File:  [local] / rpl / lapack / lapack / zgelsy.f
Revision 1.4: download - view: text, annotated - select for diffs - revision graph
Fri Aug 6 15:32:38 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Cohérence

    1:       SUBROUTINE ZGELSY( M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK,
    2:      $                   WORK, LWORK, RWORK, INFO )
    3: *
    4: *  -- LAPACK driver routine (version 3.2) --
    5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    7: *     November 2006
    8: *
    9: *     .. Scalar Arguments ..
   10:       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
   11:       DOUBLE PRECISION   RCOND
   12: *     ..
   13: *     .. Array Arguments ..
   14:       INTEGER            JPVT( * )
   15:       DOUBLE PRECISION   RWORK( * )
   16:       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * )
   17: *     ..
   18: *
   19: *  Purpose
   20: *  =======
   21: *
   22: *  ZGELSY computes the minimum-norm solution to a complex linear least
   23: *  squares problem:
   24: *      minimize || A * X - B ||
   25: *  using a complete orthogonal factorization of A.  A is an M-by-N
   26: *  matrix which may be rank-deficient.
   27: *
   28: *  Several right hand side vectors b and solution vectors x can be
   29: *  handled in a single call; they are stored as the columns of the
   30: *  M-by-NRHS right hand side matrix B and the N-by-NRHS solution
   31: *  matrix X.
   32: *
   33: *  The routine first computes a QR factorization with column pivoting:
   34: *      A * P = Q * [ R11 R12 ]
   35: *                  [  0  R22 ]
   36: *  with R11 defined as the largest leading submatrix whose estimated
   37: *  condition number is less than 1/RCOND.  The order of R11, RANK,
   38: *  is the effective rank of A.
   39: *
   40: *  Then, R22 is considered to be negligible, and R12 is annihilated
   41: *  by unitary transformations from the right, arriving at the
   42: *  complete orthogonal factorization:
   43: *     A * P = Q * [ T11 0 ] * Z
   44: *                 [  0  0 ]
   45: *  The minimum-norm solution is then
   46: *     X = P * Z' [ inv(T11)*Q1'*B ]
   47: *                [        0       ]
   48: *  where Q1 consists of the first RANK columns of Q.
   49: *
   50: *  This routine is basically identical to the original xGELSX except
   51: *  three differences:
   52: *    o The permutation of matrix B (the right hand side) is faster and
   53: *      more simple.
   54: *    o The call to the subroutine xGEQPF has been substituted by the
   55: *      the call to the subroutine xGEQP3. This subroutine is a Blas-3
   56: *      version of the QR factorization with column pivoting.
   57: *    o Matrix B (the right hand side) is updated with Blas-3.
   58: *
   59: *  Arguments
   60: *  =========
   61: *
   62: *  M       (input) INTEGER
   63: *          The number of rows of the matrix A.  M >= 0.
   64: *
   65: *  N       (input) INTEGER
   66: *          The number of columns of the matrix A.  N >= 0.
   67: *
   68: *  NRHS    (input) INTEGER
   69: *          The number of right hand sides, i.e., the number of
   70: *          columns of matrices B and X. NRHS >= 0.
   71: *
   72: *  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
   73: *          On entry, the M-by-N matrix A.
   74: *          On exit, A has been overwritten by details of its
   75: *          complete orthogonal factorization.
   76: *
   77: *  LDA     (input) INTEGER
   78: *          The leading dimension of the array A.  LDA >= max(1,M).
   79: *
   80: *  B       (input/output) COMPLEX*16 array, dimension (LDB,NRHS)
   81: *          On entry, the M-by-NRHS right hand side matrix B.
   82: *          On exit, the N-by-NRHS solution matrix X.
   83: *
   84: *  LDB     (input) INTEGER
   85: *          The leading dimension of the array B. LDB >= max(1,M,N).
   86: *
   87: *  JPVT    (input/output) INTEGER array, dimension (N)
   88: *          On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted
   89: *          to the front of AP, otherwise column i is a free column.
   90: *          On exit, if JPVT(i) = k, then the i-th column of A*P
   91: *          was the k-th column of A.
   92: *
   93: *  RCOND   (input) DOUBLE PRECISION
   94: *          RCOND is used to determine the effective rank of A, which
   95: *          is defined as the order of the largest leading triangular
   96: *          submatrix R11 in the QR factorization with pivoting of A,
   97: *          whose estimated condition number < 1/RCOND.
   98: *
   99: *  RANK    (output) INTEGER
  100: *          The effective rank of A, i.e., the order of the submatrix
  101: *          R11.  This is the same as the order of the submatrix T11
  102: *          in the complete orthogonal factorization of A.
