 )
                    703:      $           ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 1.0D+0
                    704: *
                    705: *     Threshold the error (see LAWN).
                    706: *
                    707:             IF ( RCOND_TMP .LT. ILLRCOND_THRESH ) THEN
                    708:                ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 1.0D+0
                    709:                ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 0.0D+0
                    710:                IF ( PARAMS( LA_LINRX_CWISE_I ) .EQ. 1.0D+0
                    711:      $              .AND. INFO.LT.N + J ) INFO = N + J
                    712:             ELSE IF ( ERR_BNDS_COMP( J, LA_LINRX_ERR_I )
                    713:      $              .LT. ERR_LBND ) THEN
                    714:                ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = ERR_LBND
                    715:                ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 1.0D+0
                    716:             END IF
                    717: *
                    718: *     Save the condition number.
                    719: *
                    720:             IF ( N_ERR_BNDS .GE. LA_LINRX_RCOND_I ) THEN
                    721:                ERR_BNDS_COMP( J, LA_LINRX_RCOND_I ) = RCOND_TMP
                    722:             END IF
                    723: 
                    724:          END DO
                    725:       END IF
                    726: *
                    727:       RETURN
                    728: *
                    729: *     End of ZGERFSX
                    730: *
                    731:       END

CVSweb interface <joel.bertrand@systella.fr>