File:  [local] / rpl / lapack / lapack / zgerfs.f
Revision 1.1.1.1 (vendor branch): download - view: text, annotated - select for diffs - revision graph
Tue Jan 26 15:22:45 2010 UTC (14 years, 3 months ago) by bertrand
Branches: JKB
CVS tags: start, rpl-4_0_14, rpl-4_0_13, rpl-4_0_12, rpl-4_0_11, rpl-4_0_10


Commit initial.

    1:       SUBROUTINE ZGERFS( TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB,
    2:      $                   X, LDX, FERR, BERR, WORK, RWORK, INFO )
    3: *
    4: *  -- LAPACK routine (version 3.2) --
    5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    7: *     November 2006
    8: *
    9: *     Modified to call ZLACN2 in place of ZLACON, 10 Feb 03, SJH.
   10: *
   11: *     .. Scalar Arguments ..
   12:       CHARACTER          TRANS
   13:       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS
   14: *     ..
   15: *     .. Array Arguments ..
   16:       INTEGER            IPIV( * )
   17:       DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * )
   18:       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
   19:      $                   WORK( * ), X( LDX, * )
   20: *     ..
   21: *
   22: *  Purpose
   23: *  =======
   24: *
   25: *  ZGERFS improves the computed solution to a system of linear
   26: *  equations and provides error bounds and backward error estimates for
   27: *  the solution.
   28: *
   29: *  Arguments
   30: *  =========
   31: *
   32: *  TRANS   (input) CHARACTER*1
   33: *          Specifies the form of the system of equations:
   34: *          = 'N':  A * X = B     (No transpose)
   35: *          = 'T':  A**T * X = B  (Transpose)
   36: *          = 'C':  A**H * X = B  (Conjugate transpose)
   37: *
   38: *  N       (input) INTEGER
   39: *          The order of the matrix A.  N >= 0.
   40: *
   41: *  NRHS    (input) INTEGER
   42: *          The number of right hand sides, i.e., the number of columns
   43: *          of the matrices B and X.  NRHS >= 0.
   44: *
   45: *  A       (input) COMPLEX*16 array, dimension (LDA,N)
   46: *          The original N-by-N matrix A.
   47: *
   48: *  LDA     (input) INTEGER
   49: *          The leading dimension of the array A.  LDA >= max(1,N).
   50: *
   51: *  AF      (input) COMPLEX*16 array, dimension (LDAF,N)
   52: *          The factors L and U from the factorization A = P*L*U
   53: *          as computed by ZGETRF.
   54: *
   55: *  LDAF    (input) INTEGER
   56: *          The leading dimension of the array AF.  LDAF >= max(1,N).
   57: *
   58: *  IPIV    (input) INTEGER array, dimension (N)
   59: *          The pivot indices from ZGETRF; for 1<=i<=N, row i of the
   60: *          matrix was interchanged with row IPIV(i).
   61: *
   62: *  B       (input) COMPLEX*16 array, dimension (LDB,NRHS)
   63: *          The right hand side matrix B.
   64: *
   65: *  LDB     (input) INTEGER
   66: *          The leading dimension of the array B.  LDB >= max(1,N).
   67: *
   68: *  X       (input/output) COMPLEX*16 array, dimension (LDX,NRHS)
   69: *          On entry, the solution matrix X, as computed by ZGETRS.
   70: *          On exit, the improved solution matrix X.
   71: *
   72: *  LDX     (input) INTEGER
   73: *          The leading dimension of the array X.  LDX >= max(1,N).
   74: *
   75: *  FERR    (output) DOUBLE PRECISION array, dimension (NRHS)
   76: *          The estimated forward error bound for each solution vector
   77: *          X(j) (the j-th column of the solution matrix X).
   78: *          If XTRUE is the true solution corresponding to X(j), FERR(j)
   79: *          is an estimated upper bound for the magnitude of the largest
   80: *          element in (X(j) - XTRUE) divided by the magnitude of the
   81: *          largest element in X(j).  The estimate is as reliable as
   82: *          the estimate for RCOND, and is almost always a slight
   83: *          overestimate of the true error.
   84: *
   85: *  BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
   86: *          The componentwise relative backward error of each solution
   87: *          vector X(j) (i.e., the smallest relative change in
   88: *          any element of A or B that makes X(j) an exact solution).
   89: *
   90: *  WORK    (workspace) COMPLEX*16 array, dimension (2*N)
   91: *
   92: *  RWORK   (workspace) DOUBLE PRECISION array, dimension (N)
   93: *
   94: *  INFO    (output) INTEGER
   95: *          = 0:  successful exit
   96: *          < 0:  if INFO = -i, the i-th argument had an illegal value
   97: *
   98: *  Internal Parameters
   99: *  ===================
  100: *
  101: *  ITMAX is the maximum number of steps of iterative refinement.
  102: *
  103: *  =====================================================================
  104: *
  105: *     .. Parameters ..
