Annotation of rpl/lapack/lapack/zgeqr.f, revision 1.5

1.4       bertrand    1: *> \brief \b ZGEQR
1.1       bertrand    2: *
                      3: *  Definition:
                      4: *  ===========
                      5: *
                      6: *       SUBROUTINE ZGEQR( M, N, A, LDA, T, TSIZE, WORK, LWORK,
                      7: *                         INFO )
                      8: *
                      9: *       .. Scalar Arguments ..
                     10: *       INTEGER           INFO, LDA, M, N, TSIZE, LWORK
                     11: *       ..
                     12: *       .. Array Arguments ..
                     13: *       COMPLEX*16        A( LDA, * ), T( * ), WORK( * )
                     14: *       ..
                     15: *
                     16: *
                     17: *> \par Purpose:
                     18: *  =============
                     19: *>
                     20: *> \verbatim
1.4       bertrand   21: *>
                     22: *> ZGEQR computes a QR factorization of a complex M-by-N matrix A:
                     23: *>
                     24: *>    A = Q * ( R ),
                     25: *>            ( 0 )
                     26: *>
                     27: *> where:
                     28: *>
                     29: *>    Q is a M-by-M orthogonal matrix;
                     30: *>    R is an upper-triangular N-by-N matrix;
                     31: *>    0 is a (M-N)-by-N zero matrix, if M > N.
                     32: *>
1.1       bertrand   33: *> \endverbatim
                     34: *
                     35: *  Arguments:
                     36: *  ==========
                     37: *
                     38: *> \param[in] M
                     39: *> \verbatim
                     40: *>          M is INTEGER
                     41: *>          The number of rows of the matrix A.  M >= 0.
                     42: *> \endverbatim
                     43: *>
                     44: *> \param[in] N
                     45: *> \verbatim
                     46: *>          N is INTEGER
                     47: *>          The number of columns of the matrix A.  N >= 0.
                     48: *> \endverbatim
                     49: *>
                     50: *> \param[in,out] A
                     51: *> \verbatim
                     52: *>          A is COMPLEX*16 array, dimension (LDA,N)
                     53: *>          On entry, the M-by-N matrix A.
                     54: *>          On exit, the elements on and above the diagonal of the array
                     55: *>          contain the min(M,N)-by-N upper trapezoidal matrix R
                     56: *>          (R is upper triangular if M >= N);
                     57: *>          the elements below the diagonal are used to store part of the 
                     58: *>          data structure to represent Q.
                     59: *> \endverbatim
                     60: *>
                     61: *> \param[in] LDA
                     62: *> \verbatim
                     63: *>          LDA is INTEGER
                     64: *>          The leading dimension of the array A.  LDA >= max(1,M).
                     65: *> \endverbatim
                     66: *>
                     67: *> \param[out] T
                     68: *> \verbatim
                     69: *>          T is COMPLEX*16 array, dimension (MAX(5,TSIZE))
                     70: *>          On exit, if INFO = 0, T(1) returns optimal (or either minimal 
                     71: *>          or optimal, if query is assumed) TSIZE. See TSIZE for details.
                     72: *>          Remaining T contains part of the data structure used to represent Q.
                     73: *>          If one wants to apply or construct Q, then one needs to keep T 
                     74: *>          (in addition to A) and pass it to further subroutines.
                     75: *> \endverbatim
                     76: *>
                     77: *> \param[in] TSIZE
                     78: *> \verbatim
                     79: *>          TSIZE is INTEGER
                     80: *>          If TSIZE >= 5, the dimension of the array T.
                     81: *>          If TSIZE = -1 or -2, then a workspace query is assumed. The routine
                     82: *>          only calculates the sizes of the T and WORK arrays, returns these
                     83: *>          values as the first entries of the T and WORK arrays, and no error
                     84: *>          message related to T or WORK is issued by XERBLA.
                     85: *>          If TSIZE = -1, the routine calculates optimal size of T for the 
                     86: *>          optimum performance and returns this value in T(1).
                     87: *>          If TSIZE = -2, the routine calculates minimal size of T and 
                     88: *>          returns this value in T(1).
                     89: *> \endverbatim
                     90: *>
                     91: *> \param[out] WORK
                     92: *> \verbatim
                     93: *>          (workspace) COMPLEX*16 array, dimension (MAX(1,LWORK))
                     94: *>          On exit, if INFO = 0, WORK(1) contains optimal (or either minimal
                     95: *>          or optimal, if query was assumed) LWORK.
                     96: *>          See LWORK for details.
                     97: *> \endverbatim
                     98: *>
                     99: *> \param[in] LWORK
                    100: *> \verbatim
                    101: *>          LWORK is INTEGER
                    102: *>          The dimension of the array WORK.
                    103: *>          If LWORK = -1 or -2, then a workspace query is assumed. The routine
                    104: *>          only calculates the sizes of the T and WORK arrays, returns these
                    105: *>          values as the first entries of the T and WORK arrays, and no error
                    106: *>          message related to T or WORK is issued by XERBLA.
