File:  [local] / rpl / lapack / lapack / zgelsy.f
Revision 1.11: download - view: text, annotated - select for diffs - revision graph
Wed Aug 22 09:48:30 2012 UTC (11 years, 8 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_9, rpl-4_1_10, HEAD
Cohérence

    1: *> \brief <b> ZGELSY solves overdetermined or underdetermined systems for GE matrices</b>
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download ZGELSY + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgelsy.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgelsy.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgelsy.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZGELSY( M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK,
   22: *                          WORK, LWORK, RWORK, INFO )
   23:    24: *       .. Scalar Arguments ..
   25: *       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
   26: *       DOUBLE PRECISION   RCOND
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       INTEGER            JPVT( * )
   30: *       DOUBLE PRECISION   RWORK( * )
   31: *       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * )
   32: *       ..
   33: *  
   34: *
   35: *> \par Purpose:
   36: *  =============
   37: *>
   38: *> \verbatim
   39: *>
   40: *> ZGELSY computes the minimum-norm solution to a complex linear least
   41: *> squares problem:
   42: *>     minimize || A * X - B ||
   43: *> using a complete orthogonal factorization of A.  A is an M-by-N
   44: *> matrix which may be rank-deficient.
   45: *>
   46: *> Several right hand side vectors b and solution vectors x can be
   47: *> handled in a single call; they are stored as the columns of the
   48: *> M-by-NRHS right hand side matrix B and the N-by-NRHS solution
   49: *> matrix X.
   50: *>
   51: *> The routine first computes a QR factorization with column pivoting:
   52: *>     A * P = Q * [ R11 R12 ]
   53: *>                 [  0  R22 ]
   54: *> with R11 defined as the largest leading submatrix whose estimated
   55: *> condition number is less than 1/RCOND.  The order of R11, RANK,
   56: *> is the effective rank of A.
   57: *>
   58: *> Then, R22 is considered to be negligible, and R12 is annihilated
   59: *> by unitary transformations from the right, arriving at the
   60: *> complete orthogonal factorization:
   61: *>    A * P = Q * [ T11 0 ] * Z
   62: *>                [  0  0 ]
   63: *> The minimum-norm solution is then
   64: *>    X = P * Z**H [ inv(T11)*Q1**H*B ]
   65: *>                 [        0         ]
   66: *> where Q1 consists of the first RANK columns of Q.
   67: *>
   68: *> This routine is basically identical to the original xGELSX except
   69: *> three differences:
   70: *>   o The permutation of matrix B (the right hand side) is faster and
   71: *>     more simple.
   72: *>   o The call to the subroutine xGEQPF has been substituted by the
   73: *>     the call to the subroutine xGEQP3. This subroutine is a Blas-3
   74: *>     version of the QR factorization with column pivoting.
   75: *>   o Matrix B (the right hand side) is updated with Blas-3.
   76: *> \endverbatim
   77: *
   78: *  Arguments:
   79: *  ==========
   80: *
   81: *> \param[in] M
   82: *> \verbatim
   83: *>          M is INTEGER
   84: *>          The number of rows of the matrix A.  M >= 0.
   85: *> \endverbatim
   86: *>
   87: *> \param[in] N
   88: *> \verbatim
   89: *>          N is INTEGER
   90: *>          The number of columns of the matrix A.  N >= 0.
   91: *> \endverbatim
   92: *>
   93: *> \param[in] NRHS
   94: *> \verbatim
   95: *>          NRHS is INTEGER
   96: *>          The number of right hand sides, i.e., the number of
   97: *>          columns of matrices B and X. NRHS >= 0.
   98: *> \endverbatim
   99: *>
  100: *> \param[in,out] A
  101: *> \verbatim
  102: *>          A is COMPLEX*16 array, dimension (LDA,N)
  103: *>          On entry, the M-by-N matrix A.
  104: *>          On exit, A has been overwritten by details of its
  105: *>          complete orthogonal factorization.
  106: *> \endverbatim
  107: *>
  108: *> \param[in] LDA
  109: *> \verbatim
  110: *>          LDA is INTEGER
  111: *>          The leading dimension of the array A.  LDA >= max(1,M).
