Annotation of rpl/lapack/lapack/zgelsy.f, revision 1.8

1.1       bertrand    1:       SUBROUTINE ZGELSY( M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK,
                      2:      $                   WORK, LWORK, RWORK, INFO )
                      3: *
1.8     ! bertrand    4: *  -- LAPACK driver routine (version 3.3.1) --
1.1       bertrand    5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.8     ! bertrand    7: *  -- April 2011                                                      --
1.1       bertrand    8: *
                      9: *     .. Scalar Arguments ..
                     10:       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
                     11:       DOUBLE PRECISION   RCOND
                     12: *     ..
                     13: *     .. Array Arguments ..
                     14:       INTEGER            JPVT( * )
                     15:       DOUBLE PRECISION   RWORK( * )
                     16:       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * )
                     17: *     ..
                     18: *
                     19: *  Purpose
                     20: *  =======
                     21: *
                     22: *  ZGELSY computes the minimum-norm solution to a complex linear least
                     23: *  squares problem:
                     24: *      minimize || A * X - B ||
                     25: *  using a complete orthogonal factorization of A.  A is an M-by-N
                     26: *  matrix which may be rank-deficient.
                     27: *
                     28: *  Several right hand side vectors b and solution vectors x can be
                     29: *  handled in a single call; they are stored as the columns of the
                     30: *  M-by-NRHS right hand side matrix B and the N-by-NRHS solution
                     31: *  matrix X.
                     32: *
                     33: *  The routine first computes a QR factorization with column pivoting:
                     34: *      A * P = Q * [ R11 R12 ]
                     35: *                  [  0  R22 ]
                     36: *  with R11 defined as the largest leading submatrix whose estimated
                     37: *  condition number is less than 1/RCOND.  The order of R11, RANK,
                     38: *  is the effective rank of A.
                     39: *
                     40: *  Then, R22 is considered to be negligible, and R12 is annihilated
                     41: *  by unitary transformations from the right, arriving at the
                     42: *  complete orthogonal factorization:
                     43: *     A * P = Q * [ T11 0 ] * Z
                     44: *                 [  0  0 ]
                     45: *  The minimum-norm solution is then
1.8     ! bertrand   46: *     X = P * Z**H [ inv(T11)*Q1**H*B ]
        !            47: *                  [        0         ]
1.1       bertrand   48: *  where Q1 consists of the first RANK columns of Q.
                     49: *
                     50: *  This routine is basically identical to the original xGELSX except
                     51: *  three differences:
                     52: *    o The permutation of matrix B (the right hand side) is faster and
                     53: *      more simple.
                     54: *    o The call to the subroutine xGEQPF has been substituted by the
                     55: *      the call to the subroutine xGEQP3. This subroutine is a Blas-3
                     56: *      version of the QR factorization with column pivoting.
                     57: *    o Matrix B (the right hand side) is updated with Blas-3.
                     58: *
                     59: *  Arguments
                     60: *  =========
                     61: *
                     62: *  M       (input) INTEGER
                     63: *          The number of rows of the matrix A.  M >= 0.
                     64: *
                     65: *  N       (input) INTEGER
                     66: *          The number of columns of the matrix A.  N >= 0.
                     67: *
                     68: *  NRHS    (input) INTEGER
                     69: *          The number of right hand sides, i.e., the number of
                     70: *          columns of matrices B and X. NRHS >= 0.
                     71: *
                     72: *  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
                     73: *          On entry, the M-by-N matrix A.
                     74: *          On exit, A has been overwritten by details of its
                     75: *          complete orthogonal factorization.
                     76: *
                     77: *  LDA     (input) INTEGER
                     78: *          The leading dimension of the array A.  LDA >= max(1,M).
                     79: *
                     80: *  B       (input/output) COMPLEX*16 array, dimension (LDB,NRHS)
                     81: *          On entry, the M-by-NRHS right hand side matrix B.
