File:  [local] / rpl / lapack / lapack / zgerfs.f
Revision 1.11: download - view: text, annotated - select for diffs - revision graph
Fri Dec 14 14:22:45 2012 UTC (11 years, 5 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_16, rpl-4_1_15, rpl-4_1_14, rpl-4_1_13, rpl-4_1_12, rpl-4_1_11, HEAD
Mise à jour de lapack.

    1: *> \brief \b ZGERFS
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download ZGERFS + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgerfs.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgerfs.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgerfs.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZGERFS( TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB,
   22: *                          X, LDX, FERR, BERR, WORK, RWORK, INFO )
   23:    24: *       .. Scalar Arguments ..
   25: *       CHARACTER          TRANS
   26: *       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       INTEGER            IPIV( * )
   30: *       DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * )
   31: *       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
   32: *      $                   WORK( * ), X( LDX, * )
   33: *       ..
   34: *  
   35: *
   36: *> \par Purpose:
   37: *  =============
   38: *>
   39: *> \verbatim
   40: *>
   41: *> ZGERFS improves the computed solution to a system of linear
   42: *> equations and provides error bounds and backward error estimates for
   43: *> the solution.
   44: *> \endverbatim
   45: *
   46: *  Arguments:
   47: *  ==========
   48: *
   49: *> \param[in] TRANS
   50: *> \verbatim
   51: *>          TRANS is CHARACTER*1
   52: *>          Specifies the form of the system of equations:
   53: *>          = 'N':  A * X = B     (No transpose)
   54: *>          = 'T':  A**T * X = B  (Transpose)
   55: *>          = 'C':  A**H * X = B  (Conjugate transpose)
   56: *> \endverbatim
   57: *>
   58: *> \param[in] N
   59: *> \verbatim
   60: *>          N is INTEGER
   61: *>          The order of the matrix A.  N >= 0.
   62: *> \endverbatim
   63: *>
   64: *> \param[in] NRHS
   65: *> \verbatim
   66: *>          NRHS is INTEGER
   67: *>          The number of right hand sides, i.e., the number of columns
   68: *>          of the matrices B and X.  NRHS >= 0.
   69: *> \endverbatim
   70: *>
   71: *> \param[in] A
   72: *> \verbatim
   73: *>          A is COMPLEX*16 array, dimension (LDA,N)
   74: *>          The original N-by-N matrix A.
   75: *> \endverbatim
   76: *>
   77: *> \param[in] LDA
   78: *> \verbatim
   79: *>          LDA is INTEGER
   80: *>          The leading dimension of the array A.  LDA >= max(1,N).
   81: *> \endverbatim
   82: *>
   83: *> \param[in] AF
   84: *> \verbatim
   85: *>          AF is COMPLEX*16 array, dimension (LDAF,N)
   86: *>          The factors L and U from the factorization A = P*L*U
   87: *>          as computed by ZGETRF.
   88: *> \endverbatim
   89: *>
   90: *> \param[in] LDAF
   91: *> \verbatim
   92: *>          LDAF is INTEGER
   93: *>          The leading dimension of the array AF.  LDAF >= max(1,N).
   94: *> \endverbatim
   95: *>
   96: *> \param[in] IPIV
   97: *> \verbatim
   98: *>          IPIV is INTEGER array, dimension (N)
   99: *>          The pivot indices from ZGETRF; for 1<=i<=N, row i of the
  100: *>          matrix was interchanged with row IPIV(i).
  101: *> \endverbatim
  102: *>
  103: *> \param[in] B
  104: *> \verbatim
  105: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
  106: *>          The right hand side matrix B.
  107: *> \endverbatim
  108: *>
  109: *> \param[in] LDB
  110: *> \verbatim
  111: *>          LDB is INTEGER
  112: *>          The leading dimension of the array B.  LDB >= max(1,N).
  113: *> \endverbatim
  114: *>
  115: *> \param[in,out] X
  116: *> \verbatim
  117: *>          X is COMPLEX*16 array, dimension (LDX,NRHS)
  118: *>          On entry, the solution matrix X, as computed by ZGETRS.
  119: *>          On exit, the improved solution matrix X.
  120: *> \endverbatim
  121: *>
  122: *> \param[in] LDX
  123: *> \verbatim
  124: *>          LDX is INTEGER
  125: *>          The leading dimension of the array X.  LDX >= max(1,N).
