Annotation of rpl/lapack/lapack/zgeqp3.f, revision 1.20

1.9       bertrand    1: *> \brief \b ZGEQP3
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.17      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.9       bertrand    7: *
                      8: *> \htmlonly
1.17      bertrand    9: *> Download ZGEQP3 + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgeqp3.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgeqp3.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgeqp3.f">
1.9       bertrand   15: *> [TXT]</a>
1.17      bertrand   16: *> \endhtmlonly
1.9       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZGEQP3( M, N, A, LDA, JPVT, TAU, WORK, LWORK, RWORK,
                     22: *                          INFO )
1.17      bertrand   23: *
1.9       bertrand   24: *       .. Scalar Arguments ..
                     25: *       INTEGER            INFO, LDA, LWORK, M, N
                     26: *       ..
                     27: *       .. Array Arguments ..
                     28: *       INTEGER            JPVT( * )
                     29: *       DOUBLE PRECISION   RWORK( * )
                     30: *       COMPLEX*16         A( LDA, * ), TAU( * ), WORK( * )
                     31: *       ..
1.17      bertrand   32: *
1.9       bertrand   33: *
                     34: *> \par Purpose:
                     35: *  =============
                     36: *>
                     37: *> \verbatim
                     38: *>
                     39: *> ZGEQP3 computes a QR factorization with column pivoting of a
                     40: *> matrix A:  A*P = Q*R  using Level 3 BLAS.
                     41: *> \endverbatim
                     42: *
                     43: *  Arguments:
                     44: *  ==========
                     45: *
                     46: *> \param[in] M
                     47: *> \verbatim
                     48: *>          M is INTEGER
                     49: *>          The number of rows of the matrix A. M >= 0.
                     50: *> \endverbatim
                     51: *>
                     52: *> \param[in] N
                     53: *> \verbatim
                     54: *>          N is INTEGER
                     55: *>          The number of columns of the matrix A.  N >= 0.
                     56: *> \endverbatim
                     57: *>
                     58: *> \param[in,out] A
                     59: *> \verbatim
                     60: *>          A is COMPLEX*16 array, dimension (LDA,N)
                     61: *>          On entry, the M-by-N matrix A.
                     62: *>          On exit, the upper triangle of the array contains the
                     63: *>          min(M,N)-by-N upper trapezoidal matrix R; the elements below
                     64: *>          the diagonal, together with the array TAU, represent the
                     65: *>          unitary matrix Q as a product of min(M,N) elementary
                     66: *>          reflectors.
                     67: *> \endverbatim
                     68: *>
                     69: *> \param[in] LDA
                     70: *> \verbatim
                     71: *>          LDA is INTEGER
                     72: *>          The leading dimension of the array A. LDA >= max(1,M).
                     73: *> \endverbatim
                     74: *>
                     75: *> \param[in,out] JPVT
                     76: *> \verbatim
                     77: *>          JPVT is INTEGER array, dimension (N)
                     78: *>          On entry, if JPVT(J).ne.0, the J-th column of A is permuted
                     79: *>          to the front of A*P (a leading column); if JPVT(J)=0,
                     80: *>          the J-th column of A is a free column.
                     81: *>          On exit, if JPVT(J)=K, then the J-th column of A*P was the
                     82: *>          the K-th column of A.
                     83: *> \endverbatim
                     84: *>
                     85: *> \param[out] TAU
                     86: *> \verbatim
                     87: *>          TAU is COMPLEX*16 array, dimension (min(M,N))
                     88: *>          The scalar factors of the elementary reflectors.
                     89: *> \endverbatim
                     90: *>
                     91: *> \param[out] WORK
                     92: *> \verbatim
                     93: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
                     94: *>          On exit, if INFO=0, WORK(1) returns the optimal LWORK.
                     95: *> \endverbatim
                     96: *>
                     97: *> \param[in] LWORK
                     98: *> \verbatim
                     99: *>          LWORK is INTEGER
                    100: *>          The dimension of the array WORK. LWORK >= N+1.
