File:  [local] / rpl / lapack / lapack / zgelsx.f
Revision 1.15: download - view: text, annotated - select for diffs - revision graph
Sat Jun 17 10:54:10 2017 UTC (6 years, 10 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour de lapack.

    1: *> \brief <b> ZGELSX solves overdetermined or underdetermined systems for GE matrices</b>
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZGELSX + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgelsx.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgelsx.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgelsx.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZGELSX( M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK,
   22: *                          WORK, RWORK, INFO )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       INTEGER            INFO, LDA, LDB, M, N, NRHS, RANK
   26: *       DOUBLE PRECISION   RCOND
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       INTEGER            JPVT( * )
   30: *       DOUBLE PRECISION   RWORK( * )
   31: *       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * )
   32: *       ..
   33: *
   34: *
   35: *> \par Purpose:
   36: *  =============
   37: *>
   38: *> \verbatim
   39: *>
   40: *> This routine is deprecated and has been replaced by routine ZGELSY.
   41: *>
   42: *> ZGELSX computes the minimum-norm solution to a complex linear least
   43: *> squares problem:
   44: *>     minimize || A * X - B ||
   45: *> using a complete orthogonal factorization of A.  A is an M-by-N
   46: *> matrix which may be rank-deficient.
   47: *>
   48: *> Several right hand side vectors b and solution vectors x can be
   49: *> handled in a single call; they are stored as the columns of the
   50: *> M-by-NRHS right hand side matrix B and the N-by-NRHS solution
   51: *> matrix X.
   52: *>
   53: *> The routine first computes a QR factorization with column pivoting:
   54: *>     A * P = Q * [ R11 R12 ]
   55: *>                 [  0  R22 ]
   56: *> with R11 defined as the largest leading submatrix whose estimated
   57: *> condition number is less than 1/RCOND.  The order of R11, RANK,
   58: *> is the effective rank of A.
   59: *>
   60: *> Then, R22 is considered to be negligible, and R12 is annihilated
   61: *> by unitary transformations from the right, arriving at the
   62: *> complete orthogonal factorization:
   63: *>    A * P = Q * [ T11 0 ] * Z
   64: *>                [  0  0 ]
   65: *> The minimum-norm solution is then
   66: *>    X = P * Z**H [ inv(T11)*Q1**H*B ]
   67: *>                 [        0         ]
   68: *> where Q1 consists of the first RANK columns of Q.
   69: *> \endverbatim
   70: *
   71: *  Arguments:
   72: *  ==========
   73: *
   74: *> \param[in] M
   75: *> \verbatim
   76: *>          M is INTEGER
   77: *>          The number of rows of the matrix A.  M >= 0.
   78: *> \endverbatim
   79: *>
   80: *> \param[in] N
   81: *> \verbatim
   82: *>          N is INTEGER
   83: *>          The number of columns of the matrix A.  N >= 0.
   84: *> \endverbatim
   85: *>
   86: *> \param[in] NRHS
   87: *> \verbatim
   88: *>          NRHS is INTEGER
   89: *>          The number of right hand sides, i.e., the number of
   90: *>          columns of matrices B and X. NRHS >= 0.
   91: *> \endverbatim
   92: *>
   93: *> \param[in,out] A
   94: *> \verbatim
   95: *>          A is COMPLEX*16 array, dimension (LDA,N)
   96: *>          On entry, the M-by-N matrix A.
   97: *>          On exit, A has been overwritten by details of its
   98: *>          complete orthogonal factorization.
   99: *> \endverbatim
  100: *>
  101: *> \param[in] LDA
  102: *> \verbatim
  103: *>          LDA is INTEGER
  104: *>          The leading dimension of the array A.  LDA >= max(1,M).
  105: *> \endverbatim
  106: *>
  107: *> \param[in,out] B
  108: *> \verbatim
  109: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
  110: *>          On entry, the M-by-NRHS right hand side matrix B.
  111: *>          On exit, the N-by-NRHS solution matrix X.
  112: *>          If m >= n and RANK = n, the residual sum-of-squares for
  113: *>          the solution in the i-th column is given by the sum of
  114: *>          squares of elements N+1:M in that column.
  115: *> \endverbatim
  116: *>
  117: *> \param[in] LDB
  118: *> \verbatim
  119: *>          LDB is INTEGER
  120: *>          The leading dimension of the array B. LDB >= max(1,M,N).
  121: *> \endverbatim
  122: *>
  123: *> \param[in,out] JPVT
  124: *> \verbatim
  125: *>          JPVT is INTEGER array, dimension (N)
  126: *>          On entry, if JPVT(i) .ne. 0, the i-th column of A is an
  127: *>          initial column, otherwise it is a free column.  Before
  128: *>          the QR factorization of A, all initial columns are
  129: *>          permuted to the leading positions; only the remaining
  130: *>          free columns are moved as a result of column pivoting
  131: *>          during the factorization.
