File:  [local] / rpl / lapack / lapack / zgeqlf.f
Revision 1.18: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:18 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZGEQLF
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZGEQLF + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgeqlf.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgeqlf.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgeqlf.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZGEQLF( M, N, A, LDA, TAU, WORK, LWORK, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       INTEGER            INFO, LDA, LWORK, M, N
   25: *       ..
   26: *       .. Array Arguments ..
   27: *       COMPLEX*16         A( LDA, * ), TAU( * ), WORK( * )
   28: *       ..
   29: *
   30: *
   31: *> \par Purpose:
   32: *  =============
   33: *>
   34: *> \verbatim
   35: *>
   36: *> ZGEQLF computes a QL factorization of a complex M-by-N matrix A:
   37: *> A = Q * L.
   38: *> \endverbatim
   39: *
   40: *  Arguments:
   41: *  ==========
   42: *
   43: *> \param[in] M
   44: *> \verbatim
   45: *>          M is INTEGER
   46: *>          The number of rows of the matrix A.  M >= 0.
   47: *> \endverbatim
   48: *>
   49: *> \param[in] N
   50: *> \verbatim
   51: *>          N is INTEGER
   52: *>          The number of columns of the matrix A.  N >= 0.
   53: *> \endverbatim
   54: *>
   55: *> \param[in,out] A
   56: *> \verbatim
   57: *>          A is COMPLEX*16 array, dimension (LDA,N)
   58: *>          On entry, the M-by-N matrix A.
   59: *>          On exit,
   60: *>          if m >= n, the lower triangle of the subarray
   61: *>          A(m-n+1:m,1:n) contains the N-by-N lower triangular matrix L;
   62: *>          if m <= n, the elements on and below the (n-m)-th
   63: *>          superdiagonal contain the M-by-N lower trapezoidal matrix L;
   64: *>          the remaining elements, with the array TAU, represent the
   65: *>          unitary matrix Q as a product of elementary reflectors
   66: *>          (see Further Details).
   67: *> \endverbatim
   68: *>
   69: *> \param[in] LDA
   70: *> \verbatim
   71: *>          LDA is INTEGER
   72: *>          The leading dimension of the array A.  LDA >= max(1,M).
   73: *> \endverbatim
   74: *>
   75: *> \param[out] TAU
   76: *> \verbatim
   77: *>          TAU is COMPLEX*16 array, dimension (min(M,N))
   78: *>          The scalar factors of the elementary reflectors (see Further
   79: *>          Details).
   80: *> \endverbatim
   81: *>
   82: *> \param[out] WORK
   83: *> \verbatim
   84: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
   85: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
   86: *> \endverbatim
   87: *>
   88: *> \param[in] LWORK
   89: *> \verbatim
   90: *>          LWORK is INTEGER
   91: *>          The dimension of the array WORK.  LWORK >= max(1,N).
   92: *>          For optimum performance LWORK >= N*NB, where NB is
   93: *>          the optimal blocksize.
   94: *>
   95: *>          If LWORK = -1, then a workspace query is assumed; the routine
   96: *>          only calculates the optimal size of the WORK array, returns
   97: *>          this value as the first entry of the WORK array, and no error
   98: *>          message related to LWORK is issued by XERBLA.
   99: *> \endverbatim
  100: *>
  101: *> \param[out] INFO
  102: *> \verbatim
  103: *>          INFO is INTEGER
  104: *>          = 0:  successful exit
  105: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  106: *> \endverbatim
  107: *
  108: *  Authors:
  109: *  ========
  110: *
  111: *> \author Univ. of Tennessee
  112: *> \author Univ. of California Berkeley
  113: *> \author Univ. of Colorado Denver
  114: *> \author NAG Ltd.
  115: *
  116: *> \ingroup complex16GEcomputational
  117: *
  118: *> \par Further Details:
  119: *  =====================
  120: *>
  121: *> \verbatim
  122: *>
  123: *>  The matrix Q is represented as a product of elementary reflectors
  124: *>
  125: *>     Q = H(k) . . . H(2) H(1), where k = min(m,n).
  126: *>
  127: *>  Each H(i) has the form
  128: *>
  129: *>     H(i) = I - tau * v * v**H
  130: *>
  131: *>  where tau is a complex scalar, and v is a complex vector with
  132: *>  v(m-k+i+1:m) = 0 and v(m-k+i) = 1; v(1:m-k+i-1) is stored on exit in
  133: *>  A(1:m-k+i-1,n-k+i), and tau in TAU(i).
  134: *> \endverbatim
  135: *>
  136: *  =====================================================================
  137:       SUBROUTINE ZGEQLF( M, N, A, LDA, TAU, WORK, LWORK, INFO )
  138: *
  139: *  -- LAPACK computational routine --
  140: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  141: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  142: *
  143: *     .. Scalar Arguments ..
  144:       INTEGER            INFO, LDA, LWORK, M, N
  145: *     ..
  146: *     .. Array Arguments ..
  147:       COMPLEX*16         A( LDA, * ), TAU( * ), WORK( * )
  148: *     ..
  149: *
  150: *  =====================================================================
  151: *
  152: *     .. Local Scalars ..
  153:       LOGICAL            LQUERY
  154:       INTEGER            I, IB, IINFO, IWS, K, KI, KK, LDWORK, LWKOPT,
  155:      $                   MU, NB, NBMIN, NU, NX
  156: *     ..
