Annotation of rpl/lapack/lapack/zgelsy.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE ZGELSY( M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK,
        !             2:      $                   WORK, LWORK, RWORK, INFO )
        !             3: *
        !             4: *  -- LAPACK driver routine (version 3.2) --
        !             5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             7: *     November 2006
        !             8: *
        !             9: *     .. Scalar Arguments ..
        !            10:       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
        !            11:       DOUBLE PRECISION   RCOND
        !            12: *     ..
        !            13: *     .. Array Arguments ..
        !            14:       INTEGER            JPVT( * )
        !            15:       DOUBLE PRECISION   RWORK( * )
        !            16:       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * )
        !            17: *     ..
        !            18: *
        !            19: *  Purpose
        !            20: *  =======
        !            21: *
        !            22: *  ZGELSY computes the minimum-norm solution to a complex linear least
        !            23: *  squares problem:
        !            24: *      minimize || A * X - B ||
        !            25: *  using a complete orthogonal factorization of A.  A is an M-by-N
        !            26: *  matrix which may be rank-deficient.
        !            27: *
        !            28: *  Several right hand side vectors b and solution vectors x can be
        !            29: *  handled in a single call; they are stored as the columns of the
        !            30: *  M-by-NRHS right hand side matrix B and the N-by-NRHS solution
        !            31: *  matrix X.
        !            32: *
        !            33: *  The routine first computes a QR factorization with column pivoting:
        !            34: *      A * P = Q * [ R11 R12 ]
        !            35: *                  [  0  R22 ]
        !            36: *  with R11 defined as the largest leading submatrix whose estimated
        !            37: *  condition number is less than 1/RCOND.  The order of R11, RANK,
        !            38: *  is the effective rank of A.
        !            39: *
        !            40: *  Then, R22 is considered to be negligible, and R12 is annihilated
        !            41: *  by unitary transformations from the right, arriving at the
        !            42: *  complete orthogonal factorization:
        !            43: *     A * P = Q * [ T11 0 ] * Z
        !            44: *                 [  0  0 ]
        !            45: *  The minimum-norm solution is then
        !            46: *     X = P * Z' [ inv(T11)*Q1'*B ]
        !            47: *                [        0       ]
        !            48: *  where Q1 consists of the first RANK columns of Q.
        !            49: *
        !            50: *  This routine is basically identical to the original xGELSX except
        !            51: *  three differences:
        !            52: *    o The permutation of matrix B (the right hand side) is faster and
        !            53: *      more simple.
        !            54: *    o The call to the subroutine xGEQPF has been substituted by the
        !            55: *      the call to the subroutine xGEQP3. This subroutine is a Blas-3
        !            56: *      version of the QR factorization with column pivoting.
        !            57: *    o Matrix B (the right hand side) is updated with Blas-3.
        !            58: *
        !            59: *  Arguments
        !            60: *  =========
        !            61: *
        !            62: *  M       (input) INTEGER
        !            63: *          The number of rows of the matrix A.  M >= 0.
        !            64: *
        !            65: *  N       (input) INTEGER
        !            66: *          The number of columns of the matrix A.  N >= 0.
        !            67: *
        !            68: *  NRHS    (input) INTEGER
        !            69: *          The number of right hand sides, i.e., the number of
        !            70: *          columns of matrices B and X. NRHS >= 0.
        !            71: *
        !            72: *  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
        !            73: *          On entry, the M-by-N matrix A.
        !            74: *          On exit, A has been overwritten by details of its
        !            75: *          complete orthogonal factorization.
        !            76: *
        !            77: *  LDA     (input) INTEGER
        !            78: *          The leading dimension of the array A.  LDA >= max(1,M).
        !            79: *
        !            80: *  B       (input/output) COMPLEX*16 array, dimension (LDB,NRHS)
        !            81: *          On entry, the M-by-NRHS right hand side matrix B.
        !            82: *          On exit, the N-by-NRHS solution matrix X.
        !            83: *
        !            84: *  LDB     (input) INTEGER
        !            85: *          The leading dimension of the array B. LDB >= max(1,M,N).
