File:  [local] / rpl / lapack / lapack / zgeqrt3.f
Revision 1.6: download - view: text, annotated - select for diffs - revision graph
Sat Aug 27 15:27:12 2016 UTC (7 years, 8 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD

Mise à jour de lapack.

    1: *> \brief \b ZGEQRT3 recursively computes a QR factorization of a general real or complex matrix using the compact WY representation of Q.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download ZGEQRT3 + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgeqrt3.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgeqrt3.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgeqrt3.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       RECURSIVE SUBROUTINE ZGEQRT3( M, N, A, LDA, T, LDT, INFO )
   22:    23: *       .. Scalar Arguments ..
   24: *       INTEGER   INFO, LDA, M, N, LDT
   25: *       ..
   26: *       .. Array Arguments ..
   27: *       COMPLEX*16   A( LDA, * ), T( LDT, * )
   28: *       ..
   29: *  
   30: *
   31: *> \par Purpose:
   32: *  =============
   33: *>
   34: *> \verbatim
   35: *>
   36: *> ZGEQRT3 recursively computes a QR factorization of a complex M-by-N 
   37: *> matrix A, using the compact WY representation of Q. 
   38: *>
   39: *> Based on the algorithm of Elmroth and Gustavson, 
   40: *> IBM J. Res. Develop. Vol 44 No. 4 July 2000.
   41: *> \endverbatim
   42: *
   43: *  Arguments:
   44: *  ==========
   45: *
   46: *> \param[in] M
   47: *> \verbatim
   48: *>          M is INTEGER
   49: *>          The number of rows of the matrix A.  M >= N.
   50: *> \endverbatim
   51: *>
   52: *> \param[in] N
   53: *> \verbatim
   54: *>          N is INTEGER
   55: *>          The number of columns of the matrix A.  N >= 0.
   56: *> \endverbatim
   57: *>
   58: *> \param[in,out] A
   59: *> \verbatim
   60: *>          A is COMPLEX*16 array, dimension (LDA,N)
   61: *>          On entry, the complex M-by-N matrix A.  On exit, the elements on 
   62: *>          and above the diagonal contain the N-by-N upper triangular matrix R;
   63: *>          the elements below the diagonal are the columns of V.  See below for
   64: *>          further details.
   65: *> \endverbatim
   66: *>
   67: *> \param[in] LDA
   68: *> \verbatim
   69: *>          LDA is INTEGER
   70: *>          The leading dimension of the array A.  LDA >= max(1,M).
   71: *> \endverbatim
   72: *>
   73: *> \param[out] T
   74: *> \verbatim
   75: *>          T is COMPLEX*16 array, dimension (LDT,N)
   76: *>          The N-by-N upper triangular factor of the block reflector.
   77: *>          The elements on and above the diagonal contain the block
   78: *>          reflector T; the elements below the diagonal are not used.
   79: *>          See below for further details.
   80: *> \endverbatim
   81: *>
   82: *> \param[in] LDT
   83: *> \verbatim
   84: *>          LDT is INTEGER
   85: *>          The leading dimension of the array T.  LDT >= max(1,N).
   86: *> \endverbatim
   87: *>
   88: *> \param[out] INFO
   89: *> \verbatim
   90: *>          INFO is INTEGER
   91: *>          = 0: successful exit
   92: *>          < 0: if INFO = -i, the i-th argument had an illegal value
   93: *> \endverbatim
   94: *
   95: *  Authors:
   96: *  ========
   97: *
   98: *> \author Univ. of Tennessee 
   99: *> \author Univ. of California Berkeley 
  100: *> \author Univ. of Colorado Denver 
  101: *> \author NAG Ltd. 
  102: *
  103: *> \date June 2016
  104: *
  105: *> \ingroup complex16GEcomputational
  106: *
  107: *> \par Further Details:
  108: *  =====================
  109: *>
  110: *> \verbatim
  111: *>
  112: *>  The matrix V stores the elementary reflectors H(i) in the i-th column
  113: *>  below the diagonal. For example, if M=5 and N=3, the matrix V is
  114: *>
  115: *>               V = (  1       )
  116: *>                   ( v1  1    )
  117: *>                   ( v1 v2  1 )
  118: *>                   ( v1 v2 v3 )
  119: *>                   ( v1 v2 v3 )
  120: *>
  121: *>  where the vi's represent the vectors which define H(i), which are returned
  122: *>  in the matrix A.  The 1's along the diagonal of V are not stored in A.  The
  123: *>  block reflector H is then given by
  124: *>
  125: *>               H = I - V * T * V**H
  126: *>
  127: *>  where V**H is the conjugate transpose of V.
  128: *>
  129: *>  For details of the algorithm, see Elmroth and Gustavson (cited above).
  130: *> \endverbatim