  106:       INTEGER            ITMAX
  107:       PARAMETER          ( ITMAX = 5 )
  108:       DOUBLE PRECISION   ZERO
  109:       PARAMETER          ( ZERO = 0.0D+0 )
  110:       COMPLEX*16         ONE
  111:       PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ) )
  112:       DOUBLE PRECISION   TWO
  113:       PARAMETER          ( TWO = 2.0D+0 )
  114:       DOUBLE PRECISION   THREE
  115:       PARAMETER          ( THREE = 3.0D+0 )
  116: *     ..
  117: *     .. Local Scalars ..
  118:       LOGICAL            NOTRAN
  119:       CHARACTER          TRANSN, TRANST
  120:       INTEGER            COUNT, I, J, K, KASE, NZ
  121:       DOUBLE PRECISION   EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
  122:       COMPLEX*16         ZDUM
  123: *     ..
  124: *     .. Local Arrays ..
  125:       INTEGER            ISAVE( 3 )
  126: *     ..
  127: *     .. External Functions ..
  128:       LOGICAL            LSAME
  129:       DOUBLE PRECISION   DLAMCH
  130:       EXTERNAL           LSAME, DLAMCH
  131: *     ..
  132: *     .. External Subroutines ..
  133:       EXTERNAL           XERBLA, ZAXPY, ZCOPY, ZGEMV, ZGETRS, ZLACN2
  134: *     ..
  135: *     .. Intrinsic Functions ..
  136:       INTRINSIC          ABS, DBLE, DIMAG, MAX
  137: *     ..
  138: *     .. Statement Functions ..
  139:       DOUBLE PRECISION   CABS1
  140: *     ..
  141: *     .. Statement Function definitions ..
  142:       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
  143: *     ..
  144: *     .. Executable Statements ..
  145: *
  146: *     Test the input parameters.
  147: *
  148:       INFO = 0
  149:       NOTRAN = LSAME( TRANS, 'N' )
  150:       IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
  151:      $    LSAME( TRANS, 'C' ) ) THEN
  152:          INFO = -1
  153:       ELSE IF( N.LT.0 ) THEN
  154:          INFO = -2
  155:       ELSE IF( NRHS.LT.0 ) THEN
  156:          INFO = -3
  157:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  158:          INFO = -5
  159:       ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
  160:          INFO = -7
  161:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  162:          INFO = -10
  163:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  164:          INFO = -12
  165:       END IF
  166:       IF( INFO.NE.0 ) THEN
  167:          CALL XERBLA( 'ZGERFS', -INFO )
  168:          RETURN
  169:       END IF
  170: *
  171: *     Quick return if possible
  172: *
  173:       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
  174:          DO 10 J = 1, NRHS
  175:             FERR( J ) = ZERO
  176:             BERR( J ) = ZERO
  177:    10    CONTINUE
  178:          RETURN
  179:       END IF
  180: *
  181:       IF( NOTRAN ) THEN
  182:          TRANSN = 'N'
  183:          TRANST = 'C'
  184:       ELSE
  185:          TRANSN = 'C'
  186:          TRANST = 'N'
  187:       END IF
  188: *
  189: *     NZ = maximum number of nonzero elements in each row of A, plus 1
  190: *
  191:       NZ = N + 1
  192:       EPS = DLAMCH( 'Epsilon' )
  193:       SAFMIN = DLAMCH( 'Safe minimum' )
  194:       SAFE1 = NZ*SAFMIN
  195:       SAFE2 = SAFE1 / EPS
  196: *
  197: *     Do for each right hand side
  198: *
  199:       DO 140 J = 1, NRHS
  200: *
  201:          COUNT = 1
  202:          LSTRES = THREE
  203:    20    CONTINUE
  204: *
  205: *        Loop until stopping criterion is satisfied.
  206: *
  207: *        Compute residual R = B - op(A) * X,
  208: *        where op(A) = A, A**T, or A**H, depending on TRANS.
  209: *
  210:          CALL ZCOPY( N, B( 1, J ), 1, WORK, 1 )
  211:          CALL ZGEMV( TRANS, N, N, -ONE, A, LDA, X( 1, J ), 1, ONE, WORK,
  212:      $               1 )
  213: *
  214: *        Compute componentwise relative backward error from formula
  215: *
  216: *        max(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) )
  217: *
  218: *        where abs(Z) is the componentwise absolute value of the matrix
  219: *        or vector Z.  If the i-th component of the denominator is less
  220: *        than SAFE2, then SAFE1 is added to the i-th components of the
  221: *        numerator and denominator before dividing.
  222: *
  223:          DO 30 I = 1, N
  224:             RWORK( I ) = CABS1( B( I, J ) )
  225:    30    CONTINUE
  226: *
  227: *        Compute abs(op(A))*abs(X) + abs(B).
