File:  [local] / rpl / lapack / lapack / zgelsx.f
Revision 1.5: download - view: text, annotated - select for diffs - revision graph
Sat Aug 7 13:22:31 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour globale de Lapack 3.2.2.

    1:       SUBROUTINE ZGELSX( M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK,
    2:      $                   WORK, RWORK, INFO )
    3: *
    4: *  -- LAPACK driver routine (version 3.2) --
    5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    7: *     November 2006
    8: *
    9: *     .. Scalar Arguments ..
   10:       INTEGER            INFO, LDA, LDB, M, N, NRHS, RANK
   11:       DOUBLE PRECISION   RCOND
   12: *     ..
   13: *     .. Array Arguments ..
   14:       INTEGER            JPVT( * )
   15:       DOUBLE PRECISION   RWORK( * )
   16:       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * )
   17: *     ..
   18: *
   19: *  Purpose
   20: *  =======
   21: *
   22: *  This routine is deprecated and has been replaced by routine ZGELSY.
   23: *
   24: *  ZGELSX computes the minimum-norm solution to a complex linear least
   25: *  squares problem:
   26: *      minimize || A * X - B ||
   27: *  using a complete orthogonal factorization of A.  A is an M-by-N
   28: *  matrix which may be rank-deficient.
   29: *
   30: *  Several right hand side vectors b and solution vectors x can be
   31: *  handled in a single call; they are stored as the columns of the
   32: *  M-by-NRHS right hand side matrix B and the N-by-NRHS solution
   33: *  matrix X.
   34: *
   35: *  The routine first computes a QR factorization with column pivoting:
   36: *      A * P = Q * [ R11 R12 ]
   37: *                  [  0  R22 ]
   38: *  with R11 defined as the largest leading submatrix whose estimated
   39: *  condition number is less than 1/RCOND.  The order of R11, RANK,
   40: *  is the effective rank of A.
   41: *
   42: *  Then, R22 is considered to be negligible, and R12 is annihilated
   43: *  by unitary transformations from the right, arriving at the
   44: *  complete orthogonal factorization:
   45: *     A * P = Q * [ T11 0 ] * Z
   46: *                 [  0  0 ]
   47: *  The minimum-norm solution is then
   48: *     X = P * Z' [ inv(T11)*Q1'*B ]
   49: *                [        0       ]
   50: *  where Q1 consists of the first RANK columns of Q.
   51: *
   52: *  Arguments
   53: *  =========
   54: *
   55: *  M       (input) INTEGER
   56: *          The number of rows of the matrix A.  M >= 0.
   57: *
   58: *  N       (input) INTEGER
   59: *          The number of columns of the matrix A.  N >= 0.
   60: *
   61: *  NRHS    (input) INTEGER
   62: *          The number of right hand sides, i.e., the number of
   63: *          columns of matrices B and X. NRHS >= 0.
   64: *
   65: *  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
   66: *          On entry, the M-by-N matrix A.
   67: *          On exit, A has been overwritten by details of its
   68: *          complete orthogonal factorization.
   69: *
   70: *  LDA     (input) INTEGER
   71: *          The leading dimension of the array A.  LDA >= max(1,M).
   72: *
   73: *  B       (input/output) COMPLEX*16 array, dimension (LDB,NRHS)
   74: *          On entry, the M-by-NRHS right hand side matrix B.
   75: *          On exit, the N-by-NRHS solution matrix X.
   76: *          If m >= n and RANK = n, the residual sum-of-squares for
   77: *          the solution in the i-th column is given by the sum of
   78: *          squares of elements N+1:M in that column.
   79: *
   80: *  LDB     (input) INTEGER
   81: *          The leading dimension of the array B. LDB >= max(1,M,N).
   82: *
   83: *  JPVT    (input/output) INTEGER array, dimension (N)
   84: *          On entry, if JPVT(i) .ne. 0, the i-th column of A is an
   85: *          initial column, otherwise it is a free column.  Before
   86: *          the QR factorization of A, all initial columns are
   87: *          permuted to the leading positions; only the remaining
   88: *          free columns are moved as a result of column pivoting
   89: *          during the factorization.