  103: *
  104: *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
  105: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  106: *
  107: *  LWORK   (input) INTEGER
  108: *          The dimension of the array WORK.
  109: *          The unblocked strategy requires that:
  110: *            LWORK >= MN + MAX( 2*MN, N+1, MN+NRHS )
  111: *          where MN = min(M,N).
  112: *          The block algorithm requires that:
  113: *            LWORK >= MN + MAX( 2*MN, NB*(N+1), MN+MN*NB, MN+NB*NRHS )
  114: *          where NB is an upper bound on the blocksize returned
  115: *          by ILAENV for the routines ZGEQP3, ZTZRZF, CTZRQF, ZUNMQR,
  116: *          and ZUNMRZ.
  117: *
  118: *          If LWORK = -1, then a workspace query is assumed; the routine
  119: *          only calculates the optimal size of the WORK array, returns
  120: *          this value as the first entry of the WORK array, and no error
  121: *          message related to LWORK is issued by XERBLA.
  122: *
  123: *  RWORK   (workspace) DOUBLE PRECISION array, dimension (2*N)
  124: *
  125: *  INFO    (output) INTEGER
  126: *          = 0: successful exit
  127: *          < 0: if INFO = -i, the i-th argument had an illegal value
  128: *
  129: *  Further Details
  130: *  ===============
  131: *
  132: *  Based on contributions by
  133: *    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
  134: *    E. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain
  135: *    G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain
  136: *
  137: *  =====================================================================
  138: *
  139: *     .. Parameters ..
  140:       INTEGER            IMAX, IMIN
  141:       PARAMETER          ( IMAX = 1, IMIN = 2 )
  142:       DOUBLE PRECISION   ZERO, ONE
  143:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  144:       COMPLEX*16         CZERO, CONE
  145:       PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
  146:      $                   CONE = ( 1.0D+0, 0.0D+0 ) )
  147: *     ..
  148: *     .. Local Scalars ..
  149:       LOGICAL            LQUERY
  150:       INTEGER            I, IASCL, IBSCL, ISMAX, ISMIN, J, LWKOPT, MN,
  151:      $                   NB, NB1, NB2, NB3, NB4
  152:       DOUBLE PRECISION   ANRM, BIGNUM, BNRM, SMAX, SMAXPR, SMIN, SMINPR,
  153:      $                   SMLNUM, WSIZE
  154:       COMPLEX*16         C1, C2, S1, S2
  155: *     ..
  156: *     .. External Subroutines ..
  157:       EXTERNAL           DLABAD, XERBLA, ZCOPY, ZGEQP3, ZLAIC1, ZLASCL,
  158:      $                   ZLASET, ZTRSM, ZTZRZF, ZUNMQR, ZUNMRZ
  159: *     ..
  160: *     .. External Functions ..
  161:       INTEGER            ILAENV
  162:       DOUBLE PRECISION   DLAMCH, ZLANGE
  163:       EXTERNAL           ILAENV, DLAMCH, ZLANGE
  164: *     ..
  165: *     .. Intrinsic Functions ..
  166:       INTRINSIC          ABS, DBLE, DCMPLX, MAX, MIN
  167: *     ..
  168: *     .. Executable Statements ..
  169: *
  170:       MN = MIN( M, N )
  171:       ISMIN = MN + 1
  172:       ISMAX = 2*MN + 1
  173: *
  174: *     Test the input arguments.
  175: *
  176:       INFO = 0
  177:       NB1 = ILAENV( 1, 'ZGEQRF', ' ', M, N, -1, -1 )
  178:       NB2 = ILAENV( 1, 'ZGERQF', ' ', M, N, -1, -1 )
  179:       NB3 = ILAENV( 1, 'ZUNMQR', ' ', M, N, NRHS, -1 )
  180:       NB4 = ILAENV( 1, 'ZUNMRQ', ' ', M, N, NRHS, -1 )
  181:       NB = MAX( NB1, NB2, NB3, NB4 )
  182:       LWKOPT = MAX( 1, MN+2*N+NB*( N+1 ), 2*MN+NB*NRHS )
  183:       WORK( 1 ) = DCMPLX( LWKOPT )
  184:       LQUERY = ( LWORK.EQ.-1 )
  185:       IF( M.LT.0 ) THEN
  186:          INFO = -1
  187:       ELSE IF( N.LT.0 ) THEN
  188:          INFO = -2
  189:       ELSE IF( NRHS.LT.0 ) THEN
  190:          INFO = -3
  191:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  192:          INFO = -5
  193:       ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN
  194:          INFO = -7
  195:       ELSE IF( LWORK.LT.( MN+MAX( 2*MN, N+1, MN+NRHS ) ) .AND. .NOT.
