Annotation of rpl/lapack/lapack/zgelsy.f, revision 1.9

1.9     ! bertrand    1: *> \brief <b> ZGELSY solves overdetermined or underdetermined systems for GE matrices</b>
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download ZGELSY + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgelsy.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgelsy.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgelsy.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE ZGELSY( M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK,
        !            22: *                          WORK, LWORK, RWORK, INFO )
        !            23: * 
        !            24: *       .. Scalar Arguments ..
        !            25: *       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
        !            26: *       DOUBLE PRECISION   RCOND
        !            27: *       ..
        !            28: *       .. Array Arguments ..
        !            29: *       INTEGER            JPVT( * )
        !            30: *       DOUBLE PRECISION   RWORK( * )
        !            31: *       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * )
        !            32: *       ..
        !            33: *  
        !            34: *
        !            35: *> \par Purpose:
        !            36: *  =============
        !            37: *>
        !            38: *> \verbatim
        !            39: *>
        !            40: *> ZGELSY computes the minimum-norm solution to a complex linear least
        !            41: *> squares problem:
        !            42: *>     minimize || A * X - B ||
        !            43: *> using a complete orthogonal factorization of A.  A is an M-by-N
        !            44: *> matrix which may be rank-deficient.
        !            45: *>
        !            46: *> Several right hand side vectors b and solution vectors x can be
        !            47: *> handled in a single call; they are stored as the columns of the
        !            48: *> M-by-NRHS right hand side matrix B and the N-by-NRHS solution
        !            49: *> matrix X.
        !            50: *>
        !            51: *> The routine first computes a QR factorization with column pivoting:
        !            52: *>     A * P = Q * [ R11 R12 ]
        !            53: *>                 [  0  R22 ]
        !            54: *> with R11 defined as the largest leading submatrix whose estimated
        !            55: *> condition number is less than 1/RCOND.  The order of R11, RANK,
        !            56: *> is the effective rank of A.
        !            57: *>
        !            58: *> Then, R22 is considered to be negligible, and R12 is annihilated
        !            59: *> by unitary transformations from the right, arriving at the
        !            60: *> complete orthogonal factorization:
        !            61: *>    A * P = Q * [ T11 0 ] * Z
        !            62: *>                [  0  0 ]
        !            63: *> The minimum-norm solution is then
        !            64: *>    X = P * Z**H [ inv(T11)*Q1**H*B ]
        !            65: *>                 [        0         ]
        !            66: *> where Q1 consists of the first RANK columns of Q.
        !            67: *>
        !            68: *> This routine is basically identical to the original xGELSX except
        !            69: *> three differences:
        !            70: *>   o The permutation of matrix B (the right hand side) is faster and
        !            71: *>     more simple.
        !            72: *>   o The call to the subroutine xGEQPF has been substituted by the
        !            73: *>     the call to the subroutine xGEQP3. This subroutine is a Blas-3
        !            74: *>     version of the QR factorization with column pivoting.
        !            75: *>   o Matrix B (the right hand side) is updated with Blas-3.
        !            76: *> \endverbatim
        !            77: *
        !            78: *  Arguments:
        !            79: *  ==========
        !            80: *
        !            81: *> \param[in] M
        !            82: *> \verbatim
        !            83: *>          M is INTEGER
        !            84: *>          The number of rows of the matrix A.  M >= 0.
        !            85: *> \endverbatim
        !            86: *>
        !            87: *> \param[in] N
        !            88: *> \verbatim
        !            89: *>          N is INTEGER
        !            90: *>          The number of columns of the matrix A.  N >= 0.
        !            91: *> \endverbatim
        !            92: *>
        !            93: *> \param[in] NRHS
        !            94: *> \verbatim
        !            95: *>          NRHS is INTEGER
        !            96: *>          The number of right hand sides, i.e., the number of
        !            97: *>          columns of matrices B and X. NRHS >= 0.
        !            98: *> \endverbatim
        !            99: *>
        !           100: *> \param[in,out] A
        !           101: *> \verbatim
        !           102: *>          A is COMPLEX*16 array, dimension (LDA,N)
        !           103: *>          On entry, the M-by-N matrix A.
        !           104: *>          On exit, A has been overwritten by details of its
        !           105: *>          complete orthogonal factorization.
        !           106: *> \endverbatim
        !           107: *>
        !           108: *> \param[in] LDA
        !           109: *> \verbatim
        !           110: *>          LDA is INTEGER
        !           111: *>          The leading dimension of the array A.  LDA >= max(1,M).