                     82: *          On exit, the N-by-NRHS solution matrix X.
                     83: *
                     84: *  LDB     (input) INTEGER
                     85: *          The leading dimension of the array B. LDB >= max(1,M,N).
                     86: *
                     87: *  JPVT    (input/output) INTEGER array, dimension (N)
                     88: *          On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted
                     89: *          to the front of AP, otherwise column i is a free column.
                     90: *          On exit, if JPVT(i) = k, then the i-th column of A*P
                     91: *          was the k-th column of A.
                     92: *
                     93: *  RCOND   (input) DOUBLE PRECISION
                     94: *          RCOND is used to determine the effective rank of A, which
                     95: *          is defined as the order of the largest leading triangular
                     96: *          submatrix R11 in the QR factorization with pivoting of A,
                     97: *          whose estimated condition number < 1/RCOND.
                     98: *
                     99: *  RANK    (output) INTEGER
                    100: *          The effective rank of A, i.e., the order of the submatrix
                    101: *          R11.  This is the same as the order of the submatrix T11
                    102: *          in the complete orthogonal factorization of A.
                    103: *
                    104: *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
                    105: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    106: *
                    107: *  LWORK   (input) INTEGER
                    108: *          The dimension of the array WORK.
                    109: *          The unblocked strategy requires that:
                    110: *            LWORK >= MN + MAX( 2*MN, N+1, MN+NRHS )
                    111: *          where MN = min(M,N).
                    112: *          The block algorithm requires that:
                    113: *            LWORK >= MN + MAX( 2*MN, NB*(N+1), MN+MN*NB, MN+NB*NRHS )
                    114: *          where NB is an upper bound on the blocksize returned
                    115: *          by ILAENV for the routines ZGEQP3, ZTZRZF, CTZRQF, ZUNMQR,
                    116: *          and ZUNMRZ.
                    117: *
                    118: *          If LWORK = -1, then a workspace query is assumed; the routine
                    119: *          only calculates the optimal size of the WORK array, returns
                    120: *          this value as the first entry of the WORK array, and no error
                    121: *          message related to LWORK is issued by XERBLA.
                    122: *
                    123: *  RWORK   (workspace) DOUBLE PRECISION array, dimension (2*N)
                    124: *
                    125: *  INFO    (output) INTEGER
                    126: *          = 0: successful exit
                    127: *          < 0: if INFO = -i, the i-th argument had an illegal value
                    128: *
                    129: *  Further Details
                    130: *  ===============
                    131: *
                    132: *  Based on contributions by
                    133: *    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
                    134: *    E. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain
                    135: *    G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain
                    136: *
                    137: *  =====================================================================
                    138: *
                    139: *     .. Parameters ..
                    140:       INTEGER            IMAX, IMIN
                    141:       PARAMETER          ( IMAX = 1, IMIN = 2 )
                    142:       DOUBLE PRECISION   ZERO, ONE
                    143:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    144:       COMPLEX*16         CZERO, CONE
                    145:       PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
                    146:      $                   CONE = ( 1.0D+0, 0.0D+0 ) )
                    147: *     ..
                    148: *     .. Local Scalars ..
                    149:       LOGICAL            LQUERY
                    150:       INTEGER            I, IASCL, IBSCL, ISMAX, ISMIN, J, LWKOPT, MN,
                    151:      $                   NB, NB1, NB2, NB3, NB4
                    152:       DOUBLE PRECISION   ANRM, BIGNUM, BNRM, SMAX, SMAXPR, SMIN, SMINPR,
                    153:      $                   SMLNUM, WSIZE
                    154:       COMPLEX*16         C1, C2, S1, S2
                    155: *     ..
                    156: *     .. External Subroutines ..
                    157:       EXTERNAL           DLABAD, XERBLA, ZCOPY, ZGEQP3, ZLAIC1, ZLASCL,
                    158:      $                   ZLASET, ZTRSM, ZTZRZF, ZUNMQR, ZUNMRZ
                    159: *     ..
