Annotation of rpl/lapack/lapack/zgeqrt.f, revision 1.11

1.1       bertrand    1: *> \brief \b ZGEQRT
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.7       bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.1       bertrand    7: *
                      8: *> \htmlonly
1.7       bertrand    9: *> Download ZGEQRT + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgeqrt.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgeqrt.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgeqrt.f">
1.1       bertrand   15: *> [TXT]</a>
1.7       bertrand   16: *> \endhtmlonly
1.1       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZGEQRT( M, N, NB, A, LDA, T, LDT, WORK, INFO )
1.7       bertrand   22: *
1.1       bertrand   23: *       .. Scalar Arguments ..
                     24: *       INTEGER INFO, LDA, LDT, M, N, NB
                     25: *       ..
                     26: *       .. Array Arguments ..
                     27: *       COMPLEX*16 A( LDA, * ), T( LDT, * ), WORK( * )
                     28: *       ..
1.7       bertrand   29: *
1.1       bertrand   30: *
                     31: *> \par Purpose:
                     32: *  =============
                     33: *>
                     34: *> \verbatim
                     35: *>
                     36: *> ZGEQRT computes a blocked QR factorization of a complex M-by-N matrix A
1.7       bertrand   37: *> using the compact WY representation of Q.
1.1       bertrand   38: *> \endverbatim
                     39: *
                     40: *  Arguments:
                     41: *  ==========
                     42: *
                     43: *> \param[in] M
                     44: *> \verbatim
                     45: *>          M is INTEGER
                     46: *>          The number of rows of the matrix A.  M >= 0.
                     47: *> \endverbatim
                     48: *>
                     49: *> \param[in] N
                     50: *> \verbatim
                     51: *>          N is INTEGER
                     52: *>          The number of columns of the matrix A.  N >= 0.
                     53: *> \endverbatim
                     54: *>
                     55: *> \param[in] NB
                     56: *> \verbatim
                     57: *>          NB is INTEGER
                     58: *>          The block size to be used in the blocked QR.  MIN(M,N) >= NB >= 1.
                     59: *> \endverbatim
                     60: *>
                     61: *> \param[in,out] A
                     62: *> \verbatim
                     63: *>          A is COMPLEX*16 array, dimension (LDA,N)
                     64: *>          On entry, the M-by-N matrix A.
                     65: *>          On exit, the elements on and above the diagonal of the array
                     66: *>          contain the min(M,N)-by-N upper trapezoidal matrix R (R is
                     67: *>          upper triangular if M >= N); the elements below the diagonal
                     68: *>          are the columns of V.
                     69: *> \endverbatim
                     70: *>
                     71: *> \param[in] LDA
                     72: *> \verbatim
                     73: *>          LDA is INTEGER
                     74: *>          The leading dimension of the array A.  LDA >= max(1,M).
                     75: *> \endverbatim
                     76: *>
                     77: *> \param[out] T
                     78: *> \verbatim
                     79: *>          T is COMPLEX*16 array, dimension (LDT,MIN(M,N))
                     80: *>          The upper triangular block reflectors stored in compact form
                     81: *>          as a sequence of upper triangular blocks.  See below
                     82: *>          for further details.
                     83: *> \endverbatim
                     84: *>
                     85: *> \param[in] LDT
                     86: *> \verbatim
                     87: *>          LDT is INTEGER
                     88: *>          The leading dimension of the array T.  LDT >= NB.
                     89: *> \endverbatim
                     90: *>
                     91: *> \param[out] WORK
                     92: *> \verbatim
                     93: *>          WORK is COMPLEX*16 array, dimension (NB*N)
                     94: *> \endverbatim
                     95: *>
                     96: *> \param[out] INFO
                     97: *> \verbatim
                     98: *>          INFO is INTEGER
                     99: *>          = 0:  successful exit
                    100: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    101: *> \endverbatim
                    102: *
                    103: *  Authors:
                    104: *  ========
                    105: *
1.7       bertrand  106: *> \author Univ. of Tennessee
                    107: *> \author Univ. of California Berkeley
                    108: *> \author Univ. of Colorado Denver
                    109: *> \author NAG Ltd.
1.1       bertrand  110: *
                    111: *> \ingroup complex16GEcomputational
                    112: *
                    113: *> \par Further Details:
                    114: *  =====================
                    115: *>
                    116: *> \verbatim
                    117: *>
                    118: *>  The matrix V stores the elementary reflectors H(i) in the i-th column
                    119: *>  below the diagonal. For example, if M=5 and N=3, the matrix V is
                    120: *>
                    121: *>               V = (  1       )
                    122: *>                   ( v1  1    )
                    123: *>                   ( v1 v2  1 )
                    124: *>                   ( v1 v2 v3 )
                    125: *>                   ( v1 v2 v3 )
                    126: *>
                    127: *>  where the vi's represent the vectors which define H(i), which are returned
                    128: *>  in the matrix A.  The 1's along the diagonal of V are not stored in A.
