Annotation of rpl/lapack/lapack/zgerfs.f, revision 1.6

1.1       bertrand    1:       SUBROUTINE ZGERFS( TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB,
                      2:      $                   X, LDX, FERR, BERR, WORK, RWORK, INFO )
                      3: *
                      4: *  -- LAPACK routine (version 3.2) --
                      5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      7: *     November 2006
                      8: *
                      9: *     Modified to call ZLACN2 in place of ZLACON, 10 Feb 03, SJH.
                     10: *
                     11: *     .. Scalar Arguments ..
                     12:       CHARACTER          TRANS
                     13:       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS
                     14: *     ..
                     15: *     .. Array Arguments ..
                     16:       INTEGER            IPIV( * )
                     17:       DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * )
                     18:       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
                     19:      $                   WORK( * ), X( LDX, * )
                     20: *     ..
                     21: *
                     22: *  Purpose
                     23: *  =======
                     24: *
                     25: *  ZGERFS improves the computed solution to a system of linear
                     26: *  equations and provides error bounds and backward error estimates for
                     27: *  the solution.
                     28: *
                     29: *  Arguments
                     30: *  =========
                     31: *
                     32: *  TRANS   (input) CHARACTER*1
                     33: *          Specifies the form of the system of equations:
                     34: *          = 'N':  A * X = B     (No transpose)
                     35: *          = 'T':  A**T * X = B  (Transpose)
                     36: *          = 'C':  A**H * X = B  (Conjugate transpose)
                     37: *
                     38: *  N       (input) INTEGER
                     39: *          The order of the matrix A.  N >= 0.
                     40: *
                     41: *  NRHS    (input) INTEGER
                     42: *          The number of right hand sides, i.e., the number of columns
                     43: *          of the matrices B and X.  NRHS >= 0.
                     44: *
                     45: *  A       (input) COMPLEX*16 array, dimension (LDA,N)
                     46: *          The original N-by-N matrix A.
                     47: *
                     48: *  LDA     (input) INTEGER
                     49: *          The leading dimension of the array A.  LDA >= max(1,N).
                     50: *
                     51: *  AF      (input) COMPLEX*16 array, dimension (LDAF,N)
                     52: *          The factors L and U from the factorization A = P*L*U
                     53: *          as computed by ZGETRF.
                     54: *
                     55: *  LDAF    (input) INTEGER
                     56: *          The leading dimension of the array AF.  LDAF >= max(1,N).
                     57: *
                     58: *  IPIV    (input) INTEGER array, dimension (N)
                     59: *          The pivot indices from ZGETRF; for 1<=i<=N, row i of the
                     60: *          matrix was interchanged with row IPIV(i).
                     61: *
                     62: *  B       (input) COMPLEX*16 array, dimension (LDB,NRHS)
                     63: *          The right hand side matrix B.
                     64: *
                     65: *  LDB     (input) INTEGER
                     66: *          The leading dimension of the array B.  LDB >= max(1,N).
                     67: *
                     68: *  X       (input/output) COMPLEX*16 array, dimension (LDX,NRHS)
                     69: *          On entry, the solution matrix X, as computed by ZGETRS.
                     70: *          On exit, the improved solution matrix X.
                     71: *
                     72: *  LDX     (input) INTEGER
                     73: *          The leading dimension of the array X.  LDX >= max(1,N).
                     74: *
                     75: *  FERR    (output) DOUBLE PRECISION array, dimension (NRHS)
                     76: *          The estimated forward error bound for each solution vector
                     77: *          X(j) (the j-th column of the solution matrix X).
                     78: *          If XTRUE is the true solution corresponding to X(j), FERR(j)
                     79: *          is an estimated upper bound for the magnitude of the largest
                     80: *          element in (X(j) - XTRUE) divided by the magnitude of the
                     81: *          largest element in X(j).  The estimate is as reliable as
                     82: *          the estimate for RCOND, and is almost always a slight
                     83: *          overestimate of the true error.
                     84: *
                     85: *  BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
                     86: *          The componentwise relative backward error of each solution
                     87: *          vector X(j) (i.e., the smallest relative change in
                     88: *          any element of A or B that makes X(j) an exact solution).
                     89: *
                     90: *  WORK    (workspace) COMPLEX*16 array, dimension (2*N)
                     91: *
                     92: *  RWORK   (workspace) DOUBLE PRECISION array, dimension (N)
                     93: *
                     94: *  INFO    (output) INTEGER
                     95: *          = 0:  successful exit
                     96: *          < 0:  if INFO = -i, the i-th argument had an illegal value
                     97: *
                     98: *  Internal Parameters
                     99: *  ===================
                    100: *
                    101: *  ITMAX is the maximum number of steps of iterative refinement.
                    102: *
                    103: *  =====================================================================
                    104: *
                    105: *     .. Parameters ..
