File:  [local] / rpl / lapack / lapack / zgelsx.f
Revision 1.18: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:17 2023 UTC (9 months, 1 week ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief <b> ZGELSX solves overdetermined or underdetermined systems for GE matrices</b>
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZGELSX + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgelsx.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgelsx.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgelsx.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZGELSX( M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK,
   22: *                          WORK, RWORK, INFO )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       INTEGER            INFO, LDA, LDB, M, N, NRHS, RANK
   26: *       DOUBLE PRECISION   RCOND
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       INTEGER            JPVT( * )
   30: *       DOUBLE PRECISION   RWORK( * )
   31: *       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * )
   32: *       ..
   33: *
   34: *
   35: *> \par Purpose:
   36: *  =============
   37: *>
   38: *> \verbatim
   39: *>
   40: *> This routine is deprecated and has been replaced by routine ZGELSY.
   41: *>
   42: *> ZGELSX computes the minimum-norm solution to a complex linear least
   43: *> squares problem:
   44: *>     minimize || A * X - B ||
   45: *> using a complete orthogonal factorization of A.  A is an M-by-N
   46: *> matrix which may be rank-deficient.
   47: *>
   48: *> Several right hand side vectors b and solution vectors x can be
   49: *> handled in a single call; they are stored as the columns of the
   50: *> M-by-NRHS right hand side matrix B and the N-by-NRHS solution
   51: *> matrix X.
   52: *>
   53: *> The routine first computes a QR factorization with column pivoting:
   54: *>     A * P = Q * [ R11 R12 ]
   55: *>                 [  0  R22 ]
   56: *> with R11 defined as the largest leading submatrix whose estimated
   57: *> condition number is less than 1/RCOND.  The order of R11, RANK,
   58: *> is the effective rank of A.
   59: *>
   60: *> Then, R22 is considered to be negligible, and R12 is annihilated
   61: *> by unitary transformations from the right, arriving at the
   62: *> complete orthogonal factorization:
   63: *>    A * P = Q * [ T11 0 ] * Z
   64: *>                [  0  0 ]
   65: *> The minimum-norm solution is then
   66: *>    X = P * Z**H [ inv(T11)*Q1**H*B ]
   67: *>                 [        0         ]
   68: *> where Q1 consists of the first RANK columns of Q.
   69: *> \endverbatim
   70: *
   71: *  Arguments:
   72: *  ==========
   73: *
   74: *> \param[in] M
   75: *> \verbatim
   76: *>          M is INTEGER
   77: *>          The number of rows of the matrix A.  M >= 0.
   78: *> \endverbatim
   79: *>
   80: *> \param[in] N
   81: *> \verbatim
   82: *>          N is INTEGER
   83: *>          The number of columns of the matrix A.  N >= 0.
   84: *> \endverbatim
   85: *>
   86: *> \param[in] NRHS
   87: *> \verbatim
   88: *>          NRHS is INTEGER
   89: *>          The number of right hand sides, i.e., the number of
   90: *>          columns of matrices B and X. NRHS >= 0.
   91: *> \endverbatim
   92: *>
   93: *> \param[in,out] A
   94: *> \verbatim
   95: *>          A is COMPLEX*16 array, dimension (LDA,N)
   96: *>          On entry, the M-by-N matrix A.
   97: *>          On exit, A has been overwritten by details of its
   98: *>          complete orthogonal factorization.
   99: *> \endverbatim
  100: *>
  101: *> \param[in] LDA
  102: *> \verbatim
  103: *>          LDA is INTEGER
  104: *>          The leading dimension of the array A.  LDA >= max(1,M).
  105: *> \endverbatim
  106: *>
  107: *> \param[in,out] B
  108: *> \verbatim
  109: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
  110: *>          On entry, the M-by-NRHS right hand side matrix B.
  111: *>          On exit, the N-by-NRHS solution matrix X.
  112: *>          If m >= n and RANK = n, the residual sum-of-squares for
  113: *>          the solution in the i-th column is given by the sum of
  114: *>          squares of elements N+1:M in that column.
  115: *> \endverbatim
  116: *>
  117: *> \param[in] LDB
  118: *> \verbatim
  119: *>          LDB is INTEGER
  120: *>          The leading dimension of the array B. LDB >= max(1,M,N).
  121: *> \endverbatim
  122: *>
  123: *> \param[in,out] JPVT
  124: *> \verbatim
  125: *>          JPVT is INTEGER array, dimension (N)
  126: *>          On entry, if JPVT(i) .ne. 0, the i-th column of A is an
  127: *>          initial column, otherwise it is a free column.  Before
  128: *>          the QR factorization of A, all initial columns are
  129: *>          permuted to the leading positions; only the remaining
  130: *>          free columns are moved as a result of column pivoting
  131: *>          during the factorization.
