File:  [local] / rpl / lapack / lapack / zgerfs.f
Revision 1.17: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:19 2023 UTC (9 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZGERFS
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZGERFS + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgerfs.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgerfs.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgerfs.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZGERFS( TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB,
   22: *                          X, LDX, FERR, BERR, WORK, RWORK, INFO )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       CHARACTER          TRANS
   26: *       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       INTEGER            IPIV( * )
   30: *       DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * )
   31: *       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
   32: *      $                   WORK( * ), X( LDX, * )
   33: *       ..
   34: *
   35: *
   36: *> \par Purpose:
   37: *  =============
   38: *>
   39: *> \verbatim
   40: *>
   41: *> ZGERFS improves the computed solution to a system of linear
   42: *> equations and provides error bounds and backward error estimates for
   43: *> the solution.
   44: *> \endverbatim
   45: *
   46: *  Arguments:
   47: *  ==========
   48: *
   49: *> \param[in] TRANS
   50: *> \verbatim
   51: *>          TRANS is CHARACTER*1
   52: *>          Specifies the form of the system of equations:
   53: *>          = 'N':  A * X = B     (No transpose)
   54: *>          = 'T':  A**T * X = B  (Transpose)
   55: *>          = 'C':  A**H * X = B  (Conjugate transpose)
   56: *> \endverbatim
   57: *>
   58: *> \param[in] N
   59: *> \verbatim
   60: *>          N is INTEGER
   61: *>          The order of the matrix A.  N >= 0.
   62: *> \endverbatim
   63: *>
   64: *> \param[in] NRHS
   65: *> \verbatim
   66: *>          NRHS is INTEGER
   67: *>          The number of right hand sides, i.e., the number of columns
   68: *>          of the matrices B and X.  NRHS >= 0.
   69: *> \endverbatim
   70: *>
   71: *> \param[in] A
   72: *> \verbatim
   73: *>          A is COMPLEX*16 array, dimension (LDA,N)
   74: *>          The original N-by-N matrix A.
   75: *> \endverbatim
   76: *>
   77: *> \param[in] LDA
   78: *> \verbatim
   79: *>          LDA is INTEGER
   80: *>          The leading dimension of the array A.  LDA >= max(1,N).
   81: *> \endverbatim
   82: *>
   83: *> \param[in] AF
   84: *> \verbatim
   85: *>          AF is COMPLEX*16 array, dimension (LDAF,N)
   86: *>          The factors L and U from the factorization A = P*L*U
   87: *>          as computed by ZGETRF.
   88: *> \endverbatim
   89: *>
   90: *> \param[in] LDAF
   91: *> \verbatim
   92: *>          LDAF is INTEGER
   93: *>          The leading dimension of the array AF.  LDAF >= max(1,N).
   94: *> \endverbatim
   95: *>
   96: *> \param[in] IPIV
   97: *> \verbatim
   98: *>          IPIV is INTEGER array, dimension (N)
   99: *>          The pivot indices from ZGETRF; for 1<=i<=N, row i of the
  100: *>          matrix was interchanged with row IPIV(i).
  101: *> \endverbatim
  102: *>
  103: *> \param[in] B
  104: *> \verbatim
  105: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
  106: *>          The right hand side matrix B.
  107: *> \endverbatim
  108: *>
  109: *> \param[in] LDB
  110: *> \verbatim
  111: *>          LDB is INTEGER
  112: *>          The leading dimension of the array B.  LDB >= max(1,N).
  113: *> \endverbatim
  114: *>
  115: *> \param[in,out] X
  116: *> \verbatim
  117: *>          X is COMPLEX*16 array, dimension (LDX,NRHS)
  118: *>          On entry, the solution matrix X, as computed by ZGETRS.
  119: *>          On exit, the improved solution matrix X.
  120: *> \endverbatim
  121: *>
  122: *> \param[in] LDX
  123: *> \verbatim
  124: *>          LDX is INTEGER
  125: *>          The leading dimension of the array X.  LDX >= max(1,N).
  126: *> \endverbatim
  127: *>
  128: *> \param[out] FERR
  129: *> \verbatim
  130: *>          FERR is DOUBLE PRECISION array, dimension (NRHS)
  131: *>          The estimated forward error bound for each solution vector
  132: *>          X(j) (the j-th column of the solution matrix X).