                    129: *>
                    130: *>  Let K=MIN(M,N).  The number of blocks is B = ceiling(K/NB), where each
1.7       bertrand  131: *>  block is of order NB except for the last block, which is of order
1.1       bertrand  132: *>  IB = K - (B-1)*NB.  For each of the B blocks, a upper triangular block
1.7       bertrand  133: *>  reflector factor is computed: T1, T2, ..., TB.  The NB-by-NB (and IB-by-IB
1.9       bertrand  134: *>  for the last block) T's are stored in the NB-by-K matrix T as
1.1       bertrand  135: *>
                    136: *>               T = (T1 T2 ... TB).
                    137: *> \endverbatim
                    138: *>
                    139: *  =====================================================================
                    140:       SUBROUTINE ZGEQRT( M, N, NB, A, LDA, T, LDT, WORK, INFO )
                    141: *
1.11    ! bertrand  142: *  -- LAPACK computational routine --
1.1       bertrand  143: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    144: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    145: *
                    146: *     .. Scalar Arguments ..
                    147:       INTEGER INFO, LDA, LDT, M, N, NB
                    148: *     ..
                    149: *     .. Array Arguments ..
                    150:       COMPLEX*16 A( LDA, * ), T( LDT, * ), WORK( * )
                    151: *     ..
                    152: *
                    153: * =====================================================================
                    154: *
                    155: *     ..
                    156: *     .. Local Scalars ..
                    157:       INTEGER    I, IB, IINFO, K
                    158:       LOGICAL    USE_RECURSIVE_QR
                    159:       PARAMETER( USE_RECURSIVE_QR=.TRUE. )
                    160: *     ..
                    161: *     .. External Subroutines ..
                    162:       EXTERNAL   ZGEQRT2, ZGEQRT3, ZLARFB, XERBLA
                    163: *     ..
                    164: *     .. Executable Statements ..
                    165: *
                    166: *     Test the input arguments
                    167: *
                    168:       INFO = 0
                    169:       IF( M.LT.0 ) THEN
                    170:          INFO = -1
                    171:       ELSE IF( N.LT.0 ) THEN
                    172:          INFO = -2
1.4       bertrand  173:       ELSE IF( NB.LT.1 .OR. ( NB.GT.MIN(M,N) .AND. MIN(M,N).GT.0 ) )THEN
1.1       bertrand  174:          INFO = -3
                    175:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
                    176:          INFO = -5
                    177:       ELSE IF( LDT.LT.NB ) THEN
                    178:          INFO = -7
                    179:       END IF
                    180:       IF( INFO.NE.0 ) THEN
                    181:          CALL XERBLA( 'ZGEQRT', -INFO )
                    182:          RETURN
                    183:       END IF
                    184: *
                    185: *     Quick return if possible
                    186: *
                    187:       K = MIN( M, N )
                    188:       IF( K.EQ.0 ) RETURN
                    189: *
                    190: *     Blocked loop of length K
                    191: *
                    192:       DO I = 1, K,  NB
                    193:          IB = MIN( K-I+1, NB )
1.7       bertrand  194: *
1.1       bertrand  195: *     Compute the QR factorization of the current block A(I:M,I:I+IB-1)
                    196: *
                    197:          IF( USE_RECURSIVE_QR ) THEN
                    198:             CALL ZGEQRT3( M-I+1, IB, A(I,I), LDA, T(1,I), LDT, IINFO )
                    199:          ELSE
                    200:             CALL ZGEQRT2( M-I+1, IB, A(I,I), LDA, T(1,I), LDT, IINFO )
                    201:          END IF
                    202:          IF( I+IB.LE.N ) THEN
                    203: *
                    204: *     Update by applying H**H to A(I:M,I+IB:N) from the left
                    205: *
                    206:             CALL ZLARFB( 'L', 'C', 'F', 'C', M-I+1, N-I-IB+1, IB,
1.7       bertrand  207:      $                   A( I, I ), LDA, T( 1, I ), LDT,
1.1       bertrand  208:      $                   A( I, I+IB ), LDA, WORK , N-I-IB+1 )
                    209:          END IF
                    210:       END DO
                    211:       RETURN
1.7       bertrand  212: *
1.1       bertrand  213: *     End of ZGEQRT
                    214: *
                    215:       END

CVSweb interface <joel.bertrand@systella.fr>