  132: *>          On exit, if JPVT(i) = k, then the i-th column of A*P
  133: *>          was the k-th column of A.
  134: *> \endverbatim
  135: *>
  136: *> \param[in] RCOND
  137: *> \verbatim
  138: *>          RCOND is DOUBLE PRECISION
  139: *>          RCOND is used to determine the effective rank of A, which
  140: *>          is defined as the order of the largest leading triangular
  141: *>          submatrix R11 in the QR factorization with pivoting of A,
  142: *>          whose estimated condition number < 1/RCOND.
  143: *> \endverbatim
  144: *>
  145: *> \param[out] RANK
  146: *> \verbatim
  147: *>          RANK is INTEGER
  148: *>          The effective rank of A, i.e., the order of the submatrix
  149: *>          R11.  This is the same as the order of the submatrix T11
  150: *>          in the complete orthogonal factorization of A.
  151: *> \endverbatim
  152: *>
  153: *> \param[out] WORK
  154: *> \verbatim
  155: *>          WORK is COMPLEX*16 array, dimension
  156: *>                      (min(M,N) + max( N, 2*min(M,N)+NRHS )),
  157: *> \endverbatim
  158: *>
  159: *> \param[out] RWORK
  160: *> \verbatim
  161: *>          RWORK is DOUBLE PRECISION array, dimension (2*N)
  162: *> \endverbatim
  163: *>
  164: *> \param[out] INFO
  165: *> \verbatim
  166: *>          INFO is INTEGER
  167: *>          = 0:  successful exit
  168: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  169: *> \endverbatim
  170: *
  171: *  Authors:
  172: *  ========
  173: *
  174: *> \author Univ. of Tennessee
  175: *> \author Univ. of California Berkeley
  176: *> \author Univ. of Colorado Denver
  177: *> \author NAG Ltd.
  178: *
  179: *> \ingroup complex16GEsolve
  180: *
  181: *  =====================================================================
  182:       SUBROUTINE ZGELSX( M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK,
  183:      $                   WORK, RWORK, INFO )
  184: *
  185: *  -- LAPACK driver routine --
  186: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  187: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  188: *
  189: *     .. Scalar Arguments ..
  190:       INTEGER            INFO, LDA, LDB, M, N, NRHS, RANK
  191:       DOUBLE PRECISION   RCOND
  192: *     ..
  193: *     .. Array Arguments ..
  194:       INTEGER            JPVT( * )
  195:       DOUBLE PRECISION   RWORK( * )
  196:       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * )
  197: *     ..
  198: *
  199: *  =====================================================================
  200: *
  201: *     .. Parameters ..
  202:       INTEGER            IMAX, IMIN
  203:       PARAMETER          ( IMAX = 1, IMIN = 2 )
  204:       DOUBLE PRECISION   ZERO, ONE, DONE, NTDONE
  205:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, DONE = ZERO,
  206:      $                   NTDONE = ONE )
  207:       COMPLEX*16         CZERO, CONE
  208:       PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
  209:      $                   CONE = ( 1.0D+0, 0.0D+0 ) )
  210: *     ..
  211: *     .. Local Scalars ..
  212:       INTEGER            I, IASCL, IBSCL, ISMAX, ISMIN, J, K, MN
  213:       DOUBLE PRECISION   ANRM, BIGNUM, BNRM, SMAX, SMAXPR, SMIN, SMINPR,
  214:      $                   SMLNUM
  215:       COMPLEX*16         C1, C2, S1, S2, T1, T2
  216: *     ..
  217: *     .. External Subroutines ..
  218:       EXTERNAL           XERBLA, ZGEQPF, ZLAIC1, ZLASCL, ZLASET, ZLATZM,
  219:      $                   ZTRSM, ZTZRQF, ZUNM2R
  220: *     ..
  221: *     .. External Functions ..
  222:       DOUBLE PRECISION   DLAMCH, ZLANGE
  223:       EXTERNAL           DLAMCH, ZLANGE
  224: *     ..
  225: *     .. Intrinsic Functions ..
  226:       INTRINSIC          ABS, DCONJG, MAX, MIN
  227: *     ..
  228: *     .. Executable Statements ..
  229: *
  230:       MN = MIN( M, N )
  231:       ISMIN = MN + 1
  232:       ISMAX = 2*MN + 1
  233: *
  234: *     Test the input arguments.