        !           112: *> \endverbatim
        !           113: *>
        !           114: *> \param[in,out] B
        !           115: *> \verbatim
        !           116: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
        !           117: *>          On entry, the M-by-NRHS right hand side matrix B.
        !           118: *>          On exit, the N-by-NRHS solution matrix X.
        !           119: *> \endverbatim
        !           120: *>
        !           121: *> \param[in] LDB
        !           122: *> \verbatim
        !           123: *>          LDB is INTEGER
        !           124: *>          The leading dimension of the array B. LDB >= max(1,M,N).
        !           125: *> \endverbatim
        !           126: *>
        !           127: *> \param[in,out] JPVT
        !           128: *> \verbatim
        !           129: *>          JPVT is INTEGER array, dimension (N)
        !           130: *>          On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted
        !           131: *>          to the front of AP, otherwise column i is a free column.
        !           132: *>          On exit, if JPVT(i) = k, then the i-th column of A*P
        !           133: *>          was the k-th column of A.
        !           134: *> \endverbatim
        !           135: *>
        !           136: *> \param[in] RCOND
        !           137: *> \verbatim
        !           138: *>          RCOND is DOUBLE PRECISION
        !           139: *>          RCOND is used to determine the effective rank of A, which
        !           140: *>          is defined as the order of the largest leading triangular
        !           141: *>          submatrix R11 in the QR factorization with pivoting of A,
        !           142: *>          whose estimated condition number < 1/RCOND.
        !           143: *> \endverbatim
        !           144: *>
        !           145: *> \param[out] RANK
        !           146: *> \verbatim
        !           147: *>          RANK is INTEGER
        !           148: *>          The effective rank of A, i.e., the order of the submatrix
        !           149: *>          R11.  This is the same as the order of the submatrix T11
        !           150: *>          in the complete orthogonal factorization of A.
        !           151: *> \endverbatim
        !           152: *>
        !           153: *> \param[out] WORK
        !           154: *> \verbatim
        !           155: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
        !           156: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !           157: *> \endverbatim
        !           158: *>
        !           159: *> \param[in] LWORK
        !           160: *> \verbatim
        !           161: *>          LWORK is INTEGER
        !           162: *>          The dimension of the array WORK.
        !           163: *>          The unblocked strategy requires that:
        !           164: *>            LWORK >= MN + MAX( 2*MN, N+1, MN+NRHS )
        !           165: *>          where MN = min(M,N).
        !           166: *>          The block algorithm requires that:
        !           167: *>            LWORK >= MN + MAX( 2*MN, NB*(N+1), MN+MN*NB, MN+NB*NRHS )
        !           168: *>          where NB is an upper bound on the blocksize returned
        !           169: *>          by ILAENV for the routines ZGEQP3, ZTZRZF, CTZRQF, ZUNMQR,
        !           170: *>          and ZUNMRZ.
        !           171: *>
        !           172: *>          If LWORK = -1, then a workspace query is assumed; the routine
        !           173: *>          only calculates the optimal size of the WORK array, returns
        !           174: *>          this value as the first entry of the WORK array, and no error
        !           175: *>          message related to LWORK is issued by XERBLA.
        !           176: *> \endverbatim
        !           177: *>
        !           178: *> \param[out] RWORK
        !           179: *> \verbatim
        !           180: *>          RWORK is DOUBLE PRECISION array, dimension (2*N)
        !           181: *> \endverbatim
        !           182: *>
        !           183: *> \param[out] INFO
        !           184: *> \verbatim
        !           185: *>          INFO is INTEGER
        !           186: *>          = 0: successful exit
        !           187: *>          < 0: if INFO = -i, the i-th argument had an illegal value
        !           188: *> \endverbatim
        !           189: *
        !           190: *  Authors:
        !           191: *  ========
        !           192: *
        !           193: *> \author Univ. of Tennessee 
        !           194: *> \author Univ. of California Berkeley 
        !           195: *> \author Univ. of Colorado Denver 
        !           196: *> \author NAG Ltd. 
        !           197: *
        !           198: *> \date November 2011
        !           199: *
        !           200: *> \ingroup complex16GEsolve
        !           201: *
        !           202: *> \par Contributors:
        !           203: *  ==================
        !           204: *>
        !           205: *>    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA \n 
        !           206: *>    E. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain \n
        !           207: *>    G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain \n
        !           208: *>
        !           209: *  =====================================================================
1.1       bertrand  210:       SUBROUTINE ZGELSY( M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK,
                    211:      $                   WORK, LWORK, RWORK, INFO )
                    212: *
1.9     ! bertrand  213: *  -- LAPACK driver routine (version 3.4.0) --
1.1       bertrand  214: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    215: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.9     ! bertrand  216: *     November 2011
1.1       bertrand  217: *
                    218: *     .. Scalar Arguments ..