                    106:       INTEGER            ITMAX
                    107:       PARAMETER          ( ITMAX = 5 )
                    108:       DOUBLE PRECISION   ZERO
                    109:       PARAMETER          ( ZERO = 0.0D+0 )
                    110:       COMPLEX*16         ONE
                    111:       PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ) )
                    112:       DOUBLE PRECISION   TWO
                    113:       PARAMETER          ( TWO = 2.0D+0 )
                    114:       DOUBLE PRECISION   THREE
                    115:       PARAMETER          ( THREE = 3.0D+0 )
                    116: *     ..
                    117: *     .. Local Scalars ..
                    118:       LOGICAL            NOTRAN
                    119:       CHARACTER          TRANSN, TRANST
                    120:       INTEGER            COUNT, I, J, K, KASE, NZ
                    121:       DOUBLE PRECISION   EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
                    122:       COMPLEX*16         ZDUM
                    123: *     ..
                    124: *     .. Local Arrays ..
                    125:       INTEGER            ISAVE( 3 )
                    126: *     ..
                    127: *     .. External Functions ..
                    128:       LOGICAL            LSAME
                    129:       DOUBLE PRECISION   DLAMCH
                    130:       EXTERNAL           LSAME, DLAMCH
                    131: *     ..
                    132: *     .. External Subroutines ..
                    133:       EXTERNAL           XERBLA, ZAXPY, ZCOPY, ZGEMV, ZGETRS, ZLACN2
                    134: *     ..
                    135: *     .. Intrinsic Functions ..
                    136:       INTRINSIC          ABS, DBLE, DIMAG, MAX
                    137: *     ..
                    138: *     .. Statement Functions ..
                    139:       DOUBLE PRECISION   CABS1
                    140: *     ..
                    141: *     .. Statement Function definitions ..
                    142:       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
                    143: *     ..
                    144: *     .. Executable Statements ..
                    145: *
                    146: *     Test the input parameters.
                    147: *
                    148:       INFO = 0
                    149:       NOTRAN = LSAME( TRANS, 'N' )
                    150:       IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
                    151:      $    LSAME( TRANS, 'C' ) ) THEN
                    152:          INFO = -1
                    153:       ELSE IF( N.LT.0 ) THEN
                    154:          INFO = -2
                    155:       ELSE IF( NRHS.LT.0 ) THEN
                    156:          INFO = -3
                    157:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    158:          INFO = -5
                    159:       ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
                    160:          INFO = -7
                    161:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    162:          INFO = -10
                    163:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
                    164:          INFO = -12
                    165:       END IF
                    166:       IF( INFO.NE.0 ) THEN
                    167:          CALL XERBLA( 'ZGERFS', -INFO )
                    168:          RETURN
                    169:       END IF
                    170: *
                    171: *     Quick return if possible
                    172: *
                    173:       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
                    174:          DO 10 J = 1, NRHS
                    175:             FERR( J ) = ZERO
                    176:             BERR( J ) = ZERO
                    177:    10    CONTINUE
                    178:          RETURN
                    179:       END IF
                    180: *
                    181:       IF( NOTRAN ) THEN
                    182:          TRANSN = 'N'
                    183:          TRANST = 'C'
                    184:       ELSE
                    185:          TRANSN = 'C'
                    186:          TRANST = 'N'
                    187:       END IF
                    188: *
                    189: *     NZ = maximum number of nonzero elements in each row of A, plus 1
                    190: *
                    191:       NZ = N + 1
                    192:       EPS = DLAMCH( 'Epsilon' )
                    193:       SAFMIN = DLAMCH( 'Safe minimum' )
                    194:       SAFE1 = NZ*SAFMIN
                    195:       SAFE2 = SAFE1 / EPS
                    196: *
                    197: *     Do for each right hand side
                    198: *
                    199:       DO 140 J = 1, NRHS
                    200: *
                    201:          COUNT = 1
                    202:          LSTRES = THREE
                    203:    20    CONTINUE
                    204: *
                    205: *        Loop until stopping criterion is satisfied.
                    206: *
                    207: *        Compute residual R = B - op(A) * X,
                    208: *        where op(A) = A, A**T, or A**H, depending on TRANS.
                    209: *
                    210:          CALL ZCOPY( N, B( 1, J ), 1, WORK, 1 )
                    211:          CALL ZGEMV( TRANS, N, N, -ONE, A, LDA, X( 1, J ), 1, ONE, WORK,
                    212:      $               1 )
                    213: *
                    214: *        Compute componentwise relative backward error from formula
                    215: *
                    216: *        max(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) )
                    217: *
                    218: *        where abs(Z) is the componentwise absolute value of the matrix
                    219: *        or vector Z.  If the i-th component of the denominator is less
                    220: *        than SAFE2, then SAFE1 is added to the i-th components of the
                    221: *        numerator and denominator before dividing.
                    222: *
                    223:          DO 30 I = 1, N
                    224:             RWORK( I ) = CABS1( B( I, J ) )
                    225:    30    CONTINUE
                    226: *
                    227: *        Compute abs(op(A))*abs(X) + abs(B).