  133: *>          If XTRUE is the true solution corresponding to X(j), FERR(j)
  134: *>          is an estimated upper bound for the magnitude of the largest
  135: *>          element in (X(j) - XTRUE) divided by the magnitude of the
  136: *>          largest element in X(j).  The estimate is as reliable as
  137: *>          the estimate for RCOND, and is almost always a slight
  138: *>          overestimate of the true error.
  139: *> \endverbatim
  140: *>
  141: *> \param[out] BERR
  142: *> \verbatim
  143: *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
  144: *>          The componentwise relative backward error of each solution
  145: *>          vector X(j) (i.e., the smallest relative change in
  146: *>          any element of A or B that makes X(j) an exact solution).
  147: *> \endverbatim
  148: *>
  149: *> \param[out] WORK
  150: *> \verbatim
  151: *>          WORK is COMPLEX*16 array, dimension (2*N)
  152: *> \endverbatim
  153: *>
  154: *> \param[out] RWORK
  155: *> \verbatim
  156: *>          RWORK is DOUBLE PRECISION array, dimension (N)
  157: *> \endverbatim
  158: *>
  159: *> \param[out] INFO
  160: *> \verbatim
  161: *>          INFO is INTEGER
  162: *>          = 0:  successful exit
  163: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  164: *> \endverbatim
  165: *
  166: *> \par Internal Parameters:
  167: *  =========================
  168: *>
  169: *> \verbatim
  170: *>  ITMAX is the maximum number of steps of iterative refinement.
  171: *> \endverbatim
  172: *
  173: *  Authors:
  174: *  ========
  175: *
  176: *> \author Univ. of Tennessee
  177: *> \author Univ. of California Berkeley
  178: *> \author Univ. of Colorado Denver
  179: *> \author NAG Ltd.
  180: *
  181: *> \ingroup complex16GEcomputational
  182: *
  183: *  =====================================================================
  184:       SUBROUTINE ZGERFS( TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB,
  185:      $                   X, LDX, FERR, BERR, WORK, RWORK, INFO )
  186: *
  187: *  -- LAPACK computational routine --
  188: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  189: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  190: *
  191: *     .. Scalar Arguments ..
  192:       CHARACTER          TRANS
  193:       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS
  194: *     ..
  195: *     .. Array Arguments ..
  196:       INTEGER            IPIV( * )
  197:       DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * )
  198:       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
  199:      $                   WORK( * ), X( LDX, * )
  200: *     ..
  201: *
  202: *  =====================================================================
  203: *
  204: *     .. Parameters ..
  205:       INTEGER            ITMAX
  206:       PARAMETER          ( ITMAX = 5 )
  207:       DOUBLE PRECISION   ZERO
  208:       PARAMETER          ( ZERO = 0.0D+0 )
  209:       COMPLEX*16         ONE
  210:       PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ) )
  211:       DOUBLE PRECISION   TWO
  212:       PARAMETER          ( TWO = 2.0D+0 )
  213:       DOUBLE PRECISION   THREE
  214:       PARAMETER          ( THREE = 3.0D+0 )
  215: *     ..
  216: *     .. Local Scalars ..
  217:       LOGICAL            NOTRAN
  218:       CHARACTER          TRANSN, TRANST
  219:       INTEGER            COUNT, I, J, K, KASE, NZ
  220:       DOUBLE PRECISION   EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
  221:       COMPLEX*16         ZDUM
  222: *     ..
  223: *     .. Local Arrays ..
  224:       INTEGER            ISAVE( 3 )
  225: *     ..
  226: *     .. External Functions ..
  227:       LOGICAL            LSAME
  228:       DOUBLE PRECISION   DLAMCH
  229:       EXTERNAL           LSAME, DLAMCH
  230: *     ..
  231: *     .. External Subroutines ..
  232:       EXTERNAL           XERBLA, ZAXPY, ZCOPY, ZGEMV, ZGETRS, ZLACN2
  233: *     ..
  234: *     .. Intrinsic Functions ..
