Annotation of rpl/lapack/lapack/zgerfs.f, revision 1.17

1.8       bertrand    1: *> \brief \b ZGERFS
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.14      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.8       bertrand    7: *
                      8: *> \htmlonly
1.14      bertrand    9: *> Download ZGERFS + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgerfs.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgerfs.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgerfs.f">
1.8       bertrand   15: *> [TXT]</a>
1.14      bertrand   16: *> \endhtmlonly
1.8       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZGERFS( TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB,
                     22: *                          X, LDX, FERR, BERR, WORK, RWORK, INFO )
1.14      bertrand   23: *
1.8       bertrand   24: *       .. Scalar Arguments ..
                     25: *       CHARACTER          TRANS
                     26: *       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS
                     27: *       ..
                     28: *       .. Array Arguments ..
                     29: *       INTEGER            IPIV( * )
                     30: *       DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * )
                     31: *       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
                     32: *      $                   WORK( * ), X( LDX, * )
                     33: *       ..
1.14      bertrand   34: *
1.8       bertrand   35: *
                     36: *> \par Purpose:
                     37: *  =============
                     38: *>
                     39: *> \verbatim
                     40: *>
                     41: *> ZGERFS improves the computed solution to a system of linear
                     42: *> equations and provides error bounds and backward error estimates for
                     43: *> the solution.
                     44: *> \endverbatim
                     45: *
                     46: *  Arguments:
                     47: *  ==========
                     48: *
                     49: *> \param[in] TRANS
                     50: *> \verbatim
                     51: *>          TRANS is CHARACTER*1
                     52: *>          Specifies the form of the system of equations:
                     53: *>          = 'N':  A * X = B     (No transpose)
                     54: *>          = 'T':  A**T * X = B  (Transpose)
                     55: *>          = 'C':  A**H * X = B  (Conjugate transpose)
                     56: *> \endverbatim
                     57: *>
                     58: *> \param[in] N
                     59: *> \verbatim
                     60: *>          N is INTEGER
                     61: *>          The order of the matrix A.  N >= 0.
                     62: *> \endverbatim
                     63: *>
                     64: *> \param[in] NRHS
                     65: *> \verbatim
                     66: *>          NRHS is INTEGER
                     67: *>          The number of right hand sides, i.e., the number of columns
                     68: *>          of the matrices B and X.  NRHS >= 0.
                     69: *> \endverbatim
                     70: *>
                     71: *> \param[in] A
                     72: *> \verbatim
                     73: *>          A is COMPLEX*16 array, dimension (LDA,N)
                     74: *>          The original N-by-N matrix A.
                     75: *> \endverbatim
                     76: *>
                     77: *> \param[in] LDA
                     78: *> \verbatim
                     79: *>          LDA is INTEGER
                     80: *>          The leading dimension of the array A.  LDA >= max(1,N).
                     81: *> \endverbatim
                     82: *>
                     83: *> \param[in] AF
                     84: *> \verbatim
                     85: *>          AF is COMPLEX*16 array, dimension (LDAF,N)
                     86: *>          The factors L and U from the factorization A = P*L*U
                     87: *>          as computed by ZGETRF.
                     88: *> \endverbatim
                     89: *>
                     90: *> \param[in] LDAF
                     91: *> \verbatim
                     92: *>          LDAF is INTEGER
                     93: *>          The leading dimension of the array AF.  LDAF >= max(1,N).
                     94: *> \endverbatim
                     95: *>
                     96: *> \param[in] IPIV
                     97: *> \verbatim
                     98: *>          IPIV is INTEGER array, dimension (N)
                     99: *>          The pivot indices from ZGETRF; for 1<=i<=N, row i of the
                    100: *>          matrix was interchanged with row IPIV(i).
                    101: *> \endverbatim
                    102: *>
                    103: *> \param[in] B
                    104: *> \verbatim
                    105: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
                    106: *>          The right hand side matrix B.
                    107: *> \endverbatim
                    108: *>
                    109: *> \param[in] LDB
                    110: *> \verbatim
                    111: *>          LDB is INTEGER
                    112: *>          The leading dimension of the array B.  LDB >= max(1,N).
                    113: *> \endverbatim
                    114: *>
                    115: *> \param[in,out] X
                    116: *> \verbatim
                    117: *>          X is COMPLEX*16 array, dimension (LDX,NRHS)
                    118: *>          On entry, the solution matrix X, as computed by ZGETRS.
                    119: *>          On exit, the improved solution matrix X.