  112: *> \endverbatim
  113: *>
  114: *> \param[in,out] B
  115: *> \verbatim
  116: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
  117: *>          On entry, the M-by-NRHS right hand side matrix B.
  118: *>          On exit, the N-by-NRHS solution matrix X.
  119: *> \endverbatim
  120: *>
  121: *> \param[in] LDB
  122: *> \verbatim
  123: *>          LDB is INTEGER
  124: *>          The leading dimension of the array B. LDB >= max(1,M,N).
  125: *> \endverbatim
  126: *>
  127: *> \param[in,out] JPVT
  128: *> \verbatim
  129: *>          JPVT is INTEGER array, dimension (N)
  130: *>          On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted
  131: *>          to the front of AP, otherwise column i is a free column.
  132: *>          On exit, if JPVT(i) = k, then the i-th column of A*P
  133: *>          was the k-th column of A.
  134: *> \endverbatim
  135: *>
  136: *> \param[in] RCOND
  137: *> \verbatim
  138: *>          RCOND is DOUBLE PRECISION
  139: *>          RCOND is used to determine the effective rank of A, which
  140: *>          is defined as the order of the largest leading triangular
  141: *>          submatrix R11 in the QR factorization with pivoting of A,
  142: *>          whose estimated condition number < 1/RCOND.
  143: *> \endverbatim
  144: *>
  145: *> \param[out] RANK
  146: *> \verbatim
  147: *>          RANK is INTEGER
  148: *>          The effective rank of A, i.e., the order of the submatrix
  149: *>          R11.  This is the same as the order of the submatrix T11
  150: *>          in the complete orthogonal factorization of A.
  151: *> \endverbatim
  152: *>
  153: *> \param[out] WORK
  154: *> \verbatim
  155: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
  156: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  157: *> \endverbatim
  158: *>
  159: *> \param[in] LWORK
  160: *> \verbatim
  161: *>          LWORK is INTEGER
  162: *>          The dimension of the array WORK.
  163: *>          The unblocked strategy requires that:
  164: *>            LWORK >= MN + MAX( 2*MN, N+1, MN+NRHS )
  165: *>          where MN = min(M,N).
  166: *>          The block algorithm requires that:
  167: *>            LWORK >= MN + MAX( 2*MN, NB*(N+1), MN+MN*NB, MN+NB*NRHS )
  168: *>          where NB is an upper bound on the blocksize returned
  169: *>          by ILAENV for the routines ZGEQP3, ZTZRZF, CTZRQF, ZUNMQR,
  170: *>          and ZUNMRZ.
  171: *>
  172: *>          If LWORK = -1, then a workspace query is assumed; the routine
  173: *>          only calculates the optimal size of the WORK array, returns
  174: *>          this value as the first entry of the WORK array, and no error
  175: *>          message related to LWORK is issued by XERBLA.
  176: *> \endverbatim
  177: *>
  178: *> \param[out] RWORK
  179: *> \verbatim
  180: *>          RWORK is DOUBLE PRECISION array, dimension (2*N)
  181: *> \endverbatim
  182: *>
  183: *> \param[out] INFO
  184: *> \verbatim
  185: *>          INFO is INTEGER
  186: *>          = 0: successful exit
  187: *>          < 0: if INFO = -i, the i-th argument had an illegal value
  188: *> \endverbatim
  189: *
  190: *  Authors:
  191: *  ========
  192: *
  193: *> \author Univ. of Tennessee 
  194: *> \author Univ. of California Berkeley 
  195: *> \author Univ. of Colorado Denver 
  196: *> \author NAG Ltd. 
  197: *
  198: *> \date November 2011
  199: *
  200: *> \ingroup complex16GEsolve
  201: *
  202: *> \par Contributors:
  203: *  ==================
  204: *>
  205: *>    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA \n 
  206: *>    E. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain \n
  207: *>    G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain \n
  208: *>
  209: *  =====================================================================
  210:       SUBROUTINE ZGELSY( M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK,
  211:      $                   WORK, LWORK, RWORK, INFO )
  212: *
  213: *  -- LAPACK driver routine (version 3.4.0) --
  214: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  215: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  216: *     November 2011
  217: *
  218: *     .. Scalar Arguments ..