  126: *> \endverbatim
  127: *>
  128: *> \param[out] FERR
  129: *> \verbatim
  130: *>          FERR is DOUBLE PRECISION array, dimension (NRHS)
  131: *>          The estimated forward error bound for each solution vector
  132: *>          X(j) (the j-th column of the solution matrix X).
  133: *>          If XTRUE is the true solution corresponding to X(j), FERR(j)
  134: *>          is an estimated upper bound for the magnitude of the largest
  135: *>          element in (X(j) - XTRUE) divided by the magnitude of the
  136: *>          largest element in X(j).  The estimate is as reliable as
  137: *>          the estimate for RCOND, and is almost always a slight
  138: *>          overestimate of the true error.
  139: *> \endverbatim
  140: *>
  141: *> \param[out] BERR
  142: *> \verbatim
  143: *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
  144: *>          The componentwise relative backward error of each solution
  145: *>          vector X(j) (i.e., the smallest relative change in
  146: *>          any element of A or B that makes X(j) an exact solution).
  147: *> \endverbatim
  148: *>
  149: *> \param[out] WORK
  150: *> \verbatim
  151: *>          WORK is COMPLEX*16 array, dimension (2*N)
  152: *> \endverbatim
  153: *>
  154: *> \param[out] RWORK
  155: *> \verbatim
  156: *>          RWORK is DOUBLE PRECISION array, dimension (N)
  157: *> \endverbatim
  158: *>
  159: *> \param[out] INFO
  160: *> \verbatim
  161: *>          INFO is INTEGER
  162: *>          = 0:  successful exit
  163: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  164: *> \endverbatim
  165: *
  166: *> \par Internal Parameters:
  167: *  =========================
  168: *>
  169: *> \verbatim
  170: *>  ITMAX is the maximum number of steps of iterative refinement.
  171: *> \endverbatim
  172: *
  173: *  Authors:
  174: *  ========
  175: *
  176: *> \author Univ. of Tennessee 
  177: *> \author Univ. of California Berkeley 
  178: *> \author Univ. of Colorado Denver 
  179: *> \author NAG Ltd. 
  180: *
  181: *> \date November 2011
  182: *
  183: *> \ingroup complex16GEcomputational
  184: *
  185: *  =====================================================================
  186:       SUBROUTINE ZGERFS( TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB,
  187:      $                   X, LDX, FERR, BERR, WORK, RWORK, INFO )
  188: *
  189: *  -- LAPACK computational routine (version 3.4.0) --
  190: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  191: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  192: *     November 2011
  193: *
  194: *     .. Scalar Arguments ..
  195:       CHARACTER          TRANS
  196:       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS
  197: *     ..
  198: *     .. Array Arguments ..
  199:       INTEGER            IPIV( * )
  200:       DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * )
  201:       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
  202:      $                   WORK( * ), X( LDX, * )
  203: *     ..
  204: *
  205: *  =====================================================================
  206: *
  207: *     .. Parameters ..
  208:       INTEGER            ITMAX
  209:       PARAMETER          ( ITMAX = 5 )
  210:       DOUBLE PRECISION   ZERO
  211:       PARAMETER          ( ZERO = 0.0D+0 )
  212:       COMPLEX*16         ONE
  213:       PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ) )
  214:       DOUBLE PRECISION   TWO
  215:       PARAMETER          ( TWO = 2.0D+0 )
  216:       DOUBLE PRECISION   THREE
  217:       PARAMETER          ( THREE = 3.0D+0 )
  218: *     ..
  219: *     .. Local Scalars ..
  220:       LOGICAL            NOTRAN
  221:       CHARACTER          TRANSN, TRANST
  222:       INTEGER            COUNT, I, J, K, KASE, NZ
  223:       DOUBLE PRECISION   EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
  224:       COMPLEX*16         ZDUM
  225: *     ..
  226: *     .. Local Arrays ..
  227:       INTEGER            ISAVE( 3 )
  228: *     ..
  229: *     .. External Functions ..
  230:       LOGICAL            LSAME
  231:       DOUBLE PRECISION   DLAMCH
  232:       EXTERNAL           LSAME, DLAMCH
  233: *     ..
  234: *     .. External Subroutines ..