                    219:       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
                    220:       DOUBLE PRECISION   RCOND
                    221: *     ..
                    222: *     .. Array Arguments ..
                    223:       INTEGER            JPVT( * )
                    224:       DOUBLE PRECISION   RWORK( * )
                    225:       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * )
                    226: *     ..
                    227: *
                    228: *  =====================================================================
                    229: *
                    230: *     .. Parameters ..
                    231:       INTEGER            IMAX, IMIN
                    232:       PARAMETER          ( IMAX = 1, IMIN = 2 )
                    233:       DOUBLE PRECISION   ZERO, ONE
                    234:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    235:       COMPLEX*16         CZERO, CONE
                    236:       PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
                    237:      $                   CONE = ( 1.0D+0, 0.0D+0 ) )
                    238: *     ..
                    239: *     .. Local Scalars ..
                    240:       LOGICAL            LQUERY
                    241:       INTEGER            I, IASCL, IBSCL, ISMAX, ISMIN, J, LWKOPT, MN,
                    242:      $                   NB, NB1, NB2, NB3, NB4
                    243:       DOUBLE PRECISION   ANRM, BIGNUM, BNRM, SMAX, SMAXPR, SMIN, SMINPR,
                    244:      $                   SMLNUM, WSIZE
                    245:       COMPLEX*16         C1, C2, S1, S2
                    246: *     ..
                    247: *     .. External Subroutines ..
                    248:       EXTERNAL           DLABAD, XERBLA, ZCOPY, ZGEQP3, ZLAIC1, ZLASCL,
                    249:      $                   ZLASET, ZTRSM, ZTZRZF, ZUNMQR, ZUNMRZ
                    250: *     ..
                    251: *     .. External Functions ..
                    252:       INTEGER            ILAENV
                    253:       DOUBLE PRECISION   DLAMCH, ZLANGE
                    254:       EXTERNAL           ILAENV, DLAMCH, ZLANGE
                    255: *     ..
                    256: *     .. Intrinsic Functions ..
                    257:       INTRINSIC          ABS, DBLE, DCMPLX, MAX, MIN
                    258: *     ..
                    259: *     .. Executable Statements ..
                    260: *
                    261:       MN = MIN( M, N )
                    262:       ISMIN = MN + 1
                    263:       ISMAX = 2*MN + 1
                    264: *
                    265: *     Test the input arguments.
                    266: *
                    267:       INFO = 0
                    268:       NB1 = ILAENV( 1, 'ZGEQRF', ' ', M, N, -1, -1 )
                    269:       NB2 = ILAENV( 1, 'ZGERQF', ' ', M, N, -1, -1 )
                    270:       NB3 = ILAENV( 1, 'ZUNMQR', ' ', M, N, NRHS, -1 )
                    271:       NB4 = ILAENV( 1, 'ZUNMRQ', ' ', M, N, NRHS, -1 )
                    272:       NB = MAX( NB1, NB2, NB3, NB4 )
                    273:       LWKOPT = MAX( 1, MN+2*N+NB*( N+1 ), 2*MN+NB*NRHS )
                    274:       WORK( 1 ) = DCMPLX( LWKOPT )
                    275:       LQUERY = ( LWORK.EQ.-1 )
                    276:       IF( M.LT.0 ) THEN
                    277:          INFO = -1
                    278:       ELSE IF( N.LT.0 ) THEN
                    279:          INFO = -2
                    280:       ELSE IF( NRHS.LT.0 ) THEN
                    281:          INFO = -3
                    282:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
                    283:          INFO = -5
                    284:       ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN
                    285:          INFO = -7
                    286:       ELSE IF( LWORK.LT.( MN+MAX( 2*MN, N+1, MN+NRHS ) ) .AND. .NOT.