  219:       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
  220:       DOUBLE PRECISION   RCOND
  221: *     ..
  222: *     .. Array Arguments ..
  223:       INTEGER            JPVT( * )
  224:       DOUBLE PRECISION   RWORK( * )
  225:       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * )
  226: *     ..
  227: *
  228: *  =====================================================================
  229: *
  230: *     .. Parameters ..
  231:       INTEGER            IMAX, IMIN
  232:       PARAMETER          ( IMAX = 1, IMIN = 2 )
  233:       DOUBLE PRECISION   ZERO, ONE
  234:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  235:       COMPLEX*16         CZERO, CONE
  236:       PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
  237:      $                   CONE = ( 1.0D+0, 0.0D+0 ) )
  238: *     ..
  239: *     .. Local Scalars ..
  240:       LOGICAL            LQUERY
  241:       INTEGER            I, IASCL, IBSCL, ISMAX, ISMIN, J, LWKOPT, MN,
  242:      $                   NB, NB1, NB2, NB3, NB4
  243:       DOUBLE PRECISION   ANRM, BIGNUM, BNRM, SMAX, SMAXPR, SMIN, SMINPR,
  244:      $                   SMLNUM, WSIZE
  245:       COMPLEX*16         C1, C2, S1, S2
  246: *     ..
  247: *     .. External Subroutines ..
  248:       EXTERNAL           DLABAD, XERBLA, ZCOPY, ZGEQP3, ZLAIC1, ZLASCL,
  249:      $                   ZLASET, ZTRSM, ZTZRZF, ZUNMQR, ZUNMRZ
  250: *     ..
  251: *     .. External Functions ..
  252:       INTEGER            ILAENV
  253:       DOUBLE PRECISION   DLAMCH, ZLANGE
  254:       EXTERNAL           ILAENV, DLAMCH, ZLANGE
  255: *     ..
  256: *     .. Intrinsic Functions ..
  257:       INTRINSIC          ABS, DBLE, DCMPLX, MAX, MIN
  258: *     ..
  259: *     .. Executable Statements ..
  260: *
  261:       MN = MIN( M, N )
  262:       ISMIN = MN + 1
  263:       ISMAX = 2*MN + 1
  264: *
  265: *     Test the input arguments.
  266: *
  267:       INFO = 0
  268:       NB1 = ILAENV( 1, 'ZGEQRF', ' ', M, N, -1, -1 )
  269:       NB2 = ILAENV( 1, 'ZGERQF', ' ', M, N, -1, -1 )
  270:       NB3 = ILAENV( 1, 'ZUNMQR', ' ', M, N, NRHS, -1 )
  271:       NB4 = ILAENV( 1, 'ZUNMRQ', ' ', M, N, NRHS, -1 )
  272:       NB = MAX( NB1, NB2, NB3, NB4 )
  273:       LWKOPT = MAX( 1, MN+2*N+NB*( N+1 ), 2*MN+NB*NRHS )
  274:       WORK( 1 ) = DCMPLX( LWKOPT )
  275:       LQUERY = ( LWORK.EQ.-1 )
  276:       IF( M.LT.0 ) THEN
  277:          INFO = -1
  278:       ELSE IF( N.LT.0 ) THEN
  279:          INFO = -2
  280:       ELSE IF( NRHS.LT.0 ) THEN
  281:          INFO = -3
  282:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  283:          INFO = -5
  284:       ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN
  285:          INFO = -7
  286:       ELSE IF( LWORK.LT.( MN+MAX( 2*MN, N+1, MN+NRHS ) ) .AND. .NOT.