                    101: *>          For optimal performance LWORK >= ( N+1 )*NB, where NB
                    102: *>          is the optimal blocksize.
                    103: *>
                    104: *>          If LWORK = -1, then a workspace query is assumed; the routine
                    105: *>          only calculates the optimal size of the WORK array, returns
                    106: *>          this value as the first entry of the WORK array, and no error
                    107: *>          message related to LWORK is issued by XERBLA.
                    108: *> \endverbatim
                    109: *>
                    110: *> \param[out] RWORK
                    111: *> \verbatim
                    112: *>          RWORK is DOUBLE PRECISION array, dimension (2*N)
                    113: *> \endverbatim
                    114: *>
                    115: *> \param[out] INFO
                    116: *> \verbatim
                    117: *>          INFO is INTEGER
                    118: *>          = 0: successful exit.
                    119: *>          < 0: if INFO = -i, the i-th argument had an illegal value.
                    120: *> \endverbatim
                    121: *
                    122: *  Authors:
                    123: *  ========
                    124: *
1.17      bertrand  125: *> \author Univ. of Tennessee
                    126: *> \author Univ. of California Berkeley
                    127: *> \author Univ. of Colorado Denver
                    128: *> \author NAG Ltd.
1.9       bertrand  129: *
                    130: *> \ingroup complex16GEcomputational
                    131: *
                    132: *> \par Further Details:
                    133: *  =====================
                    134: *>
                    135: *> \verbatim
                    136: *>
                    137: *>  The matrix Q is represented as a product of elementary reflectors
                    138: *>
                    139: *>     Q = H(1) H(2) . . . H(k), where k = min(m,n).
                    140: *>
                    141: *>  Each H(i) has the form
                    142: *>
                    143: *>     H(i) = I - tau * v * v**H
                    144: *>
1.12      bertrand  145: *>  where tau is a complex scalar, and v is a real/complex vector
1.9       bertrand  146: *>  with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in
                    147: *>  A(i+1:m,i), and tau in TAU(i).
                    148: *> \endverbatim
                    149: *
                    150: *> \par Contributors:
                    151: *  ==================
                    152: *>
                    153: *>    G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain
                    154: *>    X. Sun, Computer Science Dept., Duke University, USA
                    155: *>
                    156: *  =====================================================================
1.1       bertrand  157:       SUBROUTINE ZGEQP3( M, N, A, LDA, JPVT, TAU, WORK, LWORK, RWORK,
                    158:      $                   INFO )
                    159: *
1.20    ! bertrand  160: *  -- LAPACK computational routine --
1.1       bertrand  161: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    162: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    163: *
                    164: *     .. Scalar Arguments ..
                    165:       INTEGER            INFO, LDA, LWORK, M, N
                    166: *     ..
                    167: *     .. Array Arguments ..
                    168:       INTEGER            JPVT( * )
                    169:       DOUBLE PRECISION   RWORK( * )
                    170:       COMPLEX*16         A( LDA, * ), TAU( * ), WORK( * )
                    171: *     ..
                    172: *
                    173: *  =====================================================================
                    174: *
                    175: *     .. Parameters ..
                    176:       INTEGER            INB, INBMIN, IXOVER
                    177:       PARAMETER          ( INB = 1, INBMIN = 2, IXOVER = 3 )
                    178: *     ..
                    179: *     .. Local Scalars ..
                    180:       LOGICAL            LQUERY
                    181:       INTEGER            FJB, IWS, J, JB, LWKOPT, MINMN, MINWS, NA, NB,
                    182:      $                   NBMIN, NFXD, NX, SM, SMINMN, SN, TOPBMN
                    183: *     ..
                    184: *     .. External Subroutines ..
                    185:       EXTERNAL           XERBLA, ZGEQRF, ZLAQP2, ZLAQPS, ZSWAP, ZUNMQR
                    186: *     ..
                    187: *     .. External Functions ..
                    188:       INTEGER            ILAENV
                    189:       DOUBLE PRECISION   DZNRM2
                    190:       EXTERNAL           ILAENV, DZNRM2
                    191: *     ..