   90: *          On exit, if JPVT(i) = k, then the i-th column of A*P
   91: *          was the k-th column of A.
   92: *
   93: *  RCOND   (input) DOUBLE PRECISION
   94: *          RCOND is used to determine the effective rank of A, which
   95: *          is defined as the order of the largest leading triangular
   96: *          submatrix R11 in the QR factorization with pivoting of A,
   97: *          whose estimated condition number < 1/RCOND.
   98: *
   99: *  RANK    (output) INTEGER
  100: *          The effective rank of A, i.e., the order of the submatrix
  101: *          R11.  This is the same as the order of the submatrix T11
  102: *          in the complete orthogonal factorization of A.
  103: *
  104: *  WORK    (workspace) COMPLEX*16 array, dimension
  105: *                      (min(M,N) + max( N, 2*min(M,N)+NRHS )),
  106: *
  107: *  RWORK   (workspace) DOUBLE PRECISION array, dimension (2*N)
  108: *
  109: *  INFO    (output) INTEGER
  110: *          = 0:  successful exit
  111: *          < 0:  if INFO = -i, the i-th argument had an illegal value
  112: *
  113: *  =====================================================================
  114: *
  115: *     .. Parameters ..
  116:       INTEGER            IMAX, IMIN
  117:       PARAMETER          ( IMAX = 1, IMIN = 2 )
  118:       DOUBLE PRECISION   ZERO, ONE, DONE, NTDONE
  119:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, DONE = ZERO,
  120:      $                   NTDONE = ONE )
  121:       COMPLEX*16         CZERO, CONE
  122:       PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
  123:      $                   CONE = ( 1.0D+0, 0.0D+0 ) )
  124: *     ..
  125: *     .. Local Scalars ..
  126:       INTEGER            I, IASCL, IBSCL, ISMAX, ISMIN, J, K, MN
  127:       DOUBLE PRECISION   ANRM, BIGNUM, BNRM, SMAX, SMAXPR, SMIN, SMINPR,
  128:      $                   SMLNUM
  129:       COMPLEX*16         C1, C2, S1, S2, T1, T2
  130: *     ..
  131: *     .. External Subroutines ..
  132:       EXTERNAL           XERBLA, ZGEQPF, ZLAIC1, ZLASCL, ZLASET, ZLATZM,
  133:      $                   ZTRSM, ZTZRQF, ZUNM2R
  134: *     ..
  135: *     .. External Functions ..
  136:       DOUBLE PRECISION   DLAMCH, ZLANGE
  137:       EXTERNAL           DLAMCH, ZLANGE
  138: *     ..
  139: *     .. Intrinsic Functions ..
  140:       INTRINSIC          ABS, DCONJG, MAX, MIN
  141: *     ..
  142: *     .. Executable Statements ..
  143: *
  144:       MN = MIN( M, N )
  145:       ISMIN = MN + 1
  146:       ISMAX = 2*MN + 1
  147: *
  148: *     Test the input arguments.
  149: *
  150:       INFO = 0
  151:       IF( M.LT.0 ) THEN
  152:          INFO = -1
  153:       ELSE IF( N.LT.0 ) THEN
  154:          INFO = -2
  155:       ELSE IF( NRHS.LT.0 ) THEN
  156:          INFO = -3
  157:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  158:          INFO = -5
  159:       ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN
  160:          INFO = -7
  161:       END IF
  162: *
  163:       IF( INFO.NE.0 ) THEN
  164:          CALL XERBLA( 'ZGELSX', -INFO )
  165:          RETURN
  166:       END IF
  167: *
  168: *     Quick return if possible
  169: *
  170:       IF( MIN( M, N, NRHS ).EQ.0 ) THEN
  171:          RANK = 0
  172:          RETURN
  173:       END IF
  174: *
  175: *     Get machine parameters
  176: *
  177:       SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'P' )
  178:       BIGNUM = ONE / SMLNUM
  179:       CALL DLABAD( SMLNUM, BIGNUM )
  180: *
  181: *     Scale A, B if max elements outside range [SMLNUM,BIGNUM]
  182: *
  183:       ANRM = ZLANGE( 'M', M, N, A, LDA, RWORK )
  184:       IASCL = 0
  185:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
  186: *
  187: *        Scale matrix norm up to SMLNUM
  188: *
  189:          CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
  190:          IASCL = 1
  191:       ELSE IF( ANRM.GT.BIGNUM ) THEN
  192: *
  193: *        Scale matrix norm down to BIGNUM
  194: *
  195:          CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
  196:          IASCL = 2
  197:       ELSE IF( ANRM.EQ.ZERO ) THEN
  198: *
  199: *        Matrix all zero. Return zero solution.