                    160: *     .. External Functions ..
                    161:       INTEGER            ILAENV
                    162:       DOUBLE PRECISION   DLAMCH, ZLANGE
                    163:       EXTERNAL           ILAENV, DLAMCH, ZLANGE
                    164: *     ..
                    165: *     .. Intrinsic Functions ..
                    166:       INTRINSIC          ABS, DBLE, DCMPLX, MAX, MIN
                    167: *     ..
                    168: *     .. Executable Statements ..
                    169: *
                    170:       MN = MIN( M, N )
                    171:       ISMIN = MN + 1
                    172:       ISMAX = 2*MN + 1
                    173: *
                    174: *     Test the input arguments.
                    175: *
                    176:       INFO = 0
                    177:       NB1 = ILAENV( 1, 'ZGEQRF', ' ', M, N, -1, -1 )
                    178:       NB2 = ILAENV( 1, 'ZGERQF', ' ', M, N, -1, -1 )
                    179:       NB3 = ILAENV( 1, 'ZUNMQR', ' ', M, N, NRHS, -1 )
                    180:       NB4 = ILAENV( 1, 'ZUNMRQ', ' ', M, N, NRHS, -1 )
                    181:       NB = MAX( NB1, NB2, NB3, NB4 )
                    182:       LWKOPT = MAX( 1, MN+2*N+NB*( N+1 ), 2*MN+NB*NRHS )
                    183:       WORK( 1 ) = DCMPLX( LWKOPT )
                    184:       LQUERY = ( LWORK.EQ.-1 )
                    185:       IF( M.LT.0 ) THEN
                    186:          INFO = -1
                    187:       ELSE IF( N.LT.0 ) THEN
                    188:          INFO = -2
                    189:       ELSE IF( NRHS.LT.0 ) THEN
                    190:          INFO = -3
                    191:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
                    192:          INFO = -5
                    193:       ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN
                    194:          INFO = -7
                    195:       ELSE IF( LWORK.LT.( MN+MAX( 2*MN, N+1, MN+NRHS ) ) .AND. .NOT.
                    196:      $         LQUERY ) THEN
                    197:          INFO = -12
                    198:       END IF
                    199: *
                    200:       IF( INFO.NE.0 ) THEN
                    201:          CALL XERBLA( 'ZGELSY', -INFO )
                    202:          RETURN
                    203:       ELSE IF( LQUERY ) THEN
                    204:          RETURN
                    205:       END IF
                    206: *
                    207: *     Quick return if possible
                    208: *
                    209:       IF( MIN( M, N, NRHS ).EQ.0 ) THEN
                    210:          RANK = 0
                    211:          RETURN
                    212:       END IF
                    213: *
                    214: *     Get machine parameters
                    215: *
                    216:       SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'P' )
                    217:       BIGNUM = ONE / SMLNUM
                    218:       CALL DLABAD( SMLNUM, BIGNUM )
                    219: *
                    220: *     Scale A, B if max entries outside range [SMLNUM,BIGNUM]
                    221: *
                    222:       ANRM = ZLANGE( 'M', M, N, A, LDA, RWORK )
                    223:       IASCL = 0
                    224:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
                    225: *
                    226: *        Scale matrix norm up to SMLNUM
                    227: *
                    228:          CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
                    229:          IASCL = 1
                    230:       ELSE IF( ANRM.GT.BIGNUM ) THEN
                    231: *
                    232: *        Scale matrix norm down to BIGNUM
                    233: *
                    234:          CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
                    235:          IASCL = 2
                    236:       ELSE IF( ANRM.EQ.ZERO ) THEN
                    237: *
                    238: *        Matrix all zero. Return zero solution.