        !            86: *
        !            87: *  JPVT    (input/output) INTEGER array, dimension (N)
        !            88: *          On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted
        !            89: *          to the front of AP, otherwise column i is a free column.
        !            90: *          On exit, if JPVT(i) = k, then the i-th column of A*P
        !            91: *          was the k-th column of A.
        !            92: *
        !            93: *  RCOND   (input) DOUBLE PRECISION
        !            94: *          RCOND is used to determine the effective rank of A, which
        !            95: *          is defined as the order of the largest leading triangular
        !            96: *          submatrix R11 in the QR factorization with pivoting of A,
        !            97: *          whose estimated condition number < 1/RCOND.
        !            98: *
        !            99: *  RANK    (output) INTEGER
        !           100: *          The effective rank of A, i.e., the order of the submatrix
        !           101: *          R11.  This is the same as the order of the submatrix T11
        !           102: *          in the complete orthogonal factorization of A.
        !           103: *
        !           104: *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
        !           105: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !           106: *
        !           107: *  LWORK   (input) INTEGER
        !           108: *          The dimension of the array WORK.
        !           109: *          The unblocked strategy requires that:
        !           110: *            LWORK >= MN + MAX( 2*MN, N+1, MN+NRHS )
        !           111: *          where MN = min(M,N).
        !           112: *          The block algorithm requires that:
        !           113: *            LWORK >= MN + MAX( 2*MN, NB*(N+1), MN+MN*NB, MN+NB*NRHS )
        !           114: *          where NB is an upper bound on the blocksize returned
        !           115: *          by ILAENV for the routines ZGEQP3, ZTZRZF, CTZRQF, ZUNMQR,
        !           116: *          and ZUNMRZ.
        !           117: *
        !           118: *          If LWORK = -1, then a workspace query is assumed; the routine
        !           119: *          only calculates the optimal size of the WORK array, returns
        !           120: *          this value as the first entry of the WORK array, and no error
        !           121: *          message related to LWORK is issued by XERBLA.
        !           122: *
        !           123: *  RWORK   (workspace) DOUBLE PRECISION array, dimension (2*N)
        !           124: *
        !           125: *  INFO    (output) INTEGER
        !           126: *          = 0: successful exit
        !           127: *          < 0: if INFO = -i, the i-th argument had an illegal value
        !           128: *
        !           129: *  Further Details
        !           130: *  ===============
        !           131: *
        !           132: *  Based on contributions by
        !           133: *    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
        !           134: *    E. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain
        !           135: *    G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain
        !           136: *
        !           137: *  =====================================================================
        !           138: *
        !           139: *     .. Parameters ..
        !           140:       INTEGER            IMAX, IMIN
        !           141:       PARAMETER          ( IMAX = 1, IMIN = 2 )
        !           142:       DOUBLE PRECISION   ZERO, ONE
        !           143:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
        !           144:       COMPLEX*16         CZERO, CONE
        !           145:       PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
        !           146:      $                   CONE = ( 1.0D+0, 0.0D+0 ) )
        !           147: *     ..
        !           148: *     .. Local Scalars ..
        !           149:       LOGICAL            LQUERY
        !           150:       INTEGER            I, IASCL, IBSCL, ISMAX, ISMIN, J, LWKOPT, MN,
        !           151:      $                   NB, NB1, NB2, NB3, NB4
        !           152:       DOUBLE PRECISION   ANRM, BIGNUM, BNRM, SMAX, SMAXPR, SMIN, SMINPR,
        !           153:      $                   SMLNUM, WSIZE
        !           154:       COMPLEX*16         C1, C2, S1, S2
        !           155: *     ..
        !           156: *     .. External Subroutines ..
        !           157:       EXTERNAL           DLABAD, XERBLA, ZCOPY, ZGEQP3, ZLAIC1, ZLASCL,
        !           158:      $                   ZLASET, ZTRSM, ZTZRZF, ZUNMQR, ZUNMRZ
        !           159: *     ..