                    228: *
                    229:          IF( NOTRAN ) THEN
                    230:             DO 50 K = 1, N
                    231:                XK = CABS1( X( K, J ) )
                    232:                DO 40 I = 1, N
                    233:                   RWORK( I ) = RWORK( I ) + CABS1( A( I, K ) )*XK
                    234:    40          CONTINUE
                    235:    50       CONTINUE
                    236:          ELSE
                    237:             DO 70 K = 1, N
                    238:                S = ZERO
                    239:                DO 60 I = 1, N
                    240:                   S = S + CABS1( A( I, K ) )*CABS1( X( I, J ) )
                    241:    60          CONTINUE
                    242:                RWORK( K ) = RWORK( K ) + S
                    243:    70       CONTINUE
                    244:          END IF
                    245:          S = ZERO
                    246:          DO 80 I = 1, N
                    247:             IF( RWORK( I ).GT.SAFE2 ) THEN
                    248:                S = MAX( S, CABS1( WORK( I ) ) / RWORK( I ) )
                    249:             ELSE
                    250:                S = MAX( S, ( CABS1( WORK( I ) )+SAFE1 ) /
                    251:      $             ( RWORK( I )+SAFE1 ) )
                    252:             END IF
                    253:    80    CONTINUE
                    254:          BERR( J ) = S
                    255: *
                    256: *        Test stopping criterion. Continue iterating if
                    257: *           1) The residual BERR(J) is larger than machine epsilon, and
                    258: *           2) BERR(J) decreased by at least a factor of 2 during the
                    259: *              last iteration, and
                    260: *           3) At most ITMAX iterations tried.
                    261: *
                    262:          IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
                    263:      $       COUNT.LE.ITMAX ) THEN
                    264: *
                    265: *           Update solution and try again.
                    266: *
                    267:             CALL ZGETRS( TRANS, N, 1, AF, LDAF, IPIV, WORK, N, INFO )
                    268:             CALL ZAXPY( N, ONE, WORK, 1, X( 1, J ), 1 )
                    269:             LSTRES = BERR( J )
                    270:             COUNT = COUNT + 1
                    271:             GO TO 20
                    272:          END IF
                    273: *
                    274: *        Bound error from formula
                    275: *
                    276: *        norm(X - XTRUE) / norm(X) .le. FERR =
                    277: *        norm( abs(inv(op(A)))*
                    278: *           ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X)
                    279: *
                    280: *        where
                    281: *          norm(Z) is the magnitude of the largest component of Z
                    282: *          inv(op(A)) is the inverse of op(A)
                    283: *          abs(Z) is the componentwise absolute value of the matrix or
                    284: *             vector Z
                    285: *          NZ is the maximum number of nonzeros in any row of A, plus 1
                    286: *          EPS is machine epsilon
                    287: *
                    288: *        The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B))
                    289: *        is incremented by SAFE1 if the i-th component of
                    290: *        abs(op(A))*abs(X) + abs(B) is less than SAFE2.
                    291: *
                    292: *        Use ZLACN2 to estimate the infinity-norm of the matrix
                    293: *           inv(op(A)) * diag(W),
                    294: *        where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) )))
                    295: *
                    296:          DO 90 I = 1, N
                    297:             IF( RWORK( I ).GT.SAFE2 ) THEN
                    298:                RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I )
                    299:             ELSE
                    300:                RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I ) +
                    301:      $                      SAFE1
                    302:             END IF
                    303:    90    CONTINUE
                    304: *
                    305:          KASE = 0
                    306:   100    CONTINUE
                    307:          CALL ZLACN2( N, WORK( N+1 ), WORK, FERR( J ), KASE, ISAVE )
                    308:          IF( KASE.NE.0 ) THEN
                    309:             IF( KASE.EQ.1 ) THEN
                    310: *
                    311: *              Multiply by diag(W)*inv(op(A)**H).
                    312: *
                    313:                CALL ZGETRS( TRANST, N, 1, AF, LDAF, IPIV, WORK, N,
                    314:      $                      INFO )
                    315:                DO 110 I = 1, N
                    316:                   WORK( I ) = RWORK( I )*WORK( I )
                    317:   110          CONTINUE
                    318:             ELSE
                    319: *
                    320: *              Multiply by inv(op(A))*diag(W).
                    321: *
                    322:                DO 120 I = 1, N
                    323:                   WORK( I ) = RWORK( I )*WORK( I )
                    324:   120          CONTINUE
                    325:                CALL ZGETRS( TRANSN, N, 1, AF, LDAF, IPIV, WORK, N,
                    326:      $                      INFO )
                    327:             END IF
                    328:             GO TO 100
                    329:          END IF
                    330: *
                    331: *        Normalize error.
                    332: *
                    333:          LSTRES = ZERO
                    334:          DO 130 I = 1, N
                    335:             LSTRES = MAX( LSTRES, CABS1( X( I, J ) ) )
                    336:   130    CONTINUE
                    337:          IF( LSTRES.NE.ZERO )
                    338:      $      FERR( J ) = FERR( J ) / LSTRES
                    339: *
                    340:   140 CONTINUE
                    341: *
                    342:       RETURN
                    343: *
                    344: *     End of ZGERFS
                    345: *
                    346:       END

CVSweb interface <joel.bertrand@systella.fr>