                    192: *     .. Intrinsic Functions ..
                    193:       INTRINSIC          INT, MAX, MIN
                    194: *     ..
                    195: *     .. Executable Statements ..
                    196: *
                    197: *     Test input arguments
1.9       bertrand  198: *  ====================
1.1       bertrand  199: *
                    200:       INFO = 0
                    201:       LQUERY = ( LWORK.EQ.-1 )
                    202:       IF( M.LT.0 ) THEN
                    203:          INFO = -1
                    204:       ELSE IF( N.LT.0 ) THEN
                    205:          INFO = -2
                    206:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
                    207:          INFO = -4
                    208:       END IF
                    209: *
                    210:       IF( INFO.EQ.0 ) THEN
                    211:          MINMN = MIN( M, N )
                    212:          IF( MINMN.EQ.0 ) THEN
                    213:             IWS = 1
                    214:             LWKOPT = 1
                    215:          ELSE
                    216:             IWS = N + 1
                    217:             NB = ILAENV( INB, 'ZGEQRF', ' ', M, N, -1, -1 )
                    218:             LWKOPT = ( N + 1 )*NB
                    219:          END IF
1.15      bertrand  220:          WORK( 1 ) = DCMPLX( LWKOPT )
1.1       bertrand  221: *
                    222:          IF( ( LWORK.LT.IWS ) .AND. .NOT.LQUERY ) THEN
                    223:             INFO = -8
                    224:          END IF
                    225:       END IF
                    226: *
                    227:       IF( INFO.NE.0 ) THEN
                    228:          CALL XERBLA( 'ZGEQP3', -INFO )
                    229:          RETURN
                    230:       ELSE IF( LQUERY ) THEN
                    231:          RETURN
                    232:       END IF
                    233: *
                    234: *     Move initial columns up front.
                    235: *
                    236:       NFXD = 1
                    237:       DO 10 J = 1, N
                    238:          IF( JPVT( J ).NE.0 ) THEN
                    239:             IF( J.NE.NFXD ) THEN
                    240:                CALL ZSWAP( M, A( 1, J ), 1, A( 1, NFXD ), 1 )
                    241:                JPVT( J ) = JPVT( NFXD )
                    242:                JPVT( NFXD ) = J
                    243:             ELSE
                    244:                JPVT( J ) = J
                    245:             END IF
                    246:             NFXD = NFXD + 1
                    247:          ELSE
                    248:             JPVT( J ) = J
                    249:          END IF
                    250:    10 CONTINUE
                    251:       NFXD = NFXD - 1
                    252: *
                    253: *     Factorize fixed columns
1.9       bertrand  254: *  =======================
1.1       bertrand  255: *
                    256: *     Compute the QR factorization of fixed columns and update
                    257: *     remaining columns.
                    258: *
                    259:       IF( NFXD.GT.0 ) THEN
                    260:          NA = MIN( M, NFXD )
                    261: *CC      CALL ZGEQR2( M, NA, A, LDA, TAU, WORK, INFO )
                    262:          CALL ZGEQRF( M, NA, A, LDA, TAU, WORK, LWORK, INFO )
                    263:          IWS = MAX( IWS, INT( WORK( 1 ) ) )
                    264:          IF( NA.LT.N ) THEN
                    265: *CC         CALL ZUNM2R( 'Left', 'Conjugate Transpose', M, N-NA,
                    266: *CC  $                   NA, A, LDA, TAU, A( 1, NA+1 ), LDA, WORK,
                    267: *CC  $                   INFO )
                    268:             CALL ZUNMQR( 'Left', 'Conjugate Transpose', M, N-NA, NA, A,
                    269:      $                   LDA, TAU, A( 1, NA+1 ), LDA, WORK, LWORK,
                    270:      $                   INFO )
                    271:             IWS = MAX( IWS, INT( WORK( 1 ) ) )
                    272:          END IF
                    273:       END IF
                    274: *
                    275: *     Factorize free columns
1.9       bertrand  276: *  ======================
1.1       bertrand  277: *
                    278:       IF( NFXD.LT.MINMN ) THEN
                    279: *
                    280:          SM = M - NFXD
                    281:          SN = N - NFXD
                    282:          SMINMN = MINMN - NFXD
                    283: *
                    284: *        Determine the block size.