                    107: *>          If LWORK = -1, the routine calculates optimal size of WORK for the
                    108: *>          optimal performance and returns this value in WORK(1).
                    109: *>          If LWORK = -2, the routine calculates minimal size of WORK and 
                    110: *>          returns this value in WORK(1).
                    111: *> \endverbatim
                    112: *>
                    113: *> \param[out] INFO
                    114: *> \verbatim
                    115: *>          INFO is INTEGER
                    116: *>          = 0:  successful exit
                    117: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    118: *> \endverbatim
                    119: *
                    120: *  Authors:
                    121: *  ========
                    122: *
                    123: *> \author Univ. of Tennessee
                    124: *> \author Univ. of California Berkeley
                    125: *> \author Univ. of Colorado Denver
                    126: *> \author NAG Ltd.
                    127: *
                    128: *> \par Further Details
                    129: *  ====================
                    130: *>
                    131: *> \verbatim
                    132: *>
                    133: *> The goal of the interface is to give maximum freedom to the developers for
                    134: *> creating any QR factorization algorithm they wish. The triangular 
                    135: *> (trapezoidal) R has to be stored in the upper part of A. The lower part of A
                    136: *> and the array T can be used to store any relevant information for applying or
                    137: *> constructing the Q factor. The WORK array can safely be discarded after exit.
                    138: *>
                    139: *> Caution: One should not expect the sizes of T and WORK to be the same from one 
                    140: *> LAPACK implementation to the other, or even from one execution to the other.
                    141: *> A workspace query (for T and WORK) is needed at each execution. However, 
                    142: *> for a given execution, the size of T and WORK are fixed and will not change 
                    143: *> from one query to the next.
                    144: *>
                    145: *> \endverbatim
                    146: *>
                    147: *> \par Further Details particular to this LAPACK implementation:
                    148: *  ==============================================================
                    149: *>
                    150: *> \verbatim
                    151: *>
                    152: *> These details are particular for this LAPACK implementation. Users should not 
1.4       bertrand  153: *> take them for granted. These details may change in the future, and are not likely
1.1       bertrand  154: *> true for another LAPACK implementation. These details are relevant if one wants
                    155: *> to try to understand the code. They are not part of the interface.
                    156: *>
                    157: *> In this version,
                    158: *>
                    159: *>          T(2): row block size (MB)
                    160: *>          T(3): column block size (NB)
                    161: *>          T(6:TSIZE): data structure needed for Q, computed by
                    162: *>                           ZLATSQR or ZGEQRT
                    163: *>
                    164: *>  Depending on the matrix dimensions M and N, and row and column
                    165: *>  block sizes MB and NB returned by ILAENV, ZGEQR will use either
                    166: *>  ZLATSQR (if the matrix is tall-and-skinny) or ZGEQRT to compute
                    167: *>  the QR factorization.
                    168: *>
                    169: *> \endverbatim
                    170: *>
                    171: *  =====================================================================
                    172:       SUBROUTINE ZGEQR( M, N, A, LDA, T, TSIZE, WORK, LWORK,
                    173:      $                  INFO )
                    174: *
1.5     ! bertrand  175: *  -- LAPACK computational routine --
1.1       bertrand  176: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    177: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd. --
                    178: *
                    179: *     .. Scalar Arguments ..
                    180:       INTEGER            INFO, LDA, M, N, TSIZE, LWORK
                    181: *     ..
                    182: *     .. Array Arguments ..
                    183:       COMPLEX*16         A( LDA, * ), T( * ), WORK( * )
                    184: *     ..
                    185: *
                    186: *  =====================================================================
                    187: *
                    188: *     ..
                    189: *     .. Local Scalars ..
                    190:       LOGICAL            LQUERY, LMINWS, MINT, MINW
                    191:       INTEGER            MB, NB, MINTSZ, NBLCKS
                    192: *     ..
                    193: *     .. External Functions ..
                    194:       LOGICAL            LSAME
                    195:       EXTERNAL           LSAME
                    196: *     ..
                    197: *     .. External Subroutines ..
                    198:       EXTERNAL           ZLATSQR, ZGEQRT, XERBLA
                    199: *     ..
                    200: *     .. Intrinsic Functions ..
                    201:       INTRINSIC          MAX, MIN, MOD
                    202: *     ..
                    203: *     .. External Functions ..
                    204:       INTEGER            ILAENV
                    205:       EXTERNAL           ILAENV
                    206: *     ..
                    207: *     .. Executable Statements ..
                    208: *
                    209: *     Test the input arguments
                    210: *
                    211:       INFO = 0
                    212: *
                    213:       LQUERY = ( TSIZE.EQ.-1 .OR. TSIZE.EQ.-2 .OR.
                    214:      $           LWORK.EQ.-1 .OR. LWORK.EQ.-2 )
                    215: *
                    216:       MINT = .FALSE.
                    217:       MINW = .FALSE.