                    120: *> \endverbatim
                    121: *>
                    122: *> \param[in] LDX
                    123: *> \verbatim
                    124: *>          LDX is INTEGER
                    125: *>          The leading dimension of the array X.  LDX >= max(1,N).
                    126: *> \endverbatim
                    127: *>
                    128: *> \param[out] FERR
                    129: *> \verbatim
                    130: *>          FERR is DOUBLE PRECISION array, dimension (NRHS)
                    131: *>          The estimated forward error bound for each solution vector
                    132: *>          X(j) (the j-th column of the solution matrix X).
                    133: *>          If XTRUE is the true solution corresponding to X(j), FERR(j)
                    134: *>          is an estimated upper bound for the magnitude of the largest
                    135: *>          element in (X(j) - XTRUE) divided by the magnitude of the
                    136: *>          largest element in X(j).  The estimate is as reliable as
                    137: *>          the estimate for RCOND, and is almost always a slight
                    138: *>          overestimate of the true error.
                    139: *> \endverbatim
                    140: *>
                    141: *> \param[out] BERR
                    142: *> \verbatim
                    143: *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
                    144: *>          The componentwise relative backward error of each solution
                    145: *>          vector X(j) (i.e., the smallest relative change in
                    146: *>          any element of A or B that makes X(j) an exact solution).
                    147: *> \endverbatim
                    148: *>
                    149: *> \param[out] WORK
                    150: *> \verbatim
                    151: *>          WORK is COMPLEX*16 array, dimension (2*N)
                    152: *> \endverbatim
                    153: *>
                    154: *> \param[out] RWORK
                    155: *> \verbatim
                    156: *>          RWORK is DOUBLE PRECISION array, dimension (N)
                    157: *> \endverbatim
                    158: *>
                    159: *> \param[out] INFO
                    160: *> \verbatim
                    161: *>          INFO is INTEGER
                    162: *>          = 0:  successful exit
                    163: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    164: *> \endverbatim
                    165: *
                    166: *> \par Internal Parameters:
                    167: *  =========================
                    168: *>
                    169: *> \verbatim
                    170: *>  ITMAX is the maximum number of steps of iterative refinement.
                    171: *> \endverbatim
                    172: *
                    173: *  Authors:
                    174: *  ========
                    175: *
1.14      bertrand  176: *> \author Univ. of Tennessee
                    177: *> \author Univ. of California Berkeley
                    178: *> \author Univ. of Colorado Denver
                    179: *> \author NAG Ltd.
1.8       bertrand  180: *
                    181: *> \ingroup complex16GEcomputational
                    182: *
                    183: *  =====================================================================
1.1       bertrand  184:       SUBROUTINE ZGERFS( TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB,
                    185:      $                   X, LDX, FERR, BERR, WORK, RWORK, INFO )
                    186: *
1.17    ! bertrand  187: *  -- LAPACK computational routine --
1.1       bertrand  188: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    189: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    190: *
                    191: *     .. Scalar Arguments ..
                    192:       CHARACTER          TRANS
                    193:       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS
                    194: *     ..
                    195: *     .. Array Arguments ..
                    196:       INTEGER            IPIV( * )
                    197:       DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * )
                    198:       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
                    199:      $                   WORK( * ), X( LDX, * )
                    200: *     ..
                    201: *
                    202: *  =====================================================================
                    203: *
                    204: *     .. Parameters ..
                    205:       INTEGER            ITMAX
                    206:       PARAMETER          ( ITMAX = 5 )
                    207:       DOUBLE PRECISION   ZERO
                    208:       PARAMETER          ( ZERO = 0.0D+0 )
                    209:       COMPLEX*16         ONE
                    210:       PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ) )
                    211:       DOUBLE PRECISION   TWO
                    212:       PARAMETER          ( TWO = 2.0D+0 )
                    213:       DOUBLE PRECISION   THREE
                    214:       PARAMETER          ( THREE = 3.0D+0 )
                    215: *     ..
                    216: *     .. Local Scalars ..
                    217:       LOGICAL            NOTRAN
                    218:       CHARACTER          TRANSN, TRANST
                    219:       INTEGER            COUNT, I, J, K, KASE, NZ
                    220:       DOUBLE PRECISION   EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
                    221:       COMPLEX*16         ZDUM
                    222: *     ..
                    223: *     .. Local Arrays ..
                    224:       INTEGER            ISAVE( 3 )
                    225: *     ..
                    226: *     .. External Functions ..
                    227:       LOGICAL            LSAME
                    228:       DOUBLE PRECISION   DLAMCH
                    229:       EXTERNAL           LSAME, DLAMCH
                    230: *     ..