  200: *
  201:          CALL ZLASET( 'F', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB )
  202:          RANK = 0
  203:          GO TO 100
  204:       END IF
  205: *
  206:       BNRM = ZLANGE( 'M', M, NRHS, B, LDB, RWORK )
  207:       IBSCL = 0
  208:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
  209: *
  210: *        Scale matrix norm up to SMLNUM
  211: *
  212:          CALL ZLASCL( 'G', 0, 0, BNRM, SMLNUM, M, NRHS, B, LDB, INFO )
  213:          IBSCL = 1
  214:       ELSE IF( BNRM.GT.BIGNUM ) THEN
  215: *
  216: *        Scale matrix norm down to BIGNUM
  217: *
  218:          CALL ZLASCL( 'G', 0, 0, BNRM, BIGNUM, M, NRHS, B, LDB, INFO )
  219:          IBSCL = 2
  220:       END IF
  221: *
  222: *     Compute QR factorization with column pivoting of A:
  223: *        A * P = Q * R
  224: *
  225:       CALL ZGEQPF( M, N, A, LDA, JPVT, WORK( 1 ), WORK( MN+1 ), RWORK,
  226:      $             INFO )
  227: *
  228: *     complex workspace MN+N. Real workspace 2*N. Details of Householder
  229: *     rotations stored in WORK(1:MN).
  230: *
  231: *     Determine RANK using incremental condition estimation
  232: *
  233:       WORK( ISMIN ) = CONE
  234:       WORK( ISMAX ) = CONE
  235:       SMAX = ABS( A( 1, 1 ) )
  236:       SMIN = SMAX
  237:       IF( ABS( A( 1, 1 ) ).EQ.ZERO ) THEN
  238:          RANK = 0
  239:          CALL ZLASET( 'F', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB )
  240:          GO TO 100
  241:       ELSE
  242:          RANK = 1
  243:       END IF
  244: *
  245:    10 CONTINUE
  246:       IF( RANK.LT.MN ) THEN
  247:          I = RANK + 1
  248:          CALL ZLAIC1( IMIN, RANK, WORK( ISMIN ), SMIN, A( 1, I ),
  249:      $                A( I, I ), SMINPR, S1, C1 )
  250:          CALL ZLAIC1( IMAX, RANK, WORK( ISMAX ), SMAX, A( 1, I ),
  251:      $                A( I, I ), SMAXPR, S2, C2 )
  252: *
  253:          IF( SMAXPR*RCOND.LE.SMINPR ) THEN
  254:             DO 20 I = 1, RANK
  255:                WORK( ISMIN+I-1 ) = S1*WORK( ISMIN+I-1 )
  256:                WORK( ISMAX+I-1 ) = S2*WORK( ISMAX+I-1 )
  257:    20       CONTINUE
  258:             WORK( ISMIN+RANK ) = C1
  259:             WORK( ISMAX+RANK ) = C2
  260:             SMIN = SMINPR
  261:             SMAX = SMAXPR
  262:             RANK = RANK + 1
  263:             GO TO 10
  264:          END IF
  265:       END IF
  266: *
  267: *     Logically partition R = [ R11 R12 ]
  268: *                             [  0  R22 ]
  269: *     where R11 = R(1:RANK,1:RANK)
  270: *
  271: *     [R11,R12] = [ T11, 0 ] * Y
  272: *
  273:       IF( RANK.LT.N )
  274:      $   CALL ZTZRQF( RANK, N, A, LDA, WORK( MN+1 ), INFO )
  275: *
  276: *     Details of Householder rotations stored in WORK(MN+1:2*MN)
  277: *
  278: *     B(1:M,1:NRHS) := Q' * B(1:M,1:NRHS)
  279: *