  287:      $         LQUERY ) THEN
  288:          INFO = -12
  289:       END IF
  290: *
  291:       IF( INFO.NE.0 ) THEN
  292:          CALL XERBLA( 'ZGELSY', -INFO )
  293:          RETURN
  294:       ELSE IF( LQUERY ) THEN
  295:          RETURN
  296:       END IF
  297: *
  298: *     Quick return if possible
  299: *
  300:       IF( MIN( M, N, NRHS ).EQ.0 ) THEN
  301:          RANK = 0
  302:          RETURN
  303:       END IF
  304: *
  305: *     Get machine parameters
  306: *
  307:       SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'P' )
  308:       BIGNUM = ONE / SMLNUM
  309:       CALL DLABAD( SMLNUM, BIGNUM )
  310: *
  311: *     Scale A, B if max entries outside range [SMLNUM,BIGNUM]
  312: *
  313:       ANRM = ZLANGE( 'M', M, N, A, LDA, RWORK )
  314:       IASCL = 0
  315:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
  316: *
  317: *        Scale matrix norm up to SMLNUM
  318: *
  319:          CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
  320:          IASCL = 1
  321:       ELSE IF( ANRM.GT.BIGNUM ) THEN
  322: *
  323: *        Scale matrix norm down to BIGNUM
  324: *
  325:          CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
  326:          IASCL = 2
  327:       ELSE IF( ANRM.EQ.ZERO ) THEN
  328: *
  329: *        Matrix all zero. Return zero solution.
  330: *
  331:          CALL ZLASET( 'F', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB )
  332:          RANK = 0
  333:          GO TO 70
  334:       END IF
  335: *
  336:       BNRM = ZLANGE( 'M', M, NRHS, B, LDB, RWORK )
  337:       IBSCL = 0
  338:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
  339: *
  340: *        Scale matrix norm up to SMLNUM
  341: *
  342:          CALL ZLASCL( 'G', 0, 0, BNRM, SMLNUM, M, NRHS, B, LDB, INFO )
  343:          IBSCL = 1
  344:       ELSE IF( BNRM.GT.BIGNUM ) THEN
  345: *
  346: *        Scale matrix norm down to BIGNUM
  347: *
  348:          CALL ZLASCL( 'G', 0, 0, BNRM, BIGNUM, M, NRHS, B, LDB, INFO )
  349:          IBSCL = 2
  350:       END IF
  351: *
  352: *     Compute QR factorization with column pivoting of A:
  353: *        A * P = Q * R
  354: *
  355:       CALL ZGEQP3( M, N, A, LDA, JPVT, WORK( 1 ), WORK( MN+1 ),
  356:      $             LWORK-MN, RWORK, INFO )
  357:       WSIZE = MN + DBLE( WORK( MN+1 ) )
  358: *
  359: *     complex workspace: MN+NB*(N+1). real workspace 2*N.
  360: *     Details of Householder rotations stored in WORK(1:MN).
  361: *
  362: *     Determine RANK using incremental condition estimation
  363: *
  364:       WORK( ISMIN ) = CONE
  365:       WORK( ISMAX ) = CONE
  366:       SMAX = ABS( A( 1, 1 ) )
  367:       SMIN = SMAX
  368:       IF( ABS( A( 1, 1 ) ).EQ.ZERO ) THEN
  369:          RANK = 0
  370:          CALL ZLASET( 'F', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB )
  371:          GO TO 70
  372:       ELSE
  373:          RANK = 1
  374:       END IF
  375: *
  376:    10 CONTINUE
  377:       IF( RANK.LT.MN ) THEN
  378:          I = RANK + 1
  379:          CALL ZLAIC1( IMIN, RANK, WORK( ISMIN ), SMIN, A( 1, I ),
  380:      $                A( I, I ), SMINPR, S1, C1 )
  381:          CALL ZLAIC1( IMAX, RANK, WORK( ISMAX ), SMAX, A( 1, I ),
  382:      $                A( I, I ), SMAXPR, S2, C2 )
  383: *
  384:          IF( SMAXPR*RCOND.LE.SMINPR ) THEN
  385:             DO 20 I = 1, RANK
  386:                WORK( ISMIN+I-1 ) = S1*WORK( ISMIN+I-1 )
  387:                WORK( ISMAX+I-1 ) = S2*WORK( ISMAX+I-1 )
  388:    20       CONTINUE
  389:             WORK( ISMIN+RANK ) = C1
  390:             WORK( ISMAX+RANK ) = C2
  391:             SMIN = SMINPR
  392:             SMAX = SMAXPR
  393:             RANK = RANK + 1
  394:             GO TO 10
  395:          END IF
  396:       END IF
  397: *
  398: *     complex workspace: 3*MN.