  132: *>          On exit, if JPVT(i) = k, then the i-th column of A*P
  133: *>          was the k-th column of A.
  134: *> \endverbatim
  135: *>
  136: *> \param[in] RCOND
  137: *> \verbatim
  138: *>          RCOND is DOUBLE PRECISION
  139: *>          RCOND is used to determine the effective rank of A, which
  140: *>          is defined as the order of the largest leading triangular
  141: *>          submatrix R11 in the QR factorization with pivoting of A,
  142: *>          whose estimated condition number < 1/RCOND.
  143: *> \endverbatim
  144: *>
  145: *> \param[out] RANK
  146: *> \verbatim
  147: *>          RANK is INTEGER
  148: *>          The effective rank of A, i.e., the order of the submatrix
  149: *>          R11.  This is the same as the order of the submatrix T11
  150: *>          in the complete orthogonal factorization of A.
  151: *> \endverbatim
  152: *>
  153: *> \param[out] WORK
  154: *> \verbatim
  155: *>          WORK is COMPLEX*16 array, dimension
  156: *>                      (min(M,N) + max( N, 2*min(M,N)+NRHS )),
  157: *> \endverbatim
  158: *>
  159: *> \param[out] RWORK
  160: *> \verbatim
  161: *>          RWORK is DOUBLE PRECISION array, dimension (2*N)
  162: *> \endverbatim
  163: *>
  164: *> \param[out] INFO
  165: *> \verbatim
  166: *>          INFO is INTEGER
  167: *>          = 0:  successful exit
  168: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  169: *> \endverbatim
  170: *
  171: *  Authors:
  172: *  ========
  173: *
  174: *> \author Univ. of Tennessee
  175: *> \author Univ. of California Berkeley
  176: *> \author Univ. of Colorado Denver
  177: *> \author NAG Ltd.
  178: *
  179: *> \date December 2016
  180: *
  181: *> \ingroup complex16GEsolve
  182: *
  183: *  =====================================================================
  184:       SUBROUTINE ZGELSX( M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK,
  185:      $                   WORK, RWORK, INFO )
  186: *
  187: *  -- LAPACK driver routine (version 3.7.0) --
  188: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  189: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  190: *     December 2016
  191: *
  192: *     .. Scalar Arguments ..
  193:       INTEGER            INFO, LDA, LDB, M, N, NRHS, RANK
  194:       DOUBLE PRECISION   RCOND
  195: *     ..
  196: *     .. Array Arguments ..
  197:       INTEGER            JPVT( * )
  198:       DOUBLE PRECISION   RWORK( * )
  199:       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * )
  200: *     ..
  201: *
  202: *  =====================================================================
  203: *
  204: *     .. Parameters ..
  205:       INTEGER            IMAX, IMIN
  206:       PARAMETER          ( IMAX = 1, IMIN = 2 )
  207:       DOUBLE PRECISION   ZERO, ONE, DONE, NTDONE
  208:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, DONE = ZERO,
  209:      $                   NTDONE = ONE )
  210:       COMPLEX*16         CZERO, CONE
  211:       PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
  212:      $                   CONE = ( 1.0D+0, 0.0D+0 ) )
  213: *     ..
  214: *     .. Local Scalars ..
  215:       INTEGER            I, IASCL, IBSCL, ISMAX, ISMIN, J, K, MN
  216:       DOUBLE PRECISION   ANRM, BIGNUM, BNRM, SMAX, SMAXPR, SMIN, SMINPR,
  217:      $                   SMLNUM
  218:       COMPLEX*16         C1, C2, S1, S2, T1, T2
  219: *     ..
  220: *     .. External Subroutines ..
  221:       EXTERNAL           XERBLA, ZGEQPF, ZLAIC1, ZLASCL, ZLASET, ZLATZM,
  222:      $                   ZTRSM, ZTZRQF, ZUNM2R
  223: *     ..
  224: *     .. External Functions ..
  225:       DOUBLE PRECISION   DLAMCH, ZLANGE
  226:       EXTERNAL           DLAMCH, ZLANGE
  227: *     ..
  228: *     .. Intrinsic Functions ..
  229:       INTRINSIC          ABS, DCONJG, MAX, MIN
  230: *     ..
  231: *     .. Executable Statements ..
  232: *
  233:       MN = MIN( M, N )
  234:       ISMIN = MN + 1
  235:       ISMAX = 2*MN + 1
  236: *
  237: *     Test the input arguments.