  196:      $         LQUERY ) THEN
  197:          INFO = -12
  198:       END IF
  199: *
  200:       IF( INFO.NE.0 ) THEN
  201:          CALL XERBLA( 'ZGELSY', -INFO )
  202:          RETURN
  203:       ELSE IF( LQUERY ) THEN
  204:          RETURN
  205:       END IF
  206: *
  207: *     Quick return if possible
  208: *
  209:       IF( MIN( M, N, NRHS ).EQ.0 ) THEN
  210:          RANK = 0
  211:          RETURN
  212:       END IF
  213: *
  214: *     Get machine parameters
  215: *
  216:       SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'P' )
  217:       BIGNUM = ONE / SMLNUM
  218:       CALL DLABAD( SMLNUM, BIGNUM )
  219: *
  220: *     Scale A, B if max entries outside range [SMLNUM,BIGNUM]
  221: *
  222:       ANRM = ZLANGE( 'M', M, N, A, LDA, RWORK )
  223:       IASCL = 0
  224:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
  225: *
  226: *        Scale matrix norm up to SMLNUM
  227: *
  228:          CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
  229:          IASCL = 1
  230:       ELSE IF( ANRM.GT.BIGNUM ) THEN
  231: *
  232: *        Scale matrix norm down to BIGNUM
  233: *
  234:          CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
  235:          IASCL = 2
  236:       ELSE IF( ANRM.EQ.ZERO ) THEN
  237: *
  238: *        Matrix all zero. Return zero solution.
  239: *
  240:          CALL ZLASET( 'F', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB )
  241:          RANK = 0
  242:          GO TO 70
  243:       END IF
  244: *
  245:       BNRM = ZLANGE( 'M', M, NRHS, B, LDB, RWORK )
  246:       IBSCL = 0
  247:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
  248: *
  249: *        Scale matrix norm up to SMLNUM
  250: *
  251:          CALL ZLASCL( 'G', 0, 0, BNRM, SMLNUM, M, NRHS, B, LDB, INFO )
  252:          IBSCL = 1
  253:       ELSE IF( BNRM.GT.BIGNUM ) THEN
  254: *
  255: *        Scale matrix norm down to BIGNUM
  256: *
  257:          CALL ZLASCL( 'G', 0, 0, BNRM, BIGNUM, M, NRHS, B, LDB, INFO )
  258:          IBSCL = 2
  259:       END IF
  260: *
  261: *     Compute QR factorization with column pivoting of A:
  262: *        A * P = Q * R
  263: *
  264:       CALL ZGEQP3( M, N, A, LDA, JPVT, WORK( 1 ), WORK( MN+1 ),
  265:      $             LWORK-MN, RWORK, INFO )
  266:       WSIZE = MN + DBLE( WORK( MN+1 ) )
  267: *
  268: *     complex workspace: MN+NB*(N+1). real workspace 2*N.
  269: *     Details of Householder rotations stored in WORK(1:MN).
  270: *
  271: *     Determine RANK using incremental condition estimation
  272: *
  273:       WORK( ISMIN ) = CONE
  274:       WORK( ISMAX ) = CONE
  275:       SMAX = ABS( A( 1, 1 ) )
  276:       SMIN = SMAX
  277:       IF( ABS( A( 1, 1 ) ).EQ.ZERO ) THEN
  278:          RANK = 0
  279:          CALL ZLASET( 'F', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB )
  280:          GO TO 70
  281:       ELSE
  282:          RANK = 1
  283:       END IF
  284: *
  285:    10 CONTINUE
  286:       IF( RANK.LT.MN ) THEN
  287:          I = RANK + 1
  288:          CALL ZLAIC1( IMIN, RANK, WORK( ISMIN ), SMIN, A( 1, I ),
  289:      $                A( I, I ), SMINPR, S1, C1 )
  290:          CALL ZLAIC1( IMAX, RANK, WORK( ISMAX ), SMAX, A( 1, I ),
  291:      $                A( I, I ), SMAXPR, S2, C2 )
  292: *
  293:          IF( SMAXPR*RCOND.LE.SMINPR ) THEN
  294:             DO 20 I = 1, RANK
  295:                WORK( ISMIN+I-1 ) = S1*WORK( ISMIN+I-1 )
  296:                WORK( ISMAX+I-1 ) = S2*WORK( ISMAX+I-1 )
  297:    20       CONTINUE
  298:             WORK( ISMIN+RANK ) = C1
  299:             WORK( ISMAX+RANK ) = C2
  300:             SMIN = SMINPR
  301:             SMAX = SMAXPR
  302:             RANK = RANK + 1
  303:             GO TO 10
  304:          END IF
  305:       END IF
  306: *
  307: *     complex workspace: 3*MN.