  235: *
  236:       INFO = 0
  237:       IF( M.LT.0 ) THEN
  238:          INFO = -1
  239:       ELSE IF( N.LT.0 ) THEN
  240:          INFO = -2
  241:       ELSE IF( NRHS.LT.0 ) THEN
  242:          INFO = -3
  243:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  244:          INFO = -5
  245:       ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN
  246:          INFO = -7
  247:       END IF
  248: *
  249:       IF( INFO.NE.0 ) THEN
  250:          CALL XERBLA( 'ZGELSX', -INFO )
  251:          RETURN
  252:       END IF
  253: *
  254: *     Quick return if possible
  255: *
  256:       IF( MIN( M, N, NRHS ).EQ.0 ) THEN
  257:          RANK = 0
  258:          RETURN
  259:       END IF
  260: *
  261: *     Get machine parameters
  262: *
  263:       SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'P' )
  264:       BIGNUM = ONE / SMLNUM
  265:       CALL DLABAD( SMLNUM, BIGNUM )
  266: *
  267: *     Scale A, B if max elements outside range [SMLNUM,BIGNUM]
  268: *
  269:       ANRM = ZLANGE( 'M', M, N, A, LDA, RWORK )
  270:       IASCL = 0
  271:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
  272: *
  273: *        Scale matrix norm up to SMLNUM
  274: *
  275:          CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
  276:          IASCL = 1
  277:       ELSE IF( ANRM.GT.BIGNUM ) THEN
  278: *
  279: *        Scale matrix norm down to BIGNUM
  280: *
  281:          CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
  282:          IASCL = 2
  283:       ELSE IF( ANRM.EQ.ZERO ) THEN
  284: *
  285: *        Matrix all zero. Return zero solution.
  286: *
  287:          CALL ZLASET( 'F', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB )
  288:          RANK = 0
  289:          GO TO 100
  290:       END IF
  291: *
  292:       BNRM = ZLANGE( 'M', M, NRHS, B, LDB, RWORK )
  293:       IBSCL = 0
  294:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
  295: *
  296: *        Scale matrix norm up to SMLNUM
  297: *
  298:          CALL ZLASCL( 'G', 0, 0, BNRM, SMLNUM, M, NRHS, B, LDB, INFO )
  299:          IBSCL = 1
  300:       ELSE IF( BNRM.GT.BIGNUM ) THEN
  301: *
  302: *        Scale matrix norm down to BIGNUM
  303: *
  304:          CALL ZLASCL( 'G', 0, 0, BNRM, BIGNUM, M, NRHS, B, LDB, INFO )
  305:          IBSCL = 2
  306:       END IF
  307: *
  308: *     Compute QR factorization with column pivoting of A:
  309: *        A * P = Q * R
  310: *
  311:       CALL ZGEQPF( M, N, A, LDA, JPVT, WORK( 1 ), WORK( MN+1 ), RWORK,
  312:      $             INFO )
  313: *
  314: *     complex workspace MN+N. Real workspace 2*N. Details of Householder
  315: *     rotations stored in WORK(1:MN).
  316: *
  317: *     Determine RANK using incremental condition estimation
  318: *
  319:       WORK( ISMIN ) = CONE
  320:       WORK( ISMAX ) = CONE
  321:       SMAX = ABS( A( 1, 1 ) )
  322:       SMIN = SMAX
  323:       IF( ABS( A( 1, 1 ) ).EQ.ZERO ) THEN
  324:          RANK = 0
  325:          CALL ZLASET( 'F', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB )
  326:          GO TO 100
  327:       ELSE
  328:          RANK = 1
  329:       END IF
  330: *
  331:    10 CONTINUE
  332:       IF( RANK.LT.MN ) THEN
  333:          I = RANK + 1
  334:          CALL ZLAIC1( IMIN, RANK, WORK( ISMIN ), SMIN, A( 1, I ),
  335:      $                A( I, I ), SMINPR, S1, C1 )
  336:          CALL ZLAIC1( IMAX, RANK, WORK( ISMAX ), SMAX, A( 1, I ),
  337:      $                A( I, I ), SMAXPR, S2, C2 )
  338: *
  339:          IF( SMAXPR*RCOND.LE.SMINPR ) THEN
  340:             DO 20 I = 1, RANK
  341:                WORK( ISMIN+I-1 ) = S1*WORK( ISMIN+I-1 )