  238: *
  239:       INFO = 0
  240:       IF( M.LT.0 ) THEN
  241:          INFO = -1
  242:       ELSE IF( N.LT.0 ) THEN
  243:          INFO = -2
  244:       ELSE IF( NRHS.LT.0 ) THEN
  245:          INFO = -3
  246:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  247:          INFO = -5
  248:       ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN
  249:          INFO = -7
  250:       END IF
  251: *
  252:       IF( INFO.NE.0 ) THEN
  253:          CALL XERBLA( 'ZGELSX', -INFO )
  254:          RETURN
  255:       END IF
  256: *
  257: *     Quick return if possible
  258: *
  259:       IF( MIN( M, N, NRHS ).EQ.0 ) THEN
  260:          RANK = 0
  261:          RETURN
  262:       END IF
  263: *
  264: *     Get machine parameters
  265: *
  266:       SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'P' )
  267:       BIGNUM = ONE / SMLNUM
  268:       CALL DLABAD( SMLNUM, BIGNUM )
  269: *
  270: *     Scale A, B if max elements outside range [SMLNUM,BIGNUM]
  271: *
  272:       ANRM = ZLANGE( 'M', M, N, A, LDA, RWORK )
  273:       IASCL = 0
  274:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
  275: *
  276: *        Scale matrix norm up to SMLNUM
  277: *
  278:          CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
  279:          IASCL = 1
  280:       ELSE IF( ANRM.GT.BIGNUM ) THEN
  281: *
  282: *        Scale matrix norm down to BIGNUM
  283: *
  284:          CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
  285:          IASCL = 2
  286:       ELSE IF( ANRM.EQ.ZERO ) THEN
  287: *
  288: *        Matrix all zero. Return zero solution.
  289: *
  290:          CALL ZLASET( 'F', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB )
  291:          RANK = 0
  292:          GO TO 100
  293:       END IF
  294: *
  295:       BNRM = ZLANGE( 'M', M, NRHS, B, LDB, RWORK )
  296:       IBSCL = 0
  297:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
  298: *
  299: *        Scale matrix norm up to SMLNUM
  300: *
  301:          CALL ZLASCL( 'G', 0, 0, BNRM, SMLNUM, M, NRHS, B, LDB, INFO )
  302:          IBSCL = 1
  303:       ELSE IF( BNRM.GT.BIGNUM ) THEN
  304: *
  305: *        Scale matrix norm down to BIGNUM
  306: *
  307:          CALL ZLASCL( 'G', 0, 0, BNRM, BIGNUM, M, NRHS, B, LDB, INFO )
  308:          IBSCL = 2
  309:       END IF
  310: *
  311: *     Compute QR factorization with column pivoting of A:
  312: *        A * P = Q * R
  313: *
  314:       CALL ZGEQPF( M, N, A, LDA, JPVT, WORK( 1 ), WORK( MN+1 ), RWORK,
  315:      $             INFO )
  316: *
  317: *     complex workspace MN+N. Real workspace 2*N. Details of Householder
  318: *     rotations stored in WORK(1:MN).
  319: *
  320: *     Determine RANK using incremental condition estimation
  321: *
  322:       WORK( ISMIN ) = CONE
  323:       WORK( ISMAX ) = CONE
  324:       SMAX = ABS( A( 1, 1 ) )
  325:       SMIN = SMAX
  326:       IF( ABS( A( 1, 1 ) ).EQ.ZERO ) THEN
  327:          RANK = 0
  328:          CALL ZLASET( 'F', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB )
  329:          GO TO 100
  330:       ELSE
  331:          RANK = 1
  332:       END IF
  333: *
  334:    10 CONTINUE
  335:       IF( RANK.LT.MN ) THEN
  336:          I = RANK + 1
  337:          CALL ZLAIC1( IMIN, RANK, WORK( ISMIN ), SMIN, A( 1, I ),
  338:      $                A( I, I ), SMINPR, S1, C1 )
  339:          CALL ZLAIC1( IMAX, RANK, WORK( ISMAX ), SMAX, A( 1, I ),
  340:      $                A( I, I ), SMAXPR, S2, C2 )
  341: *
  342:          IF( SMAXPR*RCOND.LE.SMINPR ) THEN
  343:             DO 20 I = 1, RANK
  344:                WORK( ISMIN+I-1 ) = S1*WORK( ISMIN+I-1 )
