Annotation of rpl/lapack/lapack/zgelsx.f, revision 1.4

1.1       bertrand    1:       SUBROUTINE ZGELSX( M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK,
                      2:      $                   WORK, RWORK, INFO )
                      3: *
                      4: *  -- LAPACK driver routine (version 3.2) --
                      5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      7: *     November 2006
                      8: *
                      9: *     .. Scalar Arguments ..
                     10:       INTEGER            INFO, LDA, LDB, M, N, NRHS, RANK
                     11:       DOUBLE PRECISION   RCOND
                     12: *     ..
                     13: *     .. Array Arguments ..
                     14:       INTEGER            JPVT( * )
                     15:       DOUBLE PRECISION   RWORK( * )
                     16:       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * )
                     17: *     ..
                     18: *
                     19: *  Purpose
                     20: *  =======
                     21: *
                     22: *  This routine is deprecated and has been replaced by routine ZGELSY.
                     23: *
                     24: *  ZGELSX computes the minimum-norm solution to a complex linear least
                     25: *  squares problem:
                     26: *      minimize || A * X - B ||
                     27: *  using a complete orthogonal factorization of A.  A is an M-by-N
                     28: *  matrix which may be rank-deficient.
                     29: *
                     30: *  Several right hand side vectors b and solution vectors x can be
                     31: *  handled in a single call; they are stored as the columns of the
                     32: *  M-by-NRHS right hand side matrix B and the N-by-NRHS solution
                     33: *  matrix X.
                     34: *
                     35: *  The routine first computes a QR factorization with column pivoting:
                     36: *      A * P = Q * [ R11 R12 ]
                     37: *                  [  0  R22 ]
                     38: *  with R11 defined as the largest leading submatrix whose estimated
                     39: *  condition number is less than 1/RCOND.  The order of R11, RANK,
                     40: *  is the effective rank of A.
                     41: *
                     42: *  Then, R22 is considered to be negligible, and R12 is annihilated
                     43: *  by unitary transformations from the right, arriving at the
                     44: *  complete orthogonal factorization:
                     45: *     A * P = Q * [ T11 0 ] * Z
                     46: *                 [  0  0 ]
                     47: *  The minimum-norm solution is then
                     48: *     X = P * Z' [ inv(T11)*Q1'*B ]
                     49: *                [        0       ]
                     50: *  where Q1 consists of the first RANK columns of Q.
                     51: *
                     52: *  Arguments
                     53: *  =========
                     54: *
                     55: *  M       (input) INTEGER
                     56: *          The number of rows of the matrix A.  M >= 0.
                     57: *
                     58: *  N       (input) INTEGER
                     59: *          The number of columns of the matrix A.  N >= 0.
                     60: *
                     61: *  NRHS    (input) INTEGER
                     62: *          The number of right hand sides, i.e., the number of
                     63: *          columns of matrices B and X. NRHS >= 0.
                     64: *
                     65: *  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
                     66: *          On entry, the M-by-N matrix A.
                     67: *          On exit, A has been overwritten by details of its
                     68: *          complete orthogonal factorization.
                     69: *
                     70: *  LDA     (input) INTEGER
                     71: *          The leading dimension of the array A.  LDA >= max(1,M).
                     72: *
                     73: *  B       (input/output) COMPLEX*16 array, dimension (LDB,NRHS)
                     74: *          On entry, the M-by-NRHS right hand side matrix B.
                     75: *          On exit, the N-by-NRHS solution matrix X.
                     76: *          If m >= n and RANK = n, the residual sum-of-squares for
                     77: *          the solution in the i-th column is given by the sum of
                     78: *          squares of elements N+1:M in that column.
                     79: *
                     80: *  LDB     (input) INTEGER
                     81: *          The leading dimension of the array B. LDB >= max(1,M,N).
                     82: *
                     83: *  JPVT    (input/output) INTEGER array, dimension (N)
                     84: *          On entry, if JPVT(i) .ne. 0, the i-th column of A is an
                     85: *          initial column, otherwise it is a free column.  Before
                     86: *          the QR factorization of A, all initial columns are
                     87: *          permuted to the leading positions; only the remaining
                     88: *          free columns are moved as a result of column pivoting
                     89: *          during the factorization.
                     90: *          On exit, if JPVT(i) = k, then the i-th column of A*P
                     91: *          was the k-th column of A.
                     92: *
                     93: *  RCOND   (input) DOUBLE PRECISION
                     94: *          RCOND is used to determine the effective rank of A, which
                     95: *          is defined as the order of the largest leading triangular
                     96: *          submatrix R11 in the QR factorization with pivoting of A,
                     97: *          whose estimated condition number < 1/RCOND.
                     98: *
                     99: *  RANK    (output) INTEGER
                    100: *          The effective rank of A, i.e., the order of the submatrix
                    101: *          R11.  This is the same as the order of the submatrix T11
                    102: *          in the complete orthogonal factorization of A.