  342:                WORK( ISMAX+I-1 ) = S2*WORK( ISMAX+I-1 )
  343:    20       CONTINUE
  344:             WORK( ISMIN+RANK ) = C1
  345:             WORK( ISMAX+RANK ) = C2
  346:             SMIN = SMINPR
  347:             SMAX = SMAXPR
  348:             RANK = RANK + 1
  349:             GO TO 10
  350:          END IF
  351:       END IF
  352: *
  353: *     Logically partition R = [ R11 R12 ]
  354: *                             [  0  R22 ]
  355: *     where R11 = R(1:RANK,1:RANK)
  356: *
  357: *     [R11,R12] = [ T11, 0 ] * Y
  358: *
  359:       IF( RANK.LT.N )
  360:      $   CALL ZTZRQF( RANK, N, A, LDA, WORK( MN+1 ), INFO )
  361: *
  362: *     Details of Householder rotations stored in WORK(MN+1:2*MN)
  363: *
  364: *     B(1:M,1:NRHS) := Q**H * B(1:M,1:NRHS)
  365: *
  366:       CALL ZUNM2R( 'Left', 'Conjugate transpose', M, NRHS, MN, A, LDA,
  367:      $             WORK( 1 ), B, LDB, WORK( 2*MN+1 ), INFO )
  368: *
  369: *     workspace NRHS
  370: *
  371: *      B(1:RANK,1:NRHS) := inv(T11) * B(1:RANK,1:NRHS)
  372: *
  373:       CALL ZTRSM( 'Left', 'Upper', 'No transpose', 'Non-unit', RANK,
  374:      $            NRHS, CONE, A, LDA, B, LDB )
  375: *
  376:       DO 40 I = RANK + 1, N
  377:          DO 30 J = 1, NRHS
  378:             B( I, J ) = CZERO
  379:    30    CONTINUE
  380:    40 CONTINUE
  381: *
  382: *     B(1:N,1:NRHS) := Y**H * B(1:N,1:NRHS)
  383: *
  384:       IF( RANK.LT.N ) THEN
  385:          DO 50 I = 1, RANK
  386:             CALL ZLATZM( 'Left', N-RANK+1, NRHS, A( I, RANK+1 ), LDA,
  387:      $                   DCONJG( WORK( MN+I ) ), B( I, 1 ),
  388:      $                   B( RANK+1, 1 ), LDB, WORK( 2*MN+1 ) )
  389:    50    CONTINUE
  390:       END IF
  391: *
  392: *     workspace NRHS
  393: *
  394: *     B(1:N,1:NRHS) := P * B(1:N,1:NRHS)
  395: *
  396:       DO 90 J = 1, NRHS
  397:          DO 60 I = 1, N
  398:             WORK( 2*MN+I ) = NTDONE
  399:    60    CONTINUE
  400:          DO 80 I = 1, N
  401:             IF( WORK( 2*MN+I ).EQ.NTDONE ) THEN
  402:                IF( JPVT( I ).NE.I ) THEN
  403:                   K = I
  404:                   T1 = B( K, J )
  405:                   T2 = B( JPVT( K ), J )
  406:    70             CONTINUE
  407:                   B( JPVT( K ), J ) = T1
  408:                   WORK( 2*MN+K ) = DONE
  409:                   T1 = T2
  410:                   K = JPVT( K )
  411:                   T2 = B( JPVT( K ), J )
  412:                   IF( JPVT( K ).NE.I )
  413:      $               GO TO 70
  414:                   B( I, J ) = T1
  415:                   WORK( 2*MN+K ) = DONE
  416:                END IF
  417:             END IF
  418:    80    CONTINUE
  419:    90 CONTINUE
  420: *
  421: *     Undo scaling
  422: *
  423:       IF( IASCL.EQ.1 ) THEN
  424:          CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, N, NRHS, B, LDB, INFO )
  425:          CALL ZLASCL( 'U', 0, 0, SMLNUM, ANRM, RANK, RANK, A, LDA,
  426:      $                INFO )
  427:       ELSE IF( IASCL.EQ.2 ) THEN
  428:          CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, N, NRHS, B, LDB, INFO )
  429:          CALL ZLASCL( 'U', 0, 0, BIGNUM, ANRM, RANK, RANK, A, LDA,
  430:      $                INFO )
  431:       END IF
  432:       IF( IBSCL.EQ.1 ) THEN
  433:          CALL ZLASCL( 'G', 0, 0, SMLNUM, BNRM, N, NRHS, B, LDB, INFO )
  434:       ELSE IF( IBSCL.EQ.2 ) THEN
  435:          CALL ZLASCL( 'G', 0, 0, BIGNUM, BNRM, N, NRHS, B, LDB, INFO )
  436:       END IF
  437: *
  438:   100 CONTINUE
  439: *
  440:       RETURN
  441: *
  442: *     End of ZGELSX
  443: *
  444:       END

CVSweb interface <joel.bertrand@systella.fr>