Annotation of rpl/lapack/lapack/zgeqr2p.f, revision 1.11

1.9       bertrand    1: *> \brief \b ZGEQR2P computes the QR factorization of a general rectangular matrix with non-negative diagonal elements using an unblocked algorithm.
1.6       bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at 
                      6: *            http://www.netlib.org/lapack/explore-html/ 
                      7: *
                      8: *> \htmlonly
                      9: *> Download ZGEQR2P + dependencies 
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgeqr2p.f"> 
                     11: *> [TGZ]</a> 
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgeqr2p.f"> 
                     13: *> [ZIP]</a> 
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgeqr2p.f"> 
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly 
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZGEQR2P( M, N, A, LDA, TAU, WORK, INFO )
                     22: * 
                     23: *       .. Scalar Arguments ..
                     24: *       INTEGER            INFO, LDA, M, N
                     25: *       ..
                     26: *       .. Array Arguments ..
                     27: *       COMPLEX*16         A( LDA, * ), TAU( * ), WORK( * )
                     28: *       ..
                     29: *  
                     30: *
                     31: *> \par Purpose:
                     32: *  =============
                     33: *>
                     34: *> \verbatim
                     35: *>
                     36: *> ZGEQR2P computes a QR factorization of a complex m by n matrix A:
                     37: *> A = Q * R.
                     38: *> \endverbatim
                     39: *
                     40: *  Arguments:
                     41: *  ==========
                     42: *
                     43: *> \param[in] M
                     44: *> \verbatim
                     45: *>          M is INTEGER
                     46: *>          The number of rows of the matrix A.  M >= 0.
                     47: *> \endverbatim
                     48: *>
                     49: *> \param[in] N
                     50: *> \verbatim
                     51: *>          N is INTEGER
                     52: *>          The number of columns of the matrix A.  N >= 0.
                     53: *> \endverbatim
                     54: *>
                     55: *> \param[in,out] A
                     56: *> \verbatim
                     57: *>          A is COMPLEX*16 array, dimension (LDA,N)
                     58: *>          On entry, the m by n matrix A.
                     59: *>          On exit, the elements on and above the diagonal of the array
                     60: *>          contain the min(m,n) by n upper trapezoidal matrix R (R is
                     61: *>          upper triangular if m >= n); the elements below the diagonal,
                     62: *>          with the array TAU, represent the unitary matrix Q as a
                     63: *>          product of elementary reflectors (see Further Details).
                     64: *> \endverbatim
                     65: *>
                     66: *> \param[in] LDA
                     67: *> \verbatim
                     68: *>          LDA is INTEGER
                     69: *>          The leading dimension of the array A.  LDA >= max(1,M).
                     70: *> \endverbatim
                     71: *>
                     72: *> \param[out] TAU
                     73: *> \verbatim
                     74: *>          TAU is COMPLEX*16 array, dimension (min(M,N))
                     75: *>          The scalar factors of the elementary reflectors (see Further
                     76: *>          Details).
                     77: *> \endverbatim
                     78: *>
                     79: *> \param[out] WORK
                     80: *> \verbatim
                     81: *>          WORK is COMPLEX*16 array, dimension (N)
                     82: *> \endverbatim
                     83: *>
                     84: *> \param[out] INFO
                     85: *> \verbatim
                     86: *>          INFO is INTEGER
                     87: *>          = 0: successful exit
                     88: *>          < 0: if INFO = -i, the i-th argument had an illegal value
                     89: *> \endverbatim
                     90: *
                     91: *  Authors:
                     92: *  ========
                     93: *
                     94: *> \author Univ. of Tennessee 
                     95: *> \author Univ. of California Berkeley 
                     96: *> \author Univ. of Colorado Denver 
                     97: *> \author NAG Ltd. 
                     98: *
1.9       bertrand   99: *> \date September 2012
1.6       bertrand  100: *
                    101: *> \ingroup complex16GEcomputational
                    102: *
                    103: *> \par Further Details:
                    104: *  =====================
                    105: *>
                    106: *> \verbatim
                    107: *>
                    108: *>  The matrix Q is represented as a product of elementary reflectors
                    109: *>
                    110: *>     Q = H(1) H(2) . . . H(k), where k = min(m,n).
                    111: *>
                    112: *>  Each H(i) has the form
                    113: *>
                    114: *>     H(i) = I - tau * v * v**H
                    115: *>
                    116: *>  where tau is a complex scalar, and v is a complex vector with
                    117: *>  v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),
                    118: *>  and tau in TAU(i).
                    119: *> \endverbatim
                    120: *>
                    121: *  =====================================================================
1.1       bertrand  122:       SUBROUTINE ZGEQR2P( M, N, A, LDA, TAU, WORK, INFO )
                    123: *
1.9       bertrand  124: *  -- LAPACK computational routine (version 3.4.2) --
1.1       bertrand  125: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    126: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.9       bertrand  127: *     September 2012
1.1       bertrand  128: *
                    129: *     .. Scalar Arguments ..
                    130:       INTEGER            INFO, LDA, M, N
                    131: *     ..
                    132: *     .. Array Arguments ..
                    133:       COMPLEX*16         A( LDA, * ), TAU( * ), WORK( * )
                    134: *     ..
                    135: *
                    136: *  =====================================================================
                    137: *
                    138: *     .. Parameters ..
                    139:       COMPLEX*16         ONE
                    140:       PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ) )
                    141: *     ..
                    142: *     .. Local Scalars ..
                    143:       INTEGER            I, K
                    144:       COMPLEX*16         ALPHA
                    145: *     ..
                    146: *     .. External Subroutines ..
                    147:       EXTERNAL           XERBLA, ZLARF, ZLARFGP
                    148: *     ..
                    149: *     .. Intrinsic Functions ..
                    150:       INTRINSIC          DCONJG, MAX, MIN
                    151: *     ..
                    152: *     .. Executable Statements ..
                    153: *
                    154: *     Test the input arguments
                    155: *
                    156:       INFO = 0
                    157:       IF( M.LT.0 ) THEN
                    158:          INFO = -1
                    159:       ELSE IF( N.LT.0 ) THEN
                    160:          INFO = -2
                    161:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
                    162:          INFO = -4
                    163:       END IF
                    164:       IF( INFO.NE.0 ) THEN
                    165:          CALL XERBLA( 'ZGEQR2P', -INFO )
                    166:          RETURN
                    167:       END IF
                    168: *
                    169:       K = MIN( M, N )
                    170: *
                    171:       DO 10 I = 1, K
                    172: *
                    173: *        Generate elementary reflector H(i) to annihilate A(i+1:m,i)
                    174: *
                    175:          CALL ZLARFGP( M-I+1, A( I, I ), A( MIN( I+1, M ), I ), 1,
                    176:      $                TAU( I ) )
                    177:          IF( I.LT.N ) THEN
                    178: *
1.5       bertrand  179: *           Apply H(i)**H to A(i:m,i+1:n) from the left
1.1       bertrand  180: *
                    181:             ALPHA = A( I, I )
                    182:             A( I, I ) = ONE
                    183:             CALL ZLARF( 'Left', M-I+1, N-I, A( I, I ), 1,
                    184:      $                  DCONJG( TAU( I ) ), A( I, I+1 ), LDA, WORK )
                    185:             A( I, I ) = ALPHA
                    186:          END IF
                    187:    10 CONTINUE
                    188:       RETURN
                    189: *
                    190: *     End of ZGEQR2P
                    191: *
                    192:       END

CVSweb interface <joel.bertrand@systella.fr>