  308: *
  309: *     Logically partition R = [ R11 R12 ]
  310: *                             [  0  R22 ]
  311: *     where R11 = R(1:RANK,1:RANK)
  312: *
  313: *     [R11,R12] = [ T11, 0 ] * Y
  314: *
  315:       IF( RANK.LT.N )
  316:      $   CALL ZTZRZF( RANK, N, A, LDA, WORK( MN+1 ), WORK( 2*MN+1 ),
  317:      $                LWORK-2*MN, INFO )
  318: *
  319: *     complex workspace: 2*MN.
  320: *     Details of Householder rotations stored in WORK(MN+1:2*MN)
  321: *
  322: *     B(1:M,1:NRHS) := Q' * B(1:M,1:NRHS)
  323: *
  324:       CALL ZUNMQR( 'Left', 'Conjugate transpose', M, NRHS, MN, A, LDA,
  325:      $             WORK( 1 ), B, LDB, WORK( 2*MN+1 ), LWORK-2*MN, INFO )
  326:       WSIZE = MAX( WSIZE, 2*MN+DBLE( WORK( 2*MN+1 ) ) )
  327: *
  328: *     complex workspace: 2*MN+NB*NRHS.
  329: *
  330: *     B(1:RANK,1:NRHS) := inv(T11) * B(1:RANK,1:NRHS)
  331: *
  332:       CALL ZTRSM( 'Left', 'Upper', 'No transpose', 'Non-unit', RANK,
  333:      $            NRHS, CONE, A, LDA, B, LDB )
  334: *
  335:       DO 40 J = 1, NRHS
  336:          DO 30 I = RANK + 1, N
  337:             B( I, J ) = CZERO
  338:    30    CONTINUE
  339:    40 CONTINUE
  340: *
  341: *     B(1:N,1:NRHS) := Y' * B(1:N,1:NRHS)
  342: *
  343:       IF( RANK.LT.N ) THEN
  344:          CALL ZUNMRZ( 'Left', 'Conjugate transpose', N, NRHS, RANK,
  345:      $                N-RANK, A, LDA, WORK( MN+1 ), B, LDB,
  346:      $                WORK( 2*MN+1 ), LWORK-2*MN, INFO )
  347:       END IF
  348: *
  349: *     complex workspace: 2*MN+NRHS.
  350: *
  351: *     B(1:N,1:NRHS) := P * B(1:N,1:NRHS)
  352: *
  353:       DO 60 J = 1, NRHS
  354:          DO 50 I = 1, N
  355:             WORK( JPVT( I ) ) = B( I, J )
  356:    50    CONTINUE
  357:          CALL ZCOPY( N, WORK( 1 ), 1, B( 1, J ), 1 )
  358:    60 CONTINUE
  359: *
  360: *     complex workspace: N.
  361: *
  362: *     Undo scaling
  363: *
  364:       IF( IASCL.EQ.1 ) THEN
  365:          CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, N, NRHS, B, LDB, INFO )
  366:          CALL ZLASCL( 'U', 0, 0, SMLNUM, ANRM, RANK, RANK, A, LDA,
  367:      $                INFO )
  368:       ELSE IF( IASCL.EQ.2 ) THEN
  369:          CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, N, NRHS, B, LDB, INFO )
  370:          CALL ZLASCL( 'U', 0, 0, BIGNUM, ANRM, RANK, RANK, A, LDA,
  371:      $                INFO )
  372:       END IF
  373:       IF( IBSCL.EQ.1 ) THEN
  374:          CALL ZLASCL( 'G', 0, 0, SMLNUM, BNRM, N, NRHS, B, LDB, INFO )
  375:       ELSE IF( IBSCL.EQ.2 ) THEN
  376:          CALL ZLASCL( 'G', 0, 0, BIGNUM, BNRM, N, NRHS, B, LDB, INFO )
  377:       END IF
  378: *
  379:    70 CONTINUE
  380:       WORK( 1 ) = DCMPLX( LWKOPT )
  381: *
  382:       RETURN
  383: *
  384: *     End of ZGELSY
  385: *
  386:       END

CVSweb interface <joel.bertrand@systella.fr>