  235:       EXTERNAL           XERBLA, ZAXPY, ZCOPY, ZGEMV, ZGETRS, ZLACN2
  236: *     ..
  237: *     .. Intrinsic Functions ..
  238:       INTRINSIC          ABS, DBLE, DIMAG, MAX
  239: *     ..
  240: *     .. Statement Functions ..
  241:       DOUBLE PRECISION   CABS1
  242: *     ..
  243: *     .. Statement Function definitions ..
  244:       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
  245: *     ..
  246: *     .. Executable Statements ..
  247: *
  248: *     Test the input parameters.
  249: *
  250:       INFO = 0
  251:       NOTRAN = LSAME( TRANS, 'N' )
  252:       IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
  253:      $    LSAME( TRANS, 'C' ) ) THEN
  254:          INFO = -1
  255:       ELSE IF( N.LT.0 ) THEN
  256:          INFO = -2
  257:       ELSE IF( NRHS.LT.0 ) THEN
  258:          INFO = -3
  259:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  260:          INFO = -5
  261:       ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
  262:          INFO = -7
  263:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  264:          INFO = -10
  265:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  266:          INFO = -12
  267:       END IF
  268:       IF( INFO.NE.0 ) THEN
  269:          CALL XERBLA( 'ZGERFS', -INFO )
  270:          RETURN
  271:       END IF
  272: *
  273: *     Quick return if possible
  274: *
  275:       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
  276:          DO 10 J = 1, NRHS
  277:             FERR( J ) = ZERO
  278:             BERR( J ) = ZERO
  279:    10    CONTINUE
  280:          RETURN
  281:       END IF
  282: *
  283:       IF( NOTRAN ) THEN
  284:          TRANSN = 'N'
  285:          TRANST = 'C'
  286:       ELSE
  287:          TRANSN = 'C'
  288:          TRANST = 'N'
  289:       END IF
  290: *
  291: *     NZ = maximum number of nonzero elements in each row of A, plus 1
  292: *
  293:       NZ = N + 1
  294:       EPS = DLAMCH( 'Epsilon' )
  295:       SAFMIN = DLAMCH( 'Safe minimum' )
  296:       SAFE1 = NZ*SAFMIN
  297:       SAFE2 = SAFE1 / EPS
  298: *
  299: *     Do for each right hand side
  300: *
  301:       DO 140 J = 1, NRHS
  302: *
  303:          COUNT = 1
  304:          LSTRES = THREE
  305:    20    CONTINUE
  306: *
  307: *        Loop until stopping criterion is satisfied.
  308: *
  309: *        Compute residual R = B - op(A) * X,
  310: *        where op(A) = A, A**T, or A**H, depending on TRANS.
  311: *
  312:          CALL ZCOPY( N, B( 1, J ), 1, WORK, 1 )
  313:          CALL ZGEMV( TRANS, N, N, -ONE, A, LDA, X( 1, J ), 1, ONE, WORK,
  314:      $               1 )
  315: *
  316: *        Compute componentwise relative backward error from formula
  317: *
  318: *        max(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) )
  319: *
  320: *        where abs(Z) is the componentwise absolute value of the matrix
  321: *        or vector Z.  If the i-th component of the denominator is less
  322: *        than SAFE2, then SAFE1 is added to the i-th components of the
  323: *        numerator and denominator before dividing.
  324: *
  325:          DO 30 I = 1, N
  326:             RWORK( I ) = CABS1( B( I, J ) )
  327:    30    CONTINUE
  328: *
  329: *        Compute abs(op(A))*abs(X) + abs(B).