  131: *>
  132: *  =====================================================================
  133:       RECURSIVE SUBROUTINE ZGEQRT3( M, N, A, LDA, T, LDT, INFO )
  134: *
  135: *  -- LAPACK computational routine (version 3.6.1) --
  136: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  137: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  138: *     June 2016
  139: *
  140: *     .. Scalar Arguments ..
  141:       INTEGER   INFO, LDA, M, N, LDT
  142: *     ..
  143: *     .. Array Arguments ..
  144:       COMPLEX*16   A( LDA, * ), T( LDT, * )
  145: *     ..
  146: *
  147: *  =====================================================================
  148: *
  149: *     .. Parameters ..
  150:       COMPLEX*16   ONE
  151:       PARAMETER ( ONE = (1.0D+00,0.0D+00) )
  152: *     ..
  153: *     .. Local Scalars ..
  154:       INTEGER   I, I1, J, J1, N1, N2, IINFO
  155: *     ..
  156: *     .. External Subroutines ..
  157:       EXTERNAL  ZLARFG, ZTRMM, ZGEMM, XERBLA
  158: *     ..
  159: *     .. Executable Statements ..
  160: *
  161:       INFO = 0
  162:       IF( N .LT. 0 ) THEN
  163:          INFO = -2
  164:       ELSE IF( M .LT. N ) THEN
  165:          INFO = -1
  166:       ELSE IF( LDA .LT. MAX( 1, M ) ) THEN
  167:          INFO = -4
  168:       ELSE IF( LDT .LT. MAX( 1, N ) ) THEN
  169:          INFO = -6
  170:       END IF
  171:       IF( INFO.NE.0 ) THEN
  172:          CALL XERBLA( 'ZGEQRT3', -INFO )
  173:          RETURN
  174:       END IF
  175: *
  176:       IF( N.EQ.1 ) THEN
  177: *
  178: *        Compute Householder transform when N=1
  179: *
  180:          CALL ZLARFG( M, A(1,1), A( MIN( 2, M ), 1 ), 1, T(1,1) )
  181: *         
  182:       ELSE
  183: *
  184: *        Otherwise, split A into blocks...
  185: *
  186:          N1 = N/2
  187:          N2 = N-N1
  188:          J1 = MIN( N1+1, N )
  189:          I1 = MIN( N+1, M )
  190: *
  191: *        Compute A(1:M,1:N1) <- (Y1,R1,T1), where Q1 = I - Y1 T1 Y1^H
  192: *
  193:          CALL ZGEQRT3( M, N1, A, LDA, T, LDT, IINFO )
  194: *
  195: *        Compute A(1:M,J1:N) = Q1^H A(1:M,J1:N) [workspace: T(1:N1,J1:N)]
  196: *
  197:          DO J=1,N2
  198:             DO I=1,N1
  199:                T( I, J+N1 ) = A( I, J+N1 )
  200:             END DO
  201:          END DO
  202:          CALL ZTRMM( 'L', 'L', 'C', 'U', N1, N2, ONE, 
  203:      &               A, LDA, T( 1, J1 ), LDT )
  204: *
  205:          CALL ZGEMM( 'C', 'N', N1, N2, M-N1, ONE, A( J1, 1 ), LDA,
  206:      &               A( J1, J1 ), LDA, ONE, T( 1, J1 ), LDT)
  207: *
  208:          CALL ZTRMM( 'L', 'U', 'C', 'N', N1, N2, ONE,
  209:      &               T, LDT, T( 1, J1 ), LDT )
  210: *
  211:          CALL ZGEMM( 'N', 'N', M-N1, N2, N1, -ONE, A( J1, 1 ), LDA, 
  212:      &               T( 1, J1 ), LDT, ONE, A( J1, J1 ), LDA )
  213: *
  214:          CALL ZTRMM( 'L', 'L', 'N', 'U', N1, N2, ONE,
  215:      &               A, LDA, T( 1, J1 ), LDT )
  216: *
  217:          DO J=1,N2
  218:             DO I=1,N1
  219:                A( I, J+N1 ) = A( I, J+N1 ) - T( I, J+N1 )
  220:             END DO
  221:          END DO
  222: *
  223: *        Compute A(J1:M,J1:N) <- (Y2,R2,T2) where Q2 = I - Y2 T2 Y2^H
  224: *
  225:          CALL ZGEQRT3( M-N1, N2, A( J1, J1 ), LDA, 
  226:      &                T( J1, J1 ), LDT, IINFO )
  227: *
  228: *        Compute T3 = T(1:N1,J1:N) = -T1 Y1^H Y2 T2
  229: *
  230:          DO I=1,N1
  231:             DO J=1,N2
  232:                T( I, J+N1 ) = CONJG(A( J+N1, I ))
  233:             END DO
  234:          END DO
  235: *
  236:          CALL ZTRMM( 'R', 'L', 'N', 'U', N1, N2, ONE,
  237:      &               A( J1, J1 ), LDA, T( 1, J1 ), LDT )
  238: *
  239:          CALL ZGEMM( 'C', 'N', N1, N2, M-N, ONE, A( I1, 1 ), LDA, 
  240:      &               A( I1, J1 ), LDA, ONE, T( 1, J1 ), LDT )
  241: *
  242:          CALL ZTRMM( 'L', 'U', 'N', 'N', N1, N2, -ONE, T, LDT, 
  243:      &               T( 1, J1 ), LDT )
  244: *
  245:          CALL ZTRMM( 'R', 'U', 'N', 'N', N1, N2, ONE, 
  246:      &               T( J1, J1 ), LDT, T( 1, J1 ), LDT )
  247: *
  248: *        Y = (Y1,Y2); R = [ R1  A(1:N1,J1:N) ];  T = [T1 T3]
  249: *                         [  0        R2     ]       [ 0 T2]
  250: *
  251:       END IF
  252: *
  253:       RETURN
  254: *
  255: *     End of ZGEQRT3
  256: *
  257:       END

CVSweb interface <joel.bertrand@systella.fr>