  157: *     .. External Subroutines ..
  158:       EXTERNAL           XERBLA, ZGEQL2, ZLARFB, ZLARFT
  159: *     ..
  160: *     .. Intrinsic Functions ..
  161:       INTRINSIC          MAX, MIN
  162: *     ..
  163: *     .. External Functions ..
  164:       INTEGER            ILAENV
  165:       EXTERNAL           ILAENV
  166: *     ..
  167: *     .. Executable Statements ..
  168: *
  169: *     Test the input arguments
  170: *
  171:       INFO = 0
  172:       LQUERY = ( LWORK.EQ.-1 )
  173:       IF( M.LT.0 ) THEN
  174:          INFO = -1
  175:       ELSE IF( N.LT.0 ) THEN
  176:          INFO = -2
  177:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  178:          INFO = -4
  179:       END IF
  180: *
  181:       IF( INFO.EQ.0 ) THEN
  182:          K = MIN( M, N )
  183:          IF( K.EQ.0 ) THEN
  184:             LWKOPT = 1
  185:          ELSE
  186:             NB = ILAENV( 1, 'ZGEQLF', ' ', M, N, -1, -1 )
  187:             LWKOPT = N*NB
  188:          END IF
  189:          WORK( 1 ) = LWKOPT
  190: *
  191:          IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN
  192:             INFO = -7
  193:          END IF
  194:       END IF
  195: *
  196:       IF( INFO.NE.0 ) THEN
  197:          CALL XERBLA( 'ZGEQLF', -INFO )
  198:          RETURN
  199:       ELSE IF( LQUERY ) THEN
  200:          RETURN
  201:       END IF
  202: *
  203: *     Quick return if possible
  204: *
  205:       IF( K.EQ.0 ) THEN
  206:          RETURN
  207:       END IF
  208: *
  209:       NBMIN = 2
  210:       NX = 1
  211:       IWS = N
  212:       IF( NB.GT.1 .AND. NB.LT.K ) THEN
  213: *
  214: *        Determine when to cross over from blocked to unblocked code.
  215: *
  216:          NX = MAX( 0, ILAENV( 3, 'ZGEQLF', ' ', M, N, -1, -1 ) )
  217:          IF( NX.LT.K ) THEN
  218: *
  219: *           Determine if workspace is large enough for blocked code.
  220: *
  221:             LDWORK = N
  222:             IWS = LDWORK*NB
  223:             IF( LWORK.LT.IWS ) THEN
  224: *
  225: *              Not enough workspace to use optimal NB:  reduce NB and
  226: *              determine the minimum value of NB.
  227: *
  228:                NB = LWORK / LDWORK
  229:                NBMIN = MAX( 2, ILAENV( 2, 'ZGEQLF', ' ', M, N, -1,
  230:      $                 -1 ) )
  231:             END IF
  232:          END IF
  233:       END IF
  234: *
  235:       IF( NB.GE.NBMIN .AND. NB.LT.K .AND. NX.LT.K ) THEN
  236: *
  237: *        Use blocked code initially.
  238: *        The last kk columns are handled by the block method.
  239: *
  240:          KI = ( ( K-NX-1 ) / NB )*NB
  241:          KK = MIN( K, KI+NB )
  242: *
  243:          DO 10 I = K - KK + KI + 1, K - KK + 1, -NB
  244:             IB = MIN( K-I+1, NB )
  245: *
  246: *           Compute the QL factorization of the current block
  247: *           A(1:m-k+i+ib-1,n-k+i:n-k+i+ib-1)
  248: *
  249:             CALL ZGEQL2( M-K+I+IB-1, IB, A( 1, N-K+I ), LDA, TAU( I ),
  250:      $                   WORK, IINFO )
  251:             IF( N-K+I.GT.1 ) THEN
  252: *
  253: *              Form the triangular factor of the block reflector
  254: *              H = H(i+ib-1) . . . H(i+1) H(i)
  255: *
  256:                CALL ZLARFT( 'Backward', 'Columnwise', M-K+I+IB-1, IB,
  257:      $                      A( 1, N-K+I ), LDA, TAU( I ), WORK, LDWORK )
  258: *
  259: *              Apply H**H to A(1:m-k+i+ib-1,1:n-k+i-1) from the left
  260: *
  261:                CALL ZLARFB( 'Left', 'Conjugate transpose', 'Backward',
  262:      $                      'Columnwise', M-K+I+IB-1, N-K+I-1, IB,
  263:      $                      A( 1, N-K+I ), LDA, WORK, LDWORK, A, LDA,
  264:      $                      WORK( IB+1 ), LDWORK )
  265:             END IF
  266:    10    CONTINUE
  267:          MU = M - K + I + NB - 1
  268:          NU = N - K + I + NB - 1
  269:       ELSE
  270:          MU = M
  271:          NU = N
  272:       END IF
  273: *
  274: *     Use unblocked code to factor the last or only block
  275: *
  276:       IF( MU.GT.0 .AND. NU.GT.0 )
  277:      $   CALL ZGEQL2( MU, NU, A, LDA, TAU, WORK, IINFO )
  278: *
  279:       WORK( 1 ) = IWS
  280:       RETURN
  281: *
  282: *     End of ZGEQLF
  283: *
  284:       END

CVSweb interface <joel.bertrand@systella.fr>