                    218:       IF( TSIZE.EQ.-2 .OR. LWORK.EQ.-2 ) THEN
                    219:         IF( TSIZE.NE.-1 ) MINT = .TRUE.
                    220:         IF( LWORK.NE.-1 ) MINW = .TRUE.
                    221:       END IF
                    222: *
                    223: *     Determine the block size
                    224: *
                    225:       IF( MIN ( M, N ).GT.0 ) THEN
                    226:         MB = ILAENV( 1, 'ZGEQR ', ' ', M, N, 1, -1 )
                    227:         NB = ILAENV( 1, 'ZGEQR ', ' ', M, N, 2, -1 )
                    228:       ELSE
                    229:         MB = M
                    230:         NB = 1
                    231:       END IF
                    232:       IF( MB.GT.M .OR. MB.LE.N ) MB = M
                    233:       IF( NB.GT.MIN( M, N ) .OR. NB.LT.1 ) NB = 1
                    234:       MINTSZ = N + 5
                    235:       IF( MB.GT.N .AND. M.GT.N ) THEN
                    236:         IF( MOD( M - N, MB - N ).EQ.0 ) THEN
                    237:           NBLCKS = ( M - N ) / ( MB - N )
                    238:         ELSE
                    239:           NBLCKS = ( M - N ) / ( MB - N ) + 1
                    240:         END IF
                    241:       ELSE
                    242:         NBLCKS = 1
                    243:       END IF
                    244: *
                    245: *     Determine if the workspace size satisfies minimal size
                    246: *
                    247:       LMINWS = .FALSE.
                    248:       IF( ( TSIZE.LT.MAX( 1, NB*N*NBLCKS + 5 ) .OR. LWORK.LT.NB*N )
                    249:      $    .AND. ( LWORK.GE.N ) .AND. ( TSIZE.GE.MINTSZ )
                    250:      $    .AND. ( .NOT.LQUERY ) ) THEN
                    251:         IF( TSIZE.LT.MAX( 1, NB*N*NBLCKS + 5 ) ) THEN
                    252:           LMINWS = .TRUE.
                    253:           NB = 1
                    254:           MB = M
                    255:         END IF
                    256:         IF( LWORK.LT.NB*N ) THEN
                    257:           LMINWS = .TRUE.
                    258:           NB = 1
                    259:         END IF
                    260:       END IF
                    261: *
                    262:       IF( M.LT.0 ) THEN
                    263:         INFO = -1
                    264:       ELSE IF( N.LT.0 ) THEN
                    265:         INFO = -2
                    266:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
                    267:         INFO = -4
                    268:       ELSE IF( TSIZE.LT.MAX( 1, NB*N*NBLCKS + 5 )
                    269:      $   .AND. ( .NOT.LQUERY ) .AND. ( .NOT.LMINWS ) ) THEN
                    270:         INFO = -6
                    271:       ELSE IF( ( LWORK.LT.MAX( 1, N*NB ) ) .AND. ( .NOT.LQUERY )
                    272:      $   .AND. ( .NOT.LMINWS ) ) THEN
                    273:         INFO = -8
                    274:       END IF
                    275: *
                    276:       IF( INFO.EQ.0 ) THEN
                    277:         IF( MINT ) THEN
                    278:           T( 1 ) = MINTSZ
                    279:         ELSE
                    280:           T( 1 ) = NB*N*NBLCKS + 5
                    281:         END IF
                    282:         T( 2 ) = MB
                    283:         T( 3 ) = NB
                    284:         IF( MINW ) THEN
                    285:           WORK( 1 ) = MAX( 1, N )
                    286:         ELSE
                    287:           WORK( 1 ) = MAX( 1, NB*N )
                    288:         END IF
                    289:       END IF
                    290:       IF( INFO.NE.0 ) THEN
                    291:         CALL XERBLA( 'ZGEQR', -INFO )
                    292:         RETURN
                    293:       ELSE IF( LQUERY ) THEN
                    294:         RETURN
                    295:       END IF
                    296: *
                    297: *     Quick return if possible
                    298: *
                    299:       IF( MIN( M, N ).EQ.0 ) THEN
                    300:         RETURN
                    301:       END IF
                    302: *
                    303: *     The QR Decomposition
                    304: *
                    305:       IF( ( M.LE.N ) .OR. ( MB.LE.N ) .OR. ( MB.GE.M ) ) THEN
                    306:         CALL ZGEQRT( M, N, NB, A, LDA, T( 6 ), NB, WORK, INFO )
                    307:       ELSE
                    308:         CALL ZLATSQR( M, N, MB, NB, A, LDA, T( 6 ), NB, WORK,
                    309:      $                LWORK, INFO )
                    310:       END IF
                    311: *
                    312:       WORK( 1 ) = MAX( 1, NB*N )
                    313: *
                    314:       RETURN
                    315: *
                    316: *     End of ZGEQR
                    317: *
                    318:       END

CVSweb interface <joel.bertrand@systella.fr>