  345:                WORK( ISMAX+I-1 ) = S2*WORK( ISMAX+I-1 )
  346:    20       CONTINUE
  347:             WORK( ISMIN+RANK ) = C1
  348:             WORK( ISMAX+RANK ) = C2
  349:             SMIN = SMINPR
  350:             SMAX = SMAXPR
  351:             RANK = RANK + 1
  352:             GO TO 10
  353:          END IF
  354:       END IF
  355: *
  356: *     Logically partition R = [ R11 R12 ]
  357: *                             [  0  R22 ]
  358: *     where R11 = R(1:RANK,1:RANK)
  359: *
  360: *     [R11,R12] = [ T11, 0 ] * Y
  361: *
  362:       IF( RANK.LT.N )
  363:      $   CALL ZTZRQF( RANK, N, A, LDA, WORK( MN+1 ), INFO )
  364: *
  365: *     Details of Householder rotations stored in WORK(MN+1:2*MN)
  366: *
  367: *     B(1:M,1:NRHS) := Q**H * B(1:M,1:NRHS)
  368: *
  369:       CALL ZUNM2R( 'Left', 'Conjugate transpose', M, NRHS, MN, A, LDA,
  370:      $             WORK( 1 ), B, LDB, WORK( 2*MN+1 ), INFO )
  371: *
  372: *     workspace NRHS
  373: *
  374: *      B(1:RANK,1:NRHS) := inv(T11) * B(1:RANK,1:NRHS)
  375: *
  376:       CALL ZTRSM( 'Left', 'Upper', 'No transpose', 'Non-unit', RANK,
  377:      $            NRHS, CONE, A, LDA, B, LDB )
  378: *
  379:       DO 40 I = RANK + 1, N
  380:          DO 30 J = 1, NRHS
  381:             B( I, J ) = CZERO
  382:    30    CONTINUE
  383:    40 CONTINUE
  384: *
  385: *     B(1:N,1:NRHS) := Y**H * B(1:N,1:NRHS)
  386: *
  387:       IF( RANK.LT.N ) THEN
  388:          DO 50 I = 1, RANK
  389:             CALL ZLATZM( 'Left', N-RANK+1, NRHS, A( I, RANK+1 ), LDA,
  390:      $                   DCONJG( WORK( MN+I ) ), B( I, 1 ),
  391:      $                   B( RANK+1, 1 ), LDB, WORK( 2*MN+1 ) )
  392:    50    CONTINUE
  393:       END IF
  394: *
  395: *     workspace NRHS
  396: *
  397: *     B(1:N,1:NRHS) := P * B(1:N,1:NRHS)
  398: *
  399:       DO 90 J = 1, NRHS
  400:          DO 60 I = 1, N
  401:             WORK( 2*MN+I ) = NTDONE
  402:    60    CONTINUE
  403:          DO 80 I = 1, N
  404:             IF( WORK( 2*MN+I ).EQ.NTDONE ) THEN
  405:                IF( JPVT( I ).NE.I ) THEN
  406:                   K = I
  407:                   T1 = B( K, J )
  408:                   T2 = B( JPVT( K ), J )
  409:    70             CONTINUE
  410:                   B( JPVT( K ), J ) = T1
  411:                   WORK( 2*MN+K ) = DONE
  412:                   T1 = T2
  413:                   K = JPVT( K )
  414:                   T2 = B( JPVT( K ), J )
  415:                   IF( JPVT( K ).NE.I )
  416:      $               GO TO 70
  417:                   B( I, J ) = T1
  418:                   WORK( 2*MN+K ) = DONE
  419:                END IF
  420:             END IF
  421:    80    CONTINUE
  422:    90 CONTINUE
  423: *
  424: *     Undo scaling
  425: *
  426:       IF( IASCL.EQ.1 ) THEN
  427:          CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, N, NRHS, B, LDB, INFO )
  428:          CALL ZLASCL( 'U', 0, 0, SMLNUM, ANRM, RANK, RANK, A, LDA,
  429:      $                INFO )
  430:       ELSE IF( IASCL.EQ.2 ) THEN
  431:          CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, N, NRHS, B, LDB, INFO )
  432:          CALL ZLASCL( 'U', 0, 0, BIGNUM, ANRM, RANK, RANK, A, LDA,
  433:      $                INFO )
  434:       END IF
  435:       IF( IBSCL.EQ.1 ) THEN
  436:          CALL ZLASCL( 'G', 0, 0, SMLNUM, BNRM, N, NRHS, B, LDB, INFO )
  437:       ELSE IF( IBSCL.EQ.2 ) THEN
  438:          CALL ZLASCL( 'G', 0, 0, BIGNUM, BNRM, N, NRHS, B, LDB, INFO )
  439:       END IF
  440: *
  441:   100 CONTINUE
  442: *
  443:       RETURN
  444: *
  445: *     End of ZGELSX
  446: *
  447:       END

CVSweb interface <joel.bertrand@systella.fr>