                    103: *
                    104: *  WORK    (workspace) COMPLEX*16 array, dimension
                    105: *                      (min(M,N) + max( N, 2*min(M,N)+NRHS )),
                    106: *
                    107: *  RWORK   (workspace) DOUBLE PRECISION array, dimension (2*N)
                    108: *
                    109: *  INFO    (output) INTEGER
                    110: *          = 0:  successful exit
                    111: *          < 0:  if INFO = -i, the i-th argument had an illegal value
                    112: *
                    113: *  =====================================================================
                    114: *
                    115: *     .. Parameters ..
                    116:       INTEGER            IMAX, IMIN
                    117:       PARAMETER          ( IMAX = 1, IMIN = 2 )
                    118:       DOUBLE PRECISION   ZERO, ONE, DONE, NTDONE
                    119:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, DONE = ZERO,
                    120:      $                   NTDONE = ONE )
                    121:       COMPLEX*16         CZERO, CONE
                    122:       PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
                    123:      $                   CONE = ( 1.0D+0, 0.0D+0 ) )
                    124: *     ..
                    125: *     .. Local Scalars ..
                    126:       INTEGER            I, IASCL, IBSCL, ISMAX, ISMIN, J, K, MN
                    127:       DOUBLE PRECISION   ANRM, BIGNUM, BNRM, SMAX, SMAXPR, SMIN, SMINPR,
                    128:      $                   SMLNUM
                    129:       COMPLEX*16         C1, C2, S1, S2, T1, T2
                    130: *     ..
                    131: *     .. External Subroutines ..
                    132:       EXTERNAL           XERBLA, ZGEQPF, ZLAIC1, ZLASCL, ZLASET, ZLATZM,
                    133:      $                   ZTRSM, ZTZRQF, ZUNM2R
                    134: *     ..
                    135: *     .. External Functions ..
                    136:       DOUBLE PRECISION   DLAMCH, ZLANGE
                    137:       EXTERNAL           DLAMCH, ZLANGE
                    138: *     ..
                    139: *     .. Intrinsic Functions ..
                    140:       INTRINSIC          ABS, DCONJG, MAX, MIN
                    141: *     ..
                    142: *     .. Executable Statements ..
                    143: *
                    144:       MN = MIN( M, N )
                    145:       ISMIN = MN + 1
                    146:       ISMAX = 2*MN + 1
                    147: *
                    148: *     Test the input arguments.
                    149: *
                    150:       INFO = 0
                    151:       IF( M.LT.0 ) THEN
                    152:          INFO = -1
                    153:       ELSE IF( N.LT.0 ) THEN
                    154:          INFO = -2
                    155:       ELSE IF( NRHS.LT.0 ) THEN
                    156:          INFO = -3
                    157:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
                    158:          INFO = -5
                    159:       ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN
                    160:          INFO = -7
                    161:       END IF
                    162: *
                    163:       IF( INFO.NE.0 ) THEN
                    164:          CALL XERBLA( 'ZGELSX', -INFO )
                    165:          RETURN
                    166:       END IF
                    167: *
                    168: *     Quick return if possible
                    169: *
                    170:       IF( MIN( M, N, NRHS ).EQ.0 ) THEN
                    171:          RANK = 0
                    172:          RETURN
                    173:       END IF
                    174: *
                    175: *     Get machine parameters
                    176: *
                    177:       SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'P' )
                    178:       BIGNUM = ONE / SMLNUM
                    179:       CALL DLABAD( SMLNUM, BIGNUM )
                    180: *
                    181: *     Scale A, B if max elements outside range [SMLNUM,BIGNUM]
                    182: *
                    183:       ANRM = ZLANGE( 'M', M, N, A, LDA, RWORK )
                    184:       IASCL = 0
                    185:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
                    186: *
                    187: *        Scale matrix norm up to SMLNUM
                    188: *
                    189:          CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
                    190:          IASCL = 1
                    191:       ELSE IF( ANRM.GT.BIGNUM ) THEN
                    192: *
                    193: *        Scale matrix norm down to BIGNUM
                    194: *
                    195:          CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
                    196:          IASCL = 2
                    197:       ELSE IF( ANRM.EQ.ZERO ) THEN
                    198: *
                    199: *        Matrix all zero. Return zero solution.