                    239: *
                    240:          CALL ZLASET( 'F', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB )
                    241:          RANK = 0
                    242:          GO TO 70
                    243:       END IF
                    244: *
                    245:       BNRM = ZLANGE( 'M', M, NRHS, B, LDB, RWORK )
                    246:       IBSCL = 0
                    247:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
                    248: *
                    249: *        Scale matrix norm up to SMLNUM
                    250: *
                    251:          CALL ZLASCL( 'G', 0, 0, BNRM, SMLNUM, M, NRHS, B, LDB, INFO )
                    252:          IBSCL = 1
                    253:       ELSE IF( BNRM.GT.BIGNUM ) THEN
                    254: *
                    255: *        Scale matrix norm down to BIGNUM
                    256: *
                    257:          CALL ZLASCL( 'G', 0, 0, BNRM, BIGNUM, M, NRHS, B, LDB, INFO )
                    258:          IBSCL = 2
                    259:       END IF
                    260: *
                    261: *     Compute QR factorization with column pivoting of A:
                    262: *        A * P = Q * R
                    263: *
                    264:       CALL ZGEQP3( M, N, A, LDA, JPVT, WORK( 1 ), WORK( MN+1 ),
                    265:      $             LWORK-MN, RWORK, INFO )
                    266:       WSIZE = MN + DBLE( WORK( MN+1 ) )
                    267: *
                    268: *     complex workspace: MN+NB*(N+1). real workspace 2*N.
                    269: *     Details of Householder rotations stored in WORK(1:MN).
                    270: *
                    271: *     Determine RANK using incremental condition estimation
                    272: *
                    273:       WORK( ISMIN ) = CONE
                    274:       WORK( ISMAX ) = CONE
                    275:       SMAX = ABS( A( 1, 1 ) )
                    276:       SMIN = SMAX
                    277:       IF( ABS( A( 1, 1 ) ).EQ.ZERO ) THEN
                    278:          RANK = 0
                    279:          CALL ZLASET( 'F', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB )
                    280:          GO TO 70
                    281:       ELSE
                    282:          RANK = 1
                    283:       END IF
                    284: *
                    285:    10 CONTINUE
                    286:       IF( RANK.LT.MN ) THEN
                    287:          I = RANK + 1
                    288:          CALL ZLAIC1( IMIN, RANK, WORK( ISMIN ), SMIN, A( 1, I ),
                    289:      $                A( I, I ), SMINPR, S1, C1 )
                    290:          CALL ZLAIC1( IMAX, RANK, WORK( ISMAX ), SMAX, A( 1, I ),
                    291:      $                A( I, I ), SMAXPR, S2, C2 )
                    292: *
                    293:          IF( SMAXPR*RCOND.LE.SMINPR ) THEN
                    294:             DO 20 I = 1, RANK
                    295:                WORK( ISMIN+I-1 ) = S1*WORK( ISMIN+I-1 )
                    296:                WORK( ISMAX+I-1 ) = S2*WORK( ISMAX+I-1 )
                    297:    20       CONTINUE
                    298:             WORK( ISMIN+RANK ) = C1
                    299:             WORK( ISMAX+RANK ) = C2
                    300:             SMIN = SMINPR
                    301:             SMAX = SMAXPR
                    302:             RANK = RANK + 1
                    303:             GO TO 10
                    304:          END IF
                    305:       END IF
                    306: *
                    307: *     complex workspace: 3*MN.
                    308: *
                    309: *     Logically partition R = [ R11 R12 ]
                    310: *                             [  0  R22 ]
                    311: *     where R11 = R(1:RANK,1:RANK)
                    312: *
                    313: *     [R11,R12] = [ T11, 0 ] * Y
                    314: *
                    315:       IF( RANK.LT.N )
                    316:      $   CALL ZTZRZF( RANK, N, A, LDA, WORK( MN+1 ), WORK( 2*MN+1 ),
                    317:      $                LWORK-2*MN, INFO )
                    318: *
                    319: *     complex workspace: 2*MN.