                    285: *
                    286:          NB = ILAENV( INB, 'ZGEQRF', ' ', SM, SN, -1, -1 )
                    287:          NBMIN = 2
                    288:          NX = 0
                    289: *
                    290:          IF( ( NB.GT.1 ) .AND. ( NB.LT.SMINMN ) ) THEN
                    291: *
                    292: *           Determine when to cross over from blocked to unblocked code.
                    293: *
                    294:             NX = MAX( 0, ILAENV( IXOVER, 'ZGEQRF', ' ', SM, SN, -1,
                    295:      $           -1 ) )
                    296: *
                    297: *
                    298:             IF( NX.LT.SMINMN ) THEN
                    299: *
                    300: *              Determine if workspace is large enough for blocked code.
                    301: *
                    302:                MINWS = ( SN+1 )*NB
                    303:                IWS = MAX( IWS, MINWS )
                    304:                IF( LWORK.LT.MINWS ) THEN
                    305: *
                    306: *                 Not enough workspace to use optimal NB: Reduce NB and
                    307: *                 determine the minimum value of NB.
                    308: *
                    309:                   NB = LWORK / ( SN+1 )
                    310:                   NBMIN = MAX( 2, ILAENV( INBMIN, 'ZGEQRF', ' ', SM, SN,
                    311:      $                    -1, -1 ) )
                    312: *
                    313: *
                    314:                END IF
                    315:             END IF
                    316:          END IF
                    317: *
                    318: *        Initialize partial column norms. The first N elements of work
                    319: *        store the exact column norms.
                    320: *
                    321:          DO 20 J = NFXD + 1, N
                    322:             RWORK( J ) = DZNRM2( SM, A( NFXD+1, J ), 1 )
                    323:             RWORK( N+J ) = RWORK( J )
                    324:    20    CONTINUE
                    325: *
                    326:          IF( ( NB.GE.NBMIN ) .AND. ( NB.LT.SMINMN ) .AND.
                    327:      $       ( NX.LT.SMINMN ) ) THEN
                    328: *
                    329: *           Use blocked code initially.
                    330: *
                    331:             J = NFXD + 1
                    332: *
                    333: *           Compute factorization: while loop.
                    334: *
                    335: *
                    336:             TOPBMN = MINMN - NX
                    337:    30       CONTINUE
                    338:             IF( J.LE.TOPBMN ) THEN
                    339:                JB = MIN( NB, TOPBMN-J+1 )
                    340: *
                    341: *              Factorize JB columns among columns J:N.
                    342: *
                    343:                CALL ZLAQPS( M, N-J+1, J-1, JB, FJB, A( 1, J ), LDA,
                    344:      $                      JPVT( J ), TAU( J ), RWORK( J ),
                    345:      $                      RWORK( N+J ), WORK( 1 ), WORK( JB+1 ),
                    346:      $                      N-J+1 )
                    347: *
                    348:                J = J + FJB
                    349:                GO TO 30
                    350:             END IF
                    351:          ELSE
                    352:             J = NFXD + 1
                    353:          END IF
                    354: *
                    355: *        Use unblocked code to factor the last or only block.
                    356: *
                    357: *
                    358:          IF( J.LE.MINMN )
                    359:      $      CALL ZLAQP2( M, N-J+1, J-1, A( 1, J ), LDA, JPVT( J ),
                    360:      $                   TAU( J ), RWORK( J ), RWORK( N+J ), WORK( 1 ) )
                    361: *
                    362:       END IF
                    363: *
1.15      bertrand  364:       WORK( 1 ) = DCMPLX( LWKOPT )
1.1       bertrand  365:       RETURN
                    366: *
                    367: *     End of ZGEQP3
                    368: *
                    369:       END

CVSweb interface <joel.bertrand@systella.fr>