                    231: *     .. External Subroutines ..
                    232:       EXTERNAL           XERBLA, ZAXPY, ZCOPY, ZGEMV, ZGETRS, ZLACN2
                    233: *     ..
                    234: *     .. Intrinsic Functions ..
                    235:       INTRINSIC          ABS, DBLE, DIMAG, MAX
                    236: *     ..
                    237: *     .. Statement Functions ..
                    238:       DOUBLE PRECISION   CABS1
                    239: *     ..
                    240: *     .. Statement Function definitions ..
                    241:       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
                    242: *     ..
                    243: *     .. Executable Statements ..
                    244: *
                    245: *     Test the input parameters.
                    246: *
                    247:       INFO = 0
                    248:       NOTRAN = LSAME( TRANS, 'N' )
                    249:       IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
                    250:      $    LSAME( TRANS, 'C' ) ) THEN
                    251:          INFO = -1
                    252:       ELSE IF( N.LT.0 ) THEN
                    253:          INFO = -2
                    254:       ELSE IF( NRHS.LT.0 ) THEN
                    255:          INFO = -3
                    256:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    257:          INFO = -5
                    258:       ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
                    259:          INFO = -7
                    260:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    261:          INFO = -10
                    262:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
                    263:          INFO = -12
                    264:       END IF
                    265:       IF( INFO.NE.0 ) THEN
                    266:          CALL XERBLA( 'ZGERFS', -INFO )
                    267:          RETURN
                    268:       END IF
                    269: *
                    270: *     Quick return if possible
                    271: *
                    272:       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
                    273:          DO 10 J = 1, NRHS
                    274:             FERR( J ) = ZERO
                    275:             BERR( J ) = ZERO
                    276:    10    CONTINUE
                    277:          RETURN
                    278:       END IF
                    279: *
                    280:       IF( NOTRAN ) THEN
                    281:          TRANSN = 'N'
                    282:          TRANST = 'C'
                    283:       ELSE
                    284:          TRANSN = 'C'
                    285:          TRANST = 'N'
                    286:       END IF
                    287: *
                    288: *     NZ = maximum number of nonzero elements in each row of A, plus 1
                    289: *
                    290:       NZ = N + 1
                    291:       EPS = DLAMCH( 'Epsilon' )
                    292:       SAFMIN = DLAMCH( 'Safe minimum' )
                    293:       SAFE1 = NZ*SAFMIN
                    294:       SAFE2 = SAFE1 / EPS
                    295: *
                    296: *     Do for each right hand side
                    297: *
                    298:       DO 140 J = 1, NRHS
                    299: *
                    300:          COUNT = 1
                    301:          LSTRES = THREE
                    302:    20    CONTINUE
                    303: *
                    304: *        Loop until stopping criterion is satisfied.
                    305: *
                    306: *        Compute residual R = B - op(A) * X,
                    307: *        where op(A) = A, A**T, or A**H, depending on TRANS.
                    308: *
                    309:          CALL ZCOPY( N, B( 1, J ), 1, WORK, 1 )
                    310:          CALL ZGEMV( TRANS, N, N, -ONE, A, LDA, X( 1, J ), 1, ONE, WORK,
                    311:      $               1 )
                    312: *
                    313: *        Compute componentwise relative backward error from formula
                    314: *
                    315: *        max(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) )
                    316: *
                    317: *        where abs(Z) is the componentwise absolute value of the matrix
                    318: *        or vector Z.  If the i-th component of the denominator is less
                    319: *        than SAFE2, then SAFE1 is added to the i-th components of the
                    320: *        numerator and denominator before dividing.
                    321: *
                    322:          DO 30 I = 1, N
                    323:             RWORK( I ) = CABS1( B( I, J ) )
                    324:    30    CONTINUE
                    325: *
                    326: *        Compute abs(op(A))*abs(X) + abs(B).