                    287:      $         LQUERY ) THEN
                    288:          INFO = -12
                    289:       END IF
                    290: *
                    291:       IF( INFO.NE.0 ) THEN
                    292:          CALL XERBLA( 'ZGELSY', -INFO )
                    293:          RETURN
                    294:       ELSE IF( LQUERY ) THEN
                    295:          RETURN
                    296:       END IF
                    297: *
                    298: *     Quick return if possible
                    299: *
                    300:       IF( MIN( M, N, NRHS ).EQ.0 ) THEN
                    301:          RANK = 0
                    302:          RETURN
                    303:       END IF
                    304: *
                    305: *     Get machine parameters
                    306: *
                    307:       SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'P' )
                    308:       BIGNUM = ONE / SMLNUM
                    309:       CALL DLABAD( SMLNUM, BIGNUM )
                    310: *
                    311: *     Scale A, B if max entries outside range [SMLNUM,BIGNUM]
                    312: *
                    313:       ANRM = ZLANGE( 'M', M, N, A, LDA, RWORK )
                    314:       IASCL = 0
                    315:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
                    316: *
                    317: *        Scale matrix norm up to SMLNUM
                    318: *
                    319:          CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
                    320:          IASCL = 1
                    321:       ELSE IF( ANRM.GT.BIGNUM ) THEN
                    322: *
                    323: *        Scale matrix norm down to BIGNUM
                    324: *
                    325:          CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
                    326:          IASCL = 2
                    327:       ELSE IF( ANRM.EQ.ZERO ) THEN
                    328: *
                    329: *        Matrix all zero. Return zero solution.
                    330: *
                    331:          CALL ZLASET( 'F', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB )
                    332:          RANK = 0
                    333:          GO TO 70
                    334:       END IF
                    335: *
                    336:       BNRM = ZLANGE( 'M', M, NRHS, B, LDB, RWORK )
                    337:       IBSCL = 0
                    338:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
                    339: *
                    340: *        Scale matrix norm up to SMLNUM
                    341: *
                    342:          CALL ZLASCL( 'G', 0, 0, BNRM, SMLNUM, M, NRHS, B, LDB, INFO )
                    343:          IBSCL = 1
                    344:       ELSE IF( BNRM.GT.BIGNUM ) THEN
                    345: *
                    346: *        Scale matrix norm down to BIGNUM
                    347: *
                    348:          CALL ZLASCL( 'G', 0, 0, BNRM, BIGNUM, M, NRHS, B, LDB, INFO )
                    349:          IBSCL = 2
                    350:       END IF
                    351: *
                    352: *     Compute QR factorization with column pivoting of A:
                    353: *        A * P = Q * R
                    354: *
                    355:       CALL ZGEQP3( M, N, A, LDA, JPVT, WORK( 1 ), WORK( MN+1 ),
                    356:      $             LWORK-MN, RWORK, INFO )
                    357:       WSIZE = MN + DBLE( WORK( MN+1 ) )
                    358: *
                    359: *     complex workspace: MN+NB*(N+1). real workspace 2*N.
                    360: *     Details of Householder rotations stored in WORK(1:MN).
                    361: *
                    362: *     Determine RANK using incremental condition estimation
                    363: *
                    364:       WORK( ISMIN ) = CONE
                    365:       WORK( ISMAX ) = CONE
                    366:       SMAX = ABS( A( 1, 1 ) )
                    367:       SMIN = SMAX
                    368:       IF( ABS( A( 1, 1 ) ).EQ.ZERO ) THEN
                    369:          RANK = 0
                    370:          CALL ZLASET( 'F', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB )
                    371:          GO TO 70
                    372:       ELSE
                    373:          RANK = 1
                    374:       END IF
                    375: *
                    376:    10 CONTINUE
                    377:       IF( RANK.LT.MN ) THEN
                    378:          I = RANK + 1
                    379:          CALL ZLAIC1( IMIN, RANK, WORK( ISMIN ), SMIN, A( 1, I ),
                    380:      $                A( I, I ), SMINPR, S1, C1 )
                    381:          CALL ZLAIC1( IMAX, RANK, WORK( ISMAX ), SMAX, A( 1, I ),
                    382:      $                A( I, I ), SMAXPR, S2, C2 )
                    383: *
                    384:          IF( SMAXPR*RCOND.LE.SMINPR ) THEN
                    385:             DO 20 I = 1, RANK
                    386:                WORK( ISMIN+I-1 ) = S1*WORK( ISMIN+I-1 )
                    387:                WORK( ISMAX+I-1 ) = S2*WORK( ISMAX+I-1 )
                    388:    20       CONTINUE
                    389:             WORK( ISMIN+RANK ) = C1
                    390:             WORK( ISMAX+RANK ) = C2
                    391:             SMIN = SMINPR
                    392:             SMAX = SMAXPR
                    393:             RANK = RANK + 1
                    394:             GO TO 10
                    395:          END IF
                    396:       END IF
                    397: *
                    398: *     complex workspace: 3*MN.