  235:       INTRINSIC          ABS, DBLE, DIMAG, MAX
  236: *     ..
  237: *     .. Statement Functions ..
  238:       DOUBLE PRECISION   CABS1
  239: *     ..
  240: *     .. Statement Function definitions ..
  241:       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
  242: *     ..
  243: *     .. Executable Statements ..
  244: *
  245: *     Test the input parameters.
  246: *
  247:       INFO = 0
  248:       NOTRAN = LSAME( TRANS, 'N' )
  249:       IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
  250:      $    LSAME( TRANS, 'C' ) ) THEN
  251:          INFO = -1
  252:       ELSE IF( N.LT.0 ) THEN
  253:          INFO = -2
  254:       ELSE IF( NRHS.LT.0 ) THEN
  255:          INFO = -3
  256:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  257:          INFO = -5
  258:       ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
  259:          INFO = -7
  260:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  261:          INFO = -10
  262:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  263:          INFO = -12
  264:       END IF
  265:       IF( INFO.NE.0 ) THEN
  266:          CALL XERBLA( 'ZGERFS', -INFO )
  267:          RETURN
  268:       END IF
  269: *
  270: *     Quick return if possible
  271: *
  272:       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
  273:          DO 10 J = 1, NRHS
  274:             FERR( J ) = ZERO
  275:             BERR( J ) = ZERO
  276:    10    CONTINUE
  277:          RETURN
  278:       END IF
  279: *
  280:       IF( NOTRAN ) THEN
  281:          TRANSN = 'N'
  282:          TRANST = 'C'
  283:       ELSE
  284:          TRANSN = 'C'
  285:          TRANST = 'N'
  286:       END IF
  287: *
  288: *     NZ = maximum number of nonzero elements in each row of A, plus 1
  289: *
  290:       NZ = N + 1
  291:       EPS = DLAMCH( 'Epsilon' )
  292:       SAFMIN = DLAMCH( 'Safe minimum' )
  293:       SAFE1 = NZ*SAFMIN
  294:       SAFE2 = SAFE1 / EPS
  295: *
  296: *     Do for each right hand side
  297: *
  298:       DO 140 J = 1, NRHS
  299: *
  300:          COUNT = 1
  301:          LSTRES = THREE
  302:    20    CONTINUE
  303: *
  304: *        Loop until stopping criterion is satisfied.
  305: *
  306: *        Compute residual R = B - op(A) * X,
  307: *        where op(A) = A, A**T, or A**H, depending on TRANS.
  308: *
  309:          CALL ZCOPY( N, B( 1, J ), 1, WORK, 1 )
  310:          CALL ZGEMV( TRANS, N, N, -ONE, A, LDA, X( 1, J ), 1, ONE, WORK,
  311:      $               1 )
  312: *
  313: *        Compute componentwise relative backward error from formula
  314: *
  315: *        max(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) )
  316: *
  317: *        where abs(Z) is the componentwise absolute value of the matrix
  318: *        or vector Z.  If the i-th component of the denominator is less
  319: *        than SAFE2, then SAFE1 is added to the i-th components of the
  320: *        numerator and denominator before dividing.
  321: *
  322:          DO 30 I = 1, N
  323:             RWORK( I ) = CABS1( B( I, J ) )
  324:    30    CONTINUE
  325: *
  326: *        Compute abs(op(A))*abs(X) + abs(B).
  327: *
  328:          IF( NOTRAN ) THEN
  329:             DO 50 K = 1, N
  330:                XK = CABS1( X( K, J ) )
  331:                DO 40 I = 1, N
  332:                   RWORK( I ) = RWORK( I ) + CABS1( A( I, K ) )*XK
  333:    40          CONTINUE
  334:    50       CONTINUE
  335:          ELSE
  336:             DO 70 K = 1, N
  337:                S = ZERO
  338:                DO 60 I = 1, N
  339:                   S = S + CABS1( A( I, K ) )*CABS1( X( I, J ) )
  340:    60          CONTINUE
  341:                RWORK( K ) = RWORK( K ) + S
  342:    70       CONTINUE
  343:          END IF
  344:          S = ZERO
  345:          DO 80 I = 1, N
  346:             IF( RWORK( I ).GT.SAFE2 ) THEN
  347:                S = MAX( S, CABS1( WORK( I ) ) / RWORK( I ) )
  348:             ELSE
  349:                S = MAX( S, ( CABS1( WORK( I ) )+SAFE1 ) /
  350:      $             ( RWORK( I )+SAFE1 ) )
  351:             END IF
  352:    80    CONTINUE
  353:          BERR( J ) = S
  354: *
  355: *        Test stopping criterion. Continue iterating if
  356: *           1) The residual BERR(J) is larger than machine epsilon, and
  357: *           2) BERR(J) decreased by at least a factor of 2 during the
  358: *              last iteration, and
  359: *           3) At most ITMAX iterations tried.