  399: *
  400: *     Logically partition R = [ R11 R12 ]
  401: *                             [  0  R22 ]
  402: *     where R11 = R(1:RANK,1:RANK)
  403: *
  404: *     [R11,R12] = [ T11, 0 ] * Y
  405: *
  406:       IF( RANK.LT.N )
  407:      $   CALL ZTZRZF( RANK, N, A, LDA, WORK( MN+1 ), WORK( 2*MN+1 ),
  408:      $                LWORK-2*MN, INFO )
  409: *
  410: *     complex workspace: 2*MN.
  411: *     Details of Householder rotations stored in WORK(MN+1:2*MN)
  412: *
  413: *     B(1:M,1:NRHS) := Q**H * B(1:M,1:NRHS)
  414: *
  415:       CALL ZUNMQR( 'Left', 'Conjugate transpose', M, NRHS, MN, A, LDA,
  416:      $             WORK( 1 ), B, LDB, WORK( 2*MN+1 ), LWORK-2*MN, INFO )
  417:       WSIZE = MAX( WSIZE, 2*MN+DBLE( WORK( 2*MN+1 ) ) )
  418: *
  419: *     complex workspace: 2*MN+NB*NRHS.
  420: *
  421: *     B(1:RANK,1:NRHS) := inv(T11) * B(1:RANK,1:NRHS)
  422: *
  423:       CALL ZTRSM( 'Left', 'Upper', 'No transpose', 'Non-unit', RANK,
  424:      $            NRHS, CONE, A, LDA, B, LDB )
  425: *
  426:       DO 40 J = 1, NRHS
  427:          DO 30 I = RANK + 1, N
  428:             B( I, J ) = CZERO
  429:    30    CONTINUE
  430:    40 CONTINUE
  431: *
  432: *     B(1:N,1:NRHS) := Y**H * B(1:N,1:NRHS)
  433: *
  434:       IF( RANK.LT.N ) THEN
  435:          CALL ZUNMRZ( 'Left', 'Conjugate transpose', N, NRHS, RANK,
  436:      $                N-RANK, A, LDA, WORK( MN+1 ), B, LDB,
  437:      $                WORK( 2*MN+1 ), LWORK-2*MN, INFO )
  438:       END IF
  439: *
  440: *     complex workspace: 2*MN+NRHS.
  441: *
  442: *     B(1:N,1:NRHS) := P * B(1:N,1:NRHS)
  443: *
  444:       DO 60 J = 1, NRHS
  445:          DO 50 I = 1, N
  446:             WORK( JPVT( I ) ) = B( I, J )
  447:    50    CONTINUE
  448:          CALL ZCOPY( N, WORK( 1 ), 1, B( 1, J ), 1 )
  449:    60 CONTINUE
  450: *
  451: *     complex workspace: N.
  452: *
  453: *     Undo scaling
  454: *
  455:       IF( IASCL.EQ.1 ) THEN
  456:          CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, N, NRHS, B, LDB, INFO )
  457:          CALL ZLASCL( 'U', 0, 0, SMLNUM, ANRM, RANK, RANK, A, LDA,
  458:      $                INFO )
  459:       ELSE IF( IASCL.EQ.2 ) THEN
  460:          CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, N, NRHS, B, LDB, INFO )
  461:          CALL ZLASCL( 'U', 0, 0, BIGNUM, ANRM, RANK, RANK, A, LDA,
  462:      $                INFO )
  463:       END IF
  464:       IF( IBSCL.EQ.1 ) THEN
  465:          CALL ZLASCL( 'G', 0, 0, SMLNUM, BNRM, N, NRHS, B, LDB, INFO )
  466:       ELSE IF( IBSCL.EQ.2 ) THEN
  467:          CALL ZLASCL( 'G', 0, 0, BIGNUM, BNRM, N, NRHS, B, LDB, INFO )
  468:       END IF
  469: *
  470:    70 CONTINUE
  471:       WORK( 1 ) = DCMPLX( LWKOPT )
  472: *
  473:       RETURN
  474: *
  475: *     End of ZGELSY
  476: *
  477:       END

CVSweb interface <joel.bertrand@systella.fr>