  330: *
  331:          IF( NOTRAN ) THEN
  332:             DO 50 K = 1, N
  333:                XK = CABS1( X( K, J ) )
  334:                DO 40 I = 1, N
  335:                   RWORK( I ) = RWORK( I ) + CABS1( A( I, K ) )*XK
  336:    40          CONTINUE
  337:    50       CONTINUE
  338:          ELSE
  339:             DO 70 K = 1, N
  340:                S = ZERO
  341:                DO 60 I = 1, N
  342:                   S = S + CABS1( A( I, K ) )*CABS1( X( I, J ) )
  343:    60          CONTINUE
  344:                RWORK( K ) = RWORK( K ) + S
  345:    70       CONTINUE
  346:          END IF
  347:          S = ZERO
  348:          DO 80 I = 1, N
  349:             IF( RWORK( I ).GT.SAFE2 ) THEN
  350:                S = MAX( S, CABS1( WORK( I ) ) / RWORK( I ) )
  351:             ELSE
  352:                S = MAX( S, ( CABS1( WORK( I ) )+SAFE1 ) /
  353:      $             ( RWORK( I )+SAFE1 ) )
  354:             END IF
  355:    80    CONTINUE
  356:          BERR( J ) = S
  357: *
  358: *        Test stopping criterion. Continue iterating if
  359: *           1) The residual BERR(J) is larger than machine epsilon, and
  360: *           2) BERR(J) decreased by at least a factor of 2 during the
  361: *              last iteration, and
  362: *           3) At most ITMAX iterations tried.
  363: *
  364:          IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
  365:      $       COUNT.LE.ITMAX ) THEN
  366: *
  367: *           Update solution and try again.
  368: *
  369:             CALL ZGETRS( TRANS, N, 1, AF, LDAF, IPIV, WORK, N, INFO )
  370:             CALL ZAXPY( N, ONE, WORK, 1, X( 1, J ), 1 )
  371:             LSTRES = BERR( J )
  372:             COUNT = COUNT + 1
  373:             GO TO 20
  374:          END IF
  375: *
  376: *        Bound error from formula
  377: *
  378: *        norm(X - XTRUE) / norm(X) .le. FERR =
  379: *        norm( abs(inv(op(A)))*
  380: *           ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X)
  381: *
  382: *        where
  383: *          norm(Z) is the magnitude of the largest component of Z
  384: *          inv(op(A)) is the inverse of op(A)
  385: *          abs(Z) is the componentwise absolute value of the matrix or
  386: *             vector Z
  387: *          NZ is the maximum number of nonzeros in any row of A, plus 1
  388: *          EPS is machine epsilon
  389: *
  390: *        The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B))
  391: *        is incremented by SAFE1 if the i-th component of
  392: *        abs(op(A))*abs(X) + abs(B) is less than SAFE2.
  393: *
  394: *        Use ZLACN2 to estimate the infinity-norm of the matrix
  395: *           inv(op(A)) * diag(W),
  396: *        where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) )))
  397: *
  398:          DO 90 I = 1, N
  399:             IF( RWORK( I ).GT.SAFE2 ) THEN
  400:                RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I )
  401:             ELSE
  402:                RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I ) +
  403:      $                      SAFE1
  404:             END IF
  405:    90    CONTINUE
  406: *
  407:          KASE = 0
  408:   100    CONTINUE
  409:          CALL ZLACN2( N, WORK( N+1 ), WORK, FERR( J ), KASE, ISAVE )
  410:          IF( KASE.NE.0 ) THEN
  411:             IF( KASE.EQ.1 ) THEN
  412: *
  413: *              Multiply by diag(W)*inv(op(A)**H).
  414: *
  415:                CALL ZGETRS( TRANST, N, 1, AF, LDAF, IPIV, WORK, N,
  416:      $                      INFO )
  417:                DO 110 I = 1, N
  418:                   WORK( I ) = RWORK( I )*WORK( I )
  419:   110          CONTINUE
  420:             ELSE
  421: *
  422: *              Multiply by inv(op(A))*diag(W).
  423: *
  424:                DO 120 I = 1, N
  425:                   WORK( I ) = RWORK( I )*WORK( I )
  426:   120          CONTINUE
  427:                CALL ZGETRS( TRANSN, N, 1, AF, LDAF, IPIV, WORK, N,
  428:      $                      INFO )
  429:             END IF
  430:             GO TO 100
  431:          END IF
  432: *
  433: *        Normalize error.
  434: *
  435:          LSTRES = ZERO
  436:          DO 130 I = 1, N
  437:             LSTRES = MAX( LSTRES, CABS1( X( I, J ) ) )
  438:   130    CONTINUE
  439:          IF( LSTRES.NE.ZERO )
  440:      $      FERR( J ) = FERR( J ) / LSTRES
  441: *
  442:   140 CONTINUE
  443: *
  444:       RETURN
  445: *
  446: *     End of ZGERFS
  447: *
  448:       END

CVSweb interface <joel.bertrand@systella.fr>