                    327: *
                    328:          IF( NOTRAN ) THEN
                    329:             DO 50 K = 1, N
                    330:                XK = CABS1( X( K, J ) )
                    331:                DO 40 I = 1, N
                    332:                   RWORK( I ) = RWORK( I ) + CABS1( A( I, K ) )*XK
                    333:    40          CONTINUE
                    334:    50       CONTINUE
                    335:          ELSE
                    336:             DO 70 K = 1, N
                    337:                S = ZERO
                    338:                DO 60 I = 1, N
                    339:                   S = S + CABS1( A( I, K ) )*CABS1( X( I, J ) )
                    340:    60          CONTINUE
                    341:                RWORK( K ) = RWORK( K ) + S
                    342:    70       CONTINUE
                    343:          END IF
                    344:          S = ZERO
                    345:          DO 80 I = 1, N
                    346:             IF( RWORK( I ).GT.SAFE2 ) THEN
                    347:                S = MAX( S, CABS1( WORK( I ) ) / RWORK( I ) )
                    348:             ELSE
                    349:                S = MAX( S, ( CABS1( WORK( I ) )+SAFE1 ) /
                    350:      $             ( RWORK( I )+SAFE1 ) )
                    351:             END IF
                    352:    80    CONTINUE
                    353:          BERR( J ) = S
                    354: *
                    355: *        Test stopping criterion. Continue iterating if
                    356: *           1) The residual BERR(J) is larger than machine epsilon, and
                    357: *           2) BERR(J) decreased by at least a factor of 2 during the
                    358: *              last iteration, and
                    359: *           3) At most ITMAX iterations tried.
                    360: *
                    361:          IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
                    362:      $       COUNT.LE.ITMAX ) THEN
                    363: *
                    364: *           Update solution and try again.
                    365: *
                    366:             CALL ZGETRS( TRANS, N, 1, AF, LDAF, IPIV, WORK, N, INFO )
                    367:             CALL ZAXPY( N, ONE, WORK, 1, X( 1, J ), 1 )
                    368:             LSTRES = BERR( J )
                    369:             COUNT = COUNT + 1
                    370:             GO TO 20
                    371:          END IF
                    372: *
                    373: *        Bound error from formula
                    374: *
                    375: *        norm(X - XTRUE) / norm(X) .le. FERR =
                    376: *        norm( abs(inv(op(A)))*
                    377: *           ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X)
                    378: *
                    379: *        where
                    380: *          norm(Z) is the magnitude of the largest component of Z
                    381: *          inv(op(A)) is the inverse of op(A)
                    382: *          abs(Z) is the componentwise absolute value of the matrix or
                    383: *             vector Z
                    384: *          NZ is the maximum number of nonzeros in any row of A, plus 1
                    385: *          EPS is machine epsilon
                    386: *
                    387: *        The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B))
                    388: *        is incremented by SAFE1 if the i-th component of
                    389: *        abs(op(A))*abs(X) + abs(B) is less than SAFE2.
                    390: *
                    391: *        Use ZLACN2 to estimate the infinity-norm of the matrix
                    392: *           inv(op(A)) * diag(W),
                    393: *        where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) )))
                    394: *
                    395:          DO 90 I = 1, N
                    396:             IF( RWORK( I ).GT.SAFE2 ) THEN
                    397:                RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I )
                    398:             ELSE
                    399:                RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I ) +
                    400:      $                      SAFE1
                    401:             END IF
                    402:    90    CONTINUE
                    403: *
                    404:          KASE = 0
                    405:   100    CONTINUE
                    406:          CALL ZLACN2( N, WORK( N+1 ), WORK, FERR( J ), KASE, ISAVE )
                    407:          IF( KASE.NE.0 ) THEN
                    408:             IF( KASE.EQ.1 ) THEN
                    409: *
                    410: *              Multiply by diag(W)*inv(op(A)**H).
                    411: *
                    412:                CALL ZGETRS( TRANST, N, 1, AF, LDAF, IPIV, WORK, N,
                    413:      $                      INFO )
                    414:                DO 110 I = 1, N
                    415:                   WORK( I ) = RWORK( I )*WORK( I )
                    416:   110          CONTINUE
                    417:             ELSE
                    418: *
                    419: *              Multiply by inv(op(A))*diag(W).
                    420: *
                    421:                DO 120 I = 1, N
                    422:                   WORK( I ) = RWORK( I )*WORK( I )
                    423:   120          CONTINUE
                    424:                CALL ZGETRS( TRANSN, N, 1, AF, LDAF, IPIV, WORK, N,
                    425:      $                      INFO )
                    426:             END IF
                    427:             GO TO 100
                    428:          END IF
                    429: *
                    430: *        Normalize error.
                    431: *
                    432:          LSTRES = ZERO
                    433:          DO 130 I = 1, N
                    434:             LSTRES = MAX( LSTRES, CABS1( X( I, J ) ) )
                    435:   130    CONTINUE
                    436:          IF( LSTRES.NE.ZERO )
                    437:      $      FERR( J ) = FERR( J ) / LSTRES
                    438: *
                    439:   140 CONTINUE
                    440: *
                    441:       RETURN
                    442: *
                    443: *     End of ZGERFS
                    444: *
                    445:       END

CVSweb interface <joel.bertrand@systella.fr>