  360: *
  361:          IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
  362:      $       COUNT.LE.ITMAX ) THEN
  363: *
  364: *           Update solution and try again.
  365: *
  366:             CALL ZGETRS( TRANS, N, 1, AF, LDAF, IPIV, WORK, N, INFO )
  367:             CALL ZAXPY( N, ONE, WORK, 1, X( 1, J ), 1 )
  368:             LSTRES = BERR( J )
  369:             COUNT = COUNT + 1
  370:             GO TO 20
  371:          END IF
  372: *
  373: *        Bound error from formula
  374: *
  375: *        norm(X - XTRUE) / norm(X) .le. FERR =
  376: *        norm( abs(inv(op(A)))*
  377: *           ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X)
  378: *
  379: *        where
  380: *          norm(Z) is the magnitude of the largest component of Z
  381: *          inv(op(A)) is the inverse of op(A)
  382: *          abs(Z) is the componentwise absolute value of the matrix or
  383: *             vector Z
  384: *          NZ is the maximum number of nonzeros in any row of A, plus 1
  385: *          EPS is machine epsilon
  386: *
  387: *        The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B))
  388: *        is incremented by SAFE1 if the i-th component of
  389: *        abs(op(A))*abs(X) + abs(B) is less than SAFE2.
  390: *
  391: *        Use ZLACN2 to estimate the infinity-norm of the matrix
  392: *           inv(op(A)) * diag(W),
  393: *        where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) )))
  394: *
  395:          DO 90 I = 1, N
  396:             IF( RWORK( I ).GT.SAFE2 ) THEN
  397:                RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I )
  398:             ELSE
  399:                RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I ) +
  400:      $                      SAFE1
  401:             END IF
  402:    90    CONTINUE
  403: *
  404:          KASE = 0
  405:   100    CONTINUE
  406:          CALL ZLACN2( N, WORK( N+1 ), WORK, FERR( J ), KASE, ISAVE )
  407:          IF( KASE.NE.0 ) THEN
  408:             IF( KASE.EQ.1 ) THEN
  409: *
  410: *              Multiply by diag(W)*inv(op(A)**H).
  411: *
  412:                CALL ZGETRS( TRANST, N, 1, AF, LDAF, IPIV, WORK, N,
  413:      $                      INFO )
  414:                DO 110 I = 1, N
  415:                   WORK( I ) = RWORK( I )*WORK( I )
  416:   110          CONTINUE
  417:             ELSE
  418: *
  419: *              Multiply by inv(op(A))*diag(W).
  420: *
  421:                DO 120 I = 1, N
  422:                   WORK( I ) = RWORK( I )*WORK( I )
  423:   120          CONTINUE
  424:                CALL ZGETRS( TRANSN, N, 1, AF, LDAF, IPIV, WORK, N,
  425:      $                      INFO )
  426:             END IF
  427:             GO TO 100
  428:          END IF
  429: *
  430: *        Normalize error.
  431: *
  432:          LSTRES = ZERO
  433:          DO 130 I = 1, N
  434:             LSTRES = MAX( LSTRES, CABS1( X( I, J ) ) )
  435:   130    CONTINUE
  436:          IF( LSTRES.NE.ZERO )
  437:      $      FERR( J ) = FERR( J ) / LSTRES
  438: *
  439:   140 CONTINUE
  440: *
  441:       RETURN
  442: *
  443: *     End of ZGERFS
  444: *
  445:       END

CVSweb interface <joel.bertrand@systella.fr>