        !           160: *     .. External Functions ..
        !           161:       INTEGER            ILAENV
        !           162:       DOUBLE PRECISION   DLAMCH, ZLANGE
        !           163:       EXTERNAL           ILAENV, DLAMCH, ZLANGE
        !           164: *     ..
        !           165: *     .. Intrinsic Functions ..
        !           166:       INTRINSIC          ABS, DBLE, DCMPLX, MAX, MIN
        !           167: *     ..
        !           168: *     .. Executable Statements ..
        !           169: *
        !           170:       MN = MIN( M, N )
        !           171:       ISMIN = MN + 1
        !           172:       ISMAX = 2*MN + 1
        !           173: *
        !           174: *     Test the input arguments.
        !           175: *
        !           176:       INFO = 0
        !           177:       NB1 = ILAENV( 1, 'ZGEQRF', ' ', M, N, -1, -1 )
        !           178:       NB2 = ILAENV( 1, 'ZGERQF', ' ', M, N, -1, -1 )
        !           179:       NB3 = ILAENV( 1, 'ZUNMQR', ' ', M, N, NRHS, -1 )
        !           180:       NB4 = ILAENV( 1, 'ZUNMRQ', ' ', M, N, NRHS, -1 )
        !           181:       NB = MAX( NB1, NB2, NB3, NB4 )
        !           182:       LWKOPT = MAX( 1, MN+2*N+NB*( N+1 ), 2*MN+NB*NRHS )
        !           183:       WORK( 1 ) = DCMPLX( LWKOPT )
        !           184:       LQUERY = ( LWORK.EQ.-1 )
        !           185:       IF( M.LT.0 ) THEN
        !           186:          INFO = -1
        !           187:       ELSE IF( N.LT.0 ) THEN
        !           188:          INFO = -2
        !           189:       ELSE IF( NRHS.LT.0 ) THEN
        !           190:          INFO = -3
        !           191:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
        !           192:          INFO = -5
        !           193:       ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN
        !           194:          INFO = -7
        !           195:       ELSE IF( LWORK.LT.( MN+MAX( 2*MN, N+1, MN+NRHS ) ) .AND. .NOT.
        !           196:      $         LQUERY ) THEN
        !           197:          INFO = -12
        !           198:       END IF
        !           199: *
        !           200:       IF( INFO.NE.0 ) THEN
        !           201:          CALL XERBLA( 'ZGELSY', -INFO )
        !           202:          RETURN
        !           203:       ELSE IF( LQUERY ) THEN
        !           204:          RETURN
        !           205:       END IF
        !           206: *
        !           207: *     Quick return if possible
        !           208: *
        !           209:       IF( MIN( M, N, NRHS ).EQ.0 ) THEN
        !           210:          RANK = 0
        !           211:          RETURN
        !           212:       END IF
        !           213: *
        !           214: *     Get machine parameters
        !           215: *
        !           216:       SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'P' )
        !           217:       BIGNUM = ONE / SMLNUM
        !           218:       CALL DLABAD( SMLNUM, BIGNUM )
        !           219: *
        !           220: *     Scale A, B if max entries outside range [SMLNUM,BIGNUM]
        !           221: *
        !           222:       ANRM = ZLANGE( 'M', M, N, A, LDA, RWORK )
        !           223:       IASCL = 0
        !           224:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
        !           225: *
        !           226: *        Scale matrix norm up to SMLNUM
        !           227: *
        !           228:          CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
        !           229:          IASCL = 1
        !           230:       ELSE IF( ANRM.GT.BIGNUM ) THEN
        !           231: *
        !           232: *        Scale matrix norm down to BIGNUM
        !           233: *
        !           234:          CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
        !           235:          IASCL = 2
        !           236:       ELSE IF( ANRM.EQ.ZERO ) THEN
        !           237: *
        !           238: *        Matrix all zero. Return zero solution.
