Annotation of rpl/lapack/lapack/zgeqr2.f, revision 1.21

1.13      bertrand    1: *> \brief \b ZGEQR2 computes the QR factorization of a general rectangular matrix using an unblocked algorithm.
1.10      bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.17      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.10      bertrand    7: *
                      8: *> \htmlonly
1.17      bertrand    9: *> Download ZGEQR2 + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgeqr2.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgeqr2.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgeqr2.f">
1.10      bertrand   15: *> [TXT]</a>
1.17      bertrand   16: *> \endhtmlonly
1.10      bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZGEQR2( M, N, A, LDA, TAU, WORK, INFO )
1.17      bertrand   22: *
1.10      bertrand   23: *       .. Scalar Arguments ..
                     24: *       INTEGER            INFO, LDA, M, N
                     25: *       ..
                     26: *       .. Array Arguments ..
                     27: *       COMPLEX*16         A( LDA, * ), TAU( * ), WORK( * )
                     28: *       ..
1.17      bertrand   29: *
1.10      bertrand   30: *
                     31: *> \par Purpose:
                     32: *  =============
                     33: *>
                     34: *> \verbatim
                     35: *>
1.20      bertrand   36: *> ZGEQR2 computes a QR factorization of a complex m-by-n matrix A:
                     37: *>
                     38: *>    A = Q * ( R ),
                     39: *>            ( 0 )
                     40: *>
                     41: *> where:
                     42: *>
                     43: *>    Q is a m-by-m orthogonal matrix;
                     44: *>    R is an upper-triangular n-by-n matrix;
                     45: *>    0 is a (m-n)-by-n zero matrix, if m > n.
                     46: *>
1.10      bertrand   47: *> \endverbatim
                     48: *
                     49: *  Arguments:
                     50: *  ==========
                     51: *
                     52: *> \param[in] M
                     53: *> \verbatim
                     54: *>          M is INTEGER
                     55: *>          The number of rows of the matrix A.  M >= 0.
                     56: *> \endverbatim
                     57: *>
                     58: *> \param[in] N
                     59: *> \verbatim
                     60: *>          N is INTEGER
                     61: *>          The number of columns of the matrix A.  N >= 0.
                     62: *> \endverbatim
                     63: *>
                     64: *> \param[in,out] A
                     65: *> \verbatim
                     66: *>          A is COMPLEX*16 array, dimension (LDA,N)
                     67: *>          On entry, the m by n matrix A.
                     68: *>          On exit, the elements on and above the diagonal of the array
                     69: *>          contain the min(m,n) by n upper trapezoidal matrix R (R is
                     70: *>          upper triangular if m >= n); the elements below the diagonal,
                     71: *>          with the array TAU, represent the unitary matrix Q as a
                     72: *>          product of elementary reflectors (see Further Details).
                     73: *> \endverbatim
                     74: *>
                     75: *> \param[in] LDA
                     76: *> \verbatim
                     77: *>          LDA is INTEGER
                     78: *>          The leading dimension of the array A.  LDA >= max(1,M).
                     79: *> \endverbatim
                     80: *>
                     81: *> \param[out] TAU
                     82: *> \verbatim
                     83: *>          TAU is COMPLEX*16 array, dimension (min(M,N))
                     84: *>          The scalar factors of the elementary reflectors (see Further
                     85: *>          Details).
                     86: *> \endverbatim
                     87: *>
                     88: *> \param[out] WORK
                     89: *> \verbatim
                     90: *>          WORK is COMPLEX*16 array, dimension (N)
                     91: *> \endverbatim
                     92: *>
                     93: *> \param[out] INFO
                     94: *> \verbatim
                     95: *>          INFO is INTEGER
                     96: *>          = 0: successful exit
                     97: *>          < 0: if INFO = -i, the i-th argument had an illegal value
                     98: *> \endverbatim
                     99: *
                    100: *  Authors:
                    101: *  ========
                    102: *
1.17      bertrand  103: *> \author Univ. of Tennessee
                    104: *> \author Univ. of California Berkeley
                    105: *> \author Univ. of Colorado Denver
                    106: *> \author NAG Ltd.