                    399: *
                    400: *     Logically partition R = [ R11 R12 ]
                    401: *                             [  0  R22 ]
                    402: *     where R11 = R(1:RANK,1:RANK)
                    403: *
                    404: *     [R11,R12] = [ T11, 0 ] * Y
                    405: *
                    406:       IF( RANK.LT.N )
                    407:      $   CALL ZTZRZF( RANK, N, A, LDA, WORK( MN+1 ), WORK( 2*MN+1 ),
                    408:      $                LWORK-2*MN, INFO )
                    409: *
                    410: *     complex workspace: 2*MN.
                    411: *     Details of Householder rotations stored in WORK(MN+1:2*MN)
                    412: *
1.8       bertrand  413: *     B(1:M,1:NRHS) := Q**H * B(1:M,1:NRHS)
1.1       bertrand  414: *
                    415:       CALL ZUNMQR( 'Left', 'Conjugate transpose', M, NRHS, MN, A, LDA,
                    416:      $             WORK( 1 ), B, LDB, WORK( 2*MN+1 ), LWORK-2*MN, INFO )
                    417:       WSIZE = MAX( WSIZE, 2*MN+DBLE( WORK( 2*MN+1 ) ) )
                    418: *
                    419: *     complex workspace: 2*MN+NB*NRHS.
                    420: *
                    421: *     B(1:RANK,1:NRHS) := inv(T11) * B(1:RANK,1:NRHS)
                    422: *
                    423:       CALL ZTRSM( 'Left', 'Upper', 'No transpose', 'Non-unit', RANK,
                    424:      $            NRHS, CONE, A, LDA, B, LDB )
                    425: *
                    426:       DO 40 J = 1, NRHS
                    427:          DO 30 I = RANK + 1, N
                    428:             B( I, J ) = CZERO
                    429:    30    CONTINUE
                    430:    40 CONTINUE
                    431: *
1.8       bertrand  432: *     B(1:N,1:NRHS) := Y**H * B(1:N,1:NRHS)
1.1       bertrand  433: *
                    434:       IF( RANK.LT.N ) THEN
                    435:          CALL ZUNMRZ( 'Left', 'Conjugate transpose', N, NRHS, RANK,
                    436:      $                N-RANK, A, LDA, WORK( MN+1 ), B, LDB,
                    437:      $                WORK( 2*MN+1 ), LWORK-2*MN, INFO )
                    438:       END IF
                    439: *
                    440: *     complex workspace: 2*MN+NRHS.
                    441: *
                    442: *     B(1:N,1:NRHS) := P * B(1:N,1:NRHS)
                    443: *
                    444:       DO 60 J = 1, NRHS
                    445:          DO 50 I = 1, N
                    446:             WORK( JPVT( I ) ) = B( I, J )
                    447:    50    CONTINUE
                    448:          CALL ZCOPY( N, WORK( 1 ), 1, B( 1, J ), 1 )
                    449:    60 CONTINUE
                    450: *
                    451: *     complex workspace: N.
                    452: *
                    453: *     Undo scaling
                    454: *
                    455:       IF( IASCL.EQ.1 ) THEN
                    456:          CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, N, NRHS, B, LDB, INFO )
                    457:          CALL ZLASCL( 'U', 0, 0, SMLNUM, ANRM, RANK, RANK, A, LDA,
                    458:      $                INFO )
                    459:       ELSE IF( IASCL.EQ.2 ) THEN
                    460:          CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, N, NRHS, B, LDB, INFO )
                    461:          CALL ZLASCL( 'U', 0, 0, BIGNUM, ANRM, RANK, RANK, A, LDA,
                    462:      $                INFO )
                    463:       END IF
                    464:       IF( IBSCL.EQ.1 ) THEN
                    465:          CALL ZLASCL( 'G', 0, 0, SMLNUM, BNRM, N, NRHS, B, LDB, INFO )
                    466:       ELSE IF( IBSCL.EQ.2 ) THEN
                    467:          CALL ZLASCL( 'G', 0, 0, BIGNUM, BNRM, N, NRHS, B, LDB, INFO )
                    468:       END IF
                    469: *
                    470:    70 CONTINUE
                    471:       WORK( 1 ) = DCMPLX( LWKOPT )
                    472: *
                    473:       RETURN
                    474: *
                    475: *     End of ZGELSY
                    476: *
                    477:       END

CVSweb interface <joel.bertrand@systella.fr>