        !           239: *
        !           240:          CALL ZLASET( 'F', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB )
        !           241:          RANK = 0
        !           242:          GO TO 70
        !           243:       END IF
        !           244: *
        !           245:       BNRM = ZLANGE( 'M', M, NRHS, B, LDB, RWORK )
        !           246:       IBSCL = 0
        !           247:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
        !           248: *
        !           249: *        Scale matrix norm up to SMLNUM
        !           250: *
        !           251:          CALL ZLASCL( 'G', 0, 0, BNRM, SMLNUM, M, NRHS, B, LDB, INFO )
        !           252:          IBSCL = 1
        !           253:       ELSE IF( BNRM.GT.BIGNUM ) THEN
        !           254: *
        !           255: *        Scale matrix norm down to BIGNUM
        !           256: *
        !           257:          CALL ZLASCL( 'G', 0, 0, BNRM, BIGNUM, M, NRHS, B, LDB, INFO )
        !           258:          IBSCL = 2
        !           259:       END IF
        !           260: *
        !           261: *     Compute QR factorization with column pivoting of A:
        !           262: *        A * P = Q * R
        !           263: *
        !           264:       CALL ZGEQP3( M, N, A, LDA, JPVT, WORK( 1 ), WORK( MN+1 ),
        !           265:      $             LWORK-MN, RWORK, INFO )
        !           266:       WSIZE = MN + DBLE( WORK( MN+1 ) )
        !           267: *
        !           268: *     complex workspace: MN+NB*(N+1). real workspace 2*N.
        !           269: *     Details of Householder rotations stored in WORK(1:MN).
        !           270: *
        !           271: *     Determine RANK using incremental condition estimation
        !           272: *
        !           273:       WORK( ISMIN ) = CONE
        !           274:       WORK( ISMAX ) = CONE
        !           275:       SMAX = ABS( A( 1, 1 ) )
        !           276:       SMIN = SMAX
        !           277:       IF( ABS( A( 1, 1 ) ).EQ.ZERO ) THEN
        !           278:          RANK = 0
        !           279:          CALL ZLASET( 'F', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB )
        !           280:          GO TO 70
        !           281:       ELSE
        !           282:          RANK = 1
        !           283:       END IF
        !           284: *
        !           285:    10 CONTINUE
        !           286:       IF( RANK.LT.MN ) THEN
        !           287:          I = RANK + 1
        !           288:          CALL ZLAIC1( IMIN, RANK, WORK( ISMIN ), SMIN, A( 1, I ),
        !           289:      $                A( I, I ), SMINPR, S1, C1 )
        !           290:          CALL ZLAIC1( IMAX, RANK, WORK( ISMAX ), SMAX, A( 1, I ),
        !           291:      $                A( I, I ), SMAXPR, S2, C2 )
        !           292: *
        !           293:          IF( SMAXPR*RCOND.LE.SMINPR ) THEN
        !           294:             DO 20 I = 1, RANK
        !           295:                WORK( ISMIN+I-1 ) = S1*WORK( ISMIN+I-1 )
        !           296:                WORK( ISMAX+I-1 ) = S2*WORK( ISMAX+I-1 )
        !           297:    20       CONTINUE
        !           298:             WORK( ISMIN+RANK ) = C1
        !           299:             WORK( ISMAX+RANK ) = C2
        !           300:             SMIN = SMINPR
        !           301:             SMAX = SMAXPR
        !           302:             RANK = RANK + 1
        !           303:             GO TO 10
        !           304:          END IF
        !           305:       END IF
        !           306: *
        !           307: *     complex workspace: 3*MN.
        !           308: *
        !           309: *     Logically partition R = [ R11 R12 ]
        !           310: *                             [  0  R22 ]
        !           311: *     where R11 = R(1:RANK,1:RANK)
        !           312: *
        !           313: *     [R11,R12] = [ T11, 0 ] * Y
        !           314: *
        !           315:       IF( RANK.LT.N )
        !           316:      $   CALL ZTZRZF( RANK, N, A, LDA, WORK( MN+1 ), WORK( 2*MN+1 ),
        !           317:      $                LWORK-2*MN, INFO )
        !           318: *
        !           319: *     complex workspace: 2*MN.