  280:       CALL ZUNM2R( 'Left', 'Conjugate transpose', M, NRHS, MN, A, LDA,
  281:      $             WORK( 1 ), B, LDB, WORK( 2*MN+1 ), INFO )
  282: *
  283: *     workspace NRHS
  284: *
  285: *      B(1:RANK,1:NRHS) := inv(T11) * B(1:RANK,1:NRHS)
  286: *
  287:       CALL ZTRSM( 'Left', 'Upper', 'No transpose', 'Non-unit', RANK,
  288:      $            NRHS, CONE, A, LDA, B, LDB )
  289: *
  290:       DO 40 I = RANK + 1, N
  291:          DO 30 J = 1, NRHS
  292:             B( I, J ) = CZERO
  293:    30    CONTINUE
  294:    40 CONTINUE
  295: *
  296: *     B(1:N,1:NRHS) := Y' * B(1:N,1:NRHS)
  297: *
  298:       IF( RANK.LT.N ) THEN
  299:          DO 50 I = 1, RANK
  300:             CALL ZLATZM( 'Left', N-RANK+1, NRHS, A( I, RANK+1 ), LDA,
  301:      $                   DCONJG( WORK( MN+I ) ), B( I, 1 ),
  302:      $                   B( RANK+1, 1 ), LDB, WORK( 2*MN+1 ) )
  303:    50    CONTINUE
  304:       END IF
  305: *
  306: *     workspace NRHS
  307: *
  308: *     B(1:N,1:NRHS) := P * B(1:N,1:NRHS)
  309: *
  310:       DO 90 J = 1, NRHS
  311:          DO 60 I = 1, N
  312:             WORK( 2*MN+I ) = NTDONE
  313:    60    CONTINUE
  314:          DO 80 I = 1, N
  315:             IF( WORK( 2*MN+I ).EQ.NTDONE ) THEN
  316:                IF( JPVT( I ).NE.I ) THEN
  317:                   K = I
  318:                   T1 = B( K, J )
  319:                   T2 = B( JPVT( K ), J )
  320:    70             CONTINUE
  321:                   B( JPVT( K ), J ) = T1
  322:                   WORK( 2*MN+K ) = DONE
  323:                   T1 = T2
  324:                   K = JPVT( K )
  325:                   T2 = B( JPVT( K ), J )
  326:                   IF( JPVT( K ).NE.I )
  327:      $               GO TO 70
  328:                   B( I, J ) = T1
  329:                   WORK( 2*MN+K ) = DONE
  330:                END IF
  331:             END IF
  332:    80    CONTINUE
  333:    90 CONTINUE
  334: *
  335: *     Undo scaling
  336: *
  337:       IF( IASCL.EQ.1 ) THEN
  338:          CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, N, NRHS, B, LDB, INFO )
  339:          CALL ZLASCL( 'U', 0, 0, SMLNUM, ANRM, RANK, RANK, A, LDA,
  340:      $                INFO )
  341:       ELSE IF( IASCL.EQ.2 ) THEN
  342:          CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, N, NRHS, B, LDB, INFO )
  343:          CALL ZLASCL( 'U', 0, 0, BIGNUM, ANRM, RANK, RANK, A, LDA,
  344:      $                INFO )
  345:       END IF
  346:       IF( IBSCL.EQ.1 ) THEN
  347:          CALL ZLASCL( 'G', 0, 0, SMLNUM, BNRM, N, NRHS, B, LDB, INFO )
  348:       ELSE IF( IBSCL.EQ.2 ) THEN
  349:          CALL ZLASCL( 'G', 0, 0, BIGNUM, BNRM, N, NRHS, B, LDB, INFO )
  350:       END IF
  351: *
  352:   100 CONTINUE
  353: *
  354:       RETURN
  355: *
  356: *     End of ZGELSX
  357: *
  358:       END

CVSweb interface <joel.bertrand@systella.fr>