1.10      bertrand  107: *
                    108: *> \ingroup complex16GEcomputational
                    109: *
                    110: *> \par Further Details:
                    111: *  =====================
                    112: *>
                    113: *> \verbatim
                    114: *>
                    115: *>  The matrix Q is represented as a product of elementary reflectors
                    116: *>
                    117: *>     Q = H(1) H(2) . . . H(k), where k = min(m,n).
                    118: *>
                    119: *>  Each H(i) has the form
                    120: *>
                    121: *>     H(i) = I - tau * v * v**H
                    122: *>
                    123: *>  where tau is a complex scalar, and v is a complex vector with
                    124: *>  v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),
                    125: *>  and tau in TAU(i).
                    126: *> \endverbatim
                    127: *>
                    128: *  =====================================================================
1.1       bertrand  129:       SUBROUTINE ZGEQR2( M, N, A, LDA, TAU, WORK, INFO )
                    130: *
1.21    ! bertrand  131: *  -- LAPACK computational routine --
1.1       bertrand  132: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    133: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    134: *
                    135: *     .. Scalar Arguments ..
                    136:       INTEGER            INFO, LDA, M, N
                    137: *     ..
                    138: *     .. Array Arguments ..
                    139:       COMPLEX*16         A( LDA, * ), TAU( * ), WORK( * )
                    140: *     ..
                    141: *
                    142: *  =====================================================================
                    143: *
                    144: *     .. Parameters ..
                    145:       COMPLEX*16         ONE
                    146:       PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ) )
                    147: *     ..
                    148: *     .. Local Scalars ..
                    149:       INTEGER            I, K
                    150:       COMPLEX*16         ALPHA
                    151: *     ..
                    152: *     .. External Subroutines ..
1.5       bertrand  153:       EXTERNAL           XERBLA, ZLARF, ZLARFG
1.1       bertrand  154: *     ..
                    155: *     .. Intrinsic Functions ..
                    156:       INTRINSIC          DCONJG, MAX, MIN
                    157: *     ..
                    158: *     .. Executable Statements ..
                    159: *
                    160: *     Test the input arguments
                    161: *
                    162:       INFO = 0
                    163:       IF( M.LT.0 ) THEN
                    164:          INFO = -1
                    165:       ELSE IF( N.LT.0 ) THEN
                    166:          INFO = -2
                    167:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
                    168:          INFO = -4
                    169:       END IF
                    170:       IF( INFO.NE.0 ) THEN
                    171:          CALL XERBLA( 'ZGEQR2', -INFO )
                    172:          RETURN
                    173:       END IF
                    174: *
                    175:       K = MIN( M, N )
                    176: *
                    177:       DO 10 I = 1, K
                    178: *
                    179: *        Generate elementary reflector H(i) to annihilate A(i+1:m,i)
                    180: *
1.5       bertrand  181:          CALL ZLARFG( M-I+1, A( I, I ), A( MIN( I+1, M ), I ), 1,
1.1       bertrand  182:      $                TAU( I ) )
                    183:          IF( I.LT.N ) THEN
                    184: *
1.9       bertrand  185: *           Apply H(i)**H to A(i:m,i+1:n) from the left
1.1       bertrand  186: *
                    187:             ALPHA = A( I, I )
                    188:             A( I, I ) = ONE
                    189:             CALL ZLARF( 'Left', M-I+1, N-I, A( I, I ), 1,
                    190:      $                  DCONJG( TAU( I ) ), A( I, I+1 ), LDA, WORK )
                    191:             A( I, I ) = ALPHA
                    192:          END IF
                    193:    10 CONTINUE
                    194:       RETURN
                    195: *
                    196: *     End of ZGEQR2
                    197: *
                    198:       END

CVSweb interface <joel.bertrand@systella.fr>