        !           320: *     Details of Householder rotations stored in WORK(MN+1:2*MN)
        !           321: *
        !           322: *     B(1:M,1:NRHS) := Q' * B(1:M,1:NRHS)
        !           323: *
        !           324:       CALL ZUNMQR( 'Left', 'Conjugate transpose', M, NRHS, MN, A, LDA,
        !           325:      $             WORK( 1 ), B, LDB, WORK( 2*MN+1 ), LWORK-2*MN, INFO )
        !           326:       WSIZE = MAX( WSIZE, 2*MN+DBLE( WORK( 2*MN+1 ) ) )
        !           327: *
        !           328: *     complex workspace: 2*MN+NB*NRHS.
        !           329: *
        !           330: *     B(1:RANK,1:NRHS) := inv(T11) * B(1:RANK,1:NRHS)
        !           331: *
        !           332:       CALL ZTRSM( 'Left', 'Upper', 'No transpose', 'Non-unit', RANK,
        !           333:      $            NRHS, CONE, A, LDA, B, LDB )
        !           334: *
        !           335:       DO 40 J = 1, NRHS
        !           336:          DO 30 I = RANK + 1, N
        !           337:             B( I, J ) = CZERO
        !           338:    30    CONTINUE
        !           339:    40 CONTINUE
        !           340: *
        !           341: *     B(1:N,1:NRHS) := Y' * B(1:N,1:NRHS)
        !           342: *
        !           343:       IF( RANK.LT.N ) THEN
        !           344:          CALL ZUNMRZ( 'Left', 'Conjugate transpose', N, NRHS, RANK,
        !           345:      $                N-RANK, A, LDA, WORK( MN+1 ), B, LDB,
        !           346:      $                WORK( 2*MN+1 ), LWORK-2*MN, INFO )
        !           347:       END IF
        !           348: *
        !           349: *     complex workspace: 2*MN+NRHS.
        !           350: *
        !           351: *     B(1:N,1:NRHS) := P * B(1:N,1:NRHS)
        !           352: *
        !           353:       DO 60 J = 1, NRHS
        !           354:          DO 50 I = 1, N
        !           355:             WORK( JPVT( I ) ) = B( I, J )
        !           356:    50    CONTINUE
        !           357:          CALL ZCOPY( N, WORK( 1 ), 1, B( 1, J ), 1 )
        !           358:    60 CONTINUE
        !           359: *
        !           360: *     complex workspace: N.
        !           361: *
        !           362: *     Undo scaling
        !           363: *
        !           364:       IF( IASCL.EQ.1 ) THEN
        !           365:          CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, N, NRHS, B, LDB, INFO )
        !           366:          CALL ZLASCL( 'U', 0, 0, SMLNUM, ANRM, RANK, RANK, A, LDA,
        !           367:      $                INFO )
        !           368:       ELSE IF( IASCL.EQ.2 ) THEN
        !           369:          CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, N, NRHS, B, LDB, INFO )
        !           370:          CALL ZLASCL( 'U', 0, 0, BIGNUM, ANRM, RANK, RANK, A, LDA,
        !           371:      $                INFO )
        !           372:       END IF
        !           373:       IF( IBSCL.EQ.1 ) THEN
        !           374:          CALL ZLASCL( 'G', 0, 0, SMLNUM, BNRM, N, NRHS, B, LDB, INFO )
        !           375:       ELSE IF( IBSCL.EQ.2 ) THEN
        !           376:          CALL ZLASCL( 'G', 0, 0, BIGNUM, BNRM, N, NRHS, B, LDB, INFO )
        !           377:       END IF
        !           378: *
        !           379:    70 CONTINUE
        !           380:       WORK( 1 ) = DCMPLX( LWKOPT )
        !           381: *
        !           382:       RETURN
        !           383: *
        !           384: *     End of ZGELSY
        !           385: *
        !           386:       END

CVSweb interface <joel.bertrand@systella.fr>