                    320: *     Details of Householder rotations stored in WORK(MN+1:2*MN)
                    321: *
1.8     ! bertrand  322: *     B(1:M,1:NRHS) := Q**H * B(1:M,1:NRHS)
1.1       bertrand  323: *
                    324:       CALL ZUNMQR( 'Left', 'Conjugate transpose', M, NRHS, MN, A, LDA,
                    325:      $             WORK( 1 ), B, LDB, WORK( 2*MN+1 ), LWORK-2*MN, INFO )
                    326:       WSIZE = MAX( WSIZE, 2*MN+DBLE( WORK( 2*MN+1 ) ) )
                    327: *
                    328: *     complex workspace: 2*MN+NB*NRHS.
                    329: *
                    330: *     B(1:RANK,1:NRHS) := inv(T11) * B(1:RANK,1:NRHS)
                    331: *
                    332:       CALL ZTRSM( 'Left', 'Upper', 'No transpose', 'Non-unit', RANK,
                    333:      $            NRHS, CONE, A, LDA, B, LDB )
                    334: *
                    335:       DO 40 J = 1, NRHS
                    336:          DO 30 I = RANK + 1, N
                    337:             B( I, J ) = CZERO
                    338:    30    CONTINUE
                    339:    40 CONTINUE
                    340: *
1.8     ! bertrand  341: *     B(1:N,1:NRHS) := Y**H * B(1:N,1:NRHS)
1.1       bertrand  342: *
                    343:       IF( RANK.LT.N ) THEN
                    344:          CALL ZUNMRZ( 'Left', 'Conjugate transpose', N, NRHS, RANK,
                    345:      $                N-RANK, A, LDA, WORK( MN+1 ), B, LDB,
                    346:      $                WORK( 2*MN+1 ), LWORK-2*MN, INFO )
                    347:       END IF
                    348: *
                    349: *     complex workspace: 2*MN+NRHS.
                    350: *
                    351: *     B(1:N,1:NRHS) := P * B(1:N,1:NRHS)
                    352: *
                    353:       DO 60 J = 1, NRHS
                    354:          DO 50 I = 1, N
                    355:             WORK( JPVT( I ) ) = B( I, J )
                    356:    50    CONTINUE
                    357:          CALL ZCOPY( N, WORK( 1 ), 1, B( 1, J ), 1 )
                    358:    60 CONTINUE
                    359: *
                    360: *     complex workspace: N.
                    361: *
                    362: *     Undo scaling
                    363: *
                    364:       IF( IASCL.EQ.1 ) THEN
                    365:          CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, N, NRHS, B, LDB, INFO )
                    366:          CALL ZLASCL( 'U', 0, 0, SMLNUM, ANRM, RANK, RANK, A, LDA,
                    367:      $                INFO )
                    368:       ELSE IF( IASCL.EQ.2 ) THEN
                    369:          CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, N, NRHS, B, LDB, INFO )
                    370:          CALL ZLASCL( 'U', 0, 0, BIGNUM, ANRM, RANK, RANK, A, LDA,
                    371:      $                INFO )
                    372:       END IF
                    373:       IF( IBSCL.EQ.1 ) THEN
                    374:          CALL ZLASCL( 'G', 0, 0, SMLNUM, BNRM, N, NRHS, B, LDB, INFO )
                    375:       ELSE IF( IBSCL.EQ.2 ) THEN
                    376:          CALL ZLASCL( 'G', 0, 0, BIGNUM, BNRM, N, NRHS, B, LDB, INFO )
                    377:       END IF
                    378: *
                    379:    70 CONTINUE
                    380:       WORK( 1 ) = DCMPLX( LWKOPT )
                    381: *
                    382:       RETURN
                    383: *
                    384: *     End of ZGELSY
                    385: *
                    386:       END

CVSweb interface <joel.bertrand@systella.fr>