  228: *
  229:          IF( NOTRAN ) THEN
  230:             DO 50 K = 1, N
  231:                XK = CABS1( X( K, J ) )
  232:                DO 40 I = 1, N
  233:                   RWORK( I ) = RWORK( I ) + CABS1( A( I, K ) )*XK
  234:    40          CONTINUE
  235:    50       CONTINUE
  236:          ELSE
  237:             DO 70 K = 1, N
  238:                S = ZERO
  239:                DO 60 I = 1, N
  240:                   S = S + CABS1( A( I, K ) )*CABS1( X( I, J ) )
  241:    60          CONTINUE
  242:                RWORK( K ) = RWORK( K ) + S
  243:    70       CONTINUE
  244:          END IF
  245:          S = ZERO
  246:          DO 80 I = 1, N
  247:             IF( RWORK( I ).GT.SAFE2 ) THEN
  248:                S = MAX( S, CABS1( WORK( I ) ) / RWORK( I ) )
  249:             ELSE
  250:                S = MAX( S, ( CABS1( WORK( I ) )+SAFE1 ) /
  251:      $             ( RWORK( I )+SAFE1 ) )
  252:             END IF
  253:    80    CONTINUE
  254:          BERR( J ) = S
  255: *
  256: *        Test stopping criterion. Continue iterating if
  257: *           1) The residual BERR(J) is larger than machine epsilon, and
  258: *           2) BERR(J) decreased by at least a factor of 2 during the
  259: *              last iteration, and
  260: *           3) At most ITMAX iterations tried.
  261: *
  262:          IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
  263:      $       COUNT.LE.ITMAX ) THEN
  264: *
  265: *           Update solution and try again.
  266: *
  267:             CALL ZGETRS( TRANS, N, 1, AF, LDAF, IPIV, WORK, N, INFO )
  268:             CALL ZAXPY( N, ONE, WORK, 1, X( 1, J ), 1 )
  269:             LSTRES = BERR( J )
  270:             COUNT = COUNT + 1
  271:             GO TO 20
  272:          END IF
  273: *
  274: *        Bound error from formula
  275: *
  276: *        norm(X - XTRUE) / norm(X) .le. FERR =
  277: *        norm( abs(inv(op(A)))*
  278: *           ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X)
  279: *
  280: *        where
  281: *          norm(Z) is the magnitude of the largest component of Z
  282: *          inv(op(A)) is the inverse of op(A)
  283: *          abs(Z) is the componentwise absolute value of the matrix or
  284: *             vector Z
  285: *          NZ is the maximum number of nonzeros in any row of A, plus 1
  286: *          EPS is machine epsilon
  287: *
  288: *        The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B))
  289: *        is incremented by SAFE1 if the i-th component of
  290: *        abs(op(A))*abs(X) + abs(B) is less than SAFE2.
  291: *
  292: *        Use ZLACN2 to estimate the infinity-norm of the matrix
  293: *           inv(op(A)) * diag(W),
  294: *        where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) )))
  295: *
  296:          DO 90 I = 1, N
  297:             IF( RWORK( I ).GT.SAFE2 ) THEN
  298:                RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I )
  299:             ELSE
  300:                RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I ) +
  301:      $                      SAFE1
  302:             END IF
  303:    90    CONTINUE
  304: *
  305:          KASE = 0
  306:   100    CONTINUE
  307:          CALL ZLACN2( N, WORK( N+1 ), WORK, FERR( J ), KASE, ISAVE )
  308:          IF( KASE.NE.0 ) THEN
  309:             IF( KASE.EQ.1 ) THEN
  310: *
  311: *              Multiply by diag(W)*inv(op(A)**H).
  312: *
  313:                CALL ZGETRS( TRANST, N, 1, AF, LDAF, IPIV, WORK, N,
  314:      $                      INFO )
  315:                DO 110 I = 1, N
  316:                   WORK( I ) = RWORK( I )*WORK( I )
  317:   110          CONTINUE
  318:             ELSE
  319: *
  320: *              Multiply by inv(op(A))*diag(W).
  321: *
  322:                DO 120 I = 1, N
  323:                   WORK( I ) = RWORK( I )*WORK( I )
  324:   120          CONTINUE
  325:                CALL ZGETRS( TRANSN, N, 1, AF, LDAF, IPIV, WORK, N,
  326:      $                      INFO )
  327:             END IF
  328:             GO TO 100
  329:          END IF
  330: *
  331: *        Normalize error.
  332: *
  333:          LSTRES = ZERO
  334:          DO 130 I = 1, N
  335:             LSTRES = MAX( LSTRES, CABS1( X( I, J ) ) )
  336:   130    CONTINUE
  337:          IF( LSTRES.NE.ZERO )
  338:      $      FERR( J ) = FERR( J ) / LSTRES
  339: *
  340:   140 CONTINUE
  341: *
  342:       RETURN
  343: *
  344: *     End of ZGERFS
  345: *
  346:       END

CVSweb interface <joel.bertrand@systella.fr>