                    200: *
                    201:          CALL ZLASET( 'F', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB )
                    202:          RANK = 0
                    203:          GO TO 100
                    204:       END IF
                    205: *
                    206:       BNRM = ZLANGE( 'M', M, NRHS, B, LDB, RWORK )
                    207:       IBSCL = 0
                    208:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
                    209: *
                    210: *        Scale matrix norm up to SMLNUM
                    211: *
                    212:          CALL ZLASCL( 'G', 0, 0, BNRM, SMLNUM, M, NRHS, B, LDB, INFO )
                    213:          IBSCL = 1
                    214:       ELSE IF( BNRM.GT.BIGNUM ) THEN
                    215: *
                    216: *        Scale matrix norm down to BIGNUM
                    217: *
                    218:          CALL ZLASCL( 'G', 0, 0, BNRM, BIGNUM, M, NRHS, B, LDB, INFO )
                    219:          IBSCL = 2
                    220:       END IF
                    221: *
                    222: *     Compute QR factorization with column pivoting of A:
                    223: *        A * P = Q * R
                    224: *
                    225:       CALL ZGEQPF( M, N, A, LDA, JPVT, WORK( 1 ), WORK( MN+1 ), RWORK,
                    226:      $             INFO )
                    227: *
                    228: *     complex workspace MN+N. Real workspace 2*N. Details of Householder
                    229: *     rotations stored in WORK(1:MN).
                    230: *
                    231: *     Determine RANK using incremental condition estimation
                    232: *
                    233:       WORK( ISMIN ) = CONE
                    234:       WORK( ISMAX ) = CONE
                    235:       SMAX = ABS( A( 1, 1 ) )
                    236:       SMIN = SMAX
                    237:       IF( ABS( A( 1, 1 ) ).EQ.ZERO ) THEN
                    238:          RANK = 0
                    239:          CALL ZLASET( 'F', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB )
                    240:          GO TO 100
                    241:       ELSE
                    242:          RANK = 1
                    243:       END IF
                    244: *
                    245:    10 CONTINUE
                    246:       IF( RANK.LT.MN ) THEN
                    247:          I = RANK + 1
                    248:          CALL ZLAIC1( IMIN, RANK, WORK( ISMIN ), SMIN, A( 1, I ),
                    249:      $                A( I, I ), SMINPR, S1, C1 )
                    250:          CALL ZLAIC1( IMAX, RANK, WORK( ISMAX ), SMAX, A( 1, I ),
                    251:      $                A( I, I ), SMAXPR, S2, C2 )
                    252: *
                    253:          IF( SMAXPR*RCOND.LE.SMINPR ) THEN
                    254:             DO 20 I = 1, RANK
                    255:                WORK( ISMIN+I-1 ) = S1*WORK( ISMIN+I-1 )
                    256:                WORK( ISMAX+I-1 ) = S2*WORK( ISMAX+I-1 )
                    257:    20       CONTINUE
                    258:             WORK( ISMIN+RANK ) = C1
                    259:             WORK( ISMAX+RANK ) = C2
                    260:             SMIN = SMINPR
                    261:             SMAX = SMAXPR
                    262:             RANK = RANK + 1
                    263:             GO TO 10
                    264:          END IF
                    265:       END IF
                    266: *
                    267: *     Logically partition R = [ R11 R12 ]
                    268: *                             [  0  R22 ]
                    269: *     where R11 = R(1:RANK,1:RANK)
                    270: *
                    271: *     [R11,R12] = [ T11, 0 ] * Y
                    272: *
                    273:       IF( RANK.LT.N )
                    274:      $   CALL ZTZRQF( RANK, N, A, LDA, WORK( MN+1 ), INFO )
                    275: *
                    276: *     Details of Householder rotations stored in WORK(MN+1:2*MN)
                    277: *
                    278: *     B(1:M,1:NRHS) := Q' * B(1:M,1:NRHS)
                    279: *
                    280:       CALL ZUNM2R( 'Left', 'Conjugate transpose', M, NRHS, MN, A, LDA,
                    281:      $             WORK( 1 ), B, LDB, WORK( 2*MN+1 ), INFO )
                    282: *
                    283: *     workspace NRHS
                    284: *
                    285: *      B(1:RANK,1:NRHS) := inv(T11) * B(1:RANK,1:NRHS)
                    286: *
                    287:       CALL ZTRSM( 'Left', 'Upper', 'No transpose', 'Non-unit', RANK,
                    288:      $            NRHS, CONE, A, LDA, B, LDB )
                    289: *
                    290:       DO 40 I = RANK + 1, N
                    291:          DO 30 J = 1, NRHS
                    292:             B( I, J ) = CZERO
                    293:    30    CONTINUE
                    294:    40 CONTINUE
                    295: *
                    296: *     B(1:N,1:NRHS) := Y' * B(1:N,1:NRHS)
                    297: *
                    298:       IF( RANK.LT.N ) THEN
                    299:          DO 50 I = 1, RANK
                    300:             CALL ZLATZM( 'Left', N-RANK+1, NRHS, A( I, RANK+1 ), LDA,
                    301:      $                   DCONJG( WORK( MN+I ) ), B( I, 1 ),
                    302:      $                   B( RANK+1, 1 ), LDB, WORK( 2*MN+1 ) )
                    303:    50    CONTINUE
                    304:       END IF
                    305: *
                    306: *     workspace NRHS
                    307: *
                    308: *     B(1:N,1:NRHS) := P * B(1:N,1:NRHS)
                    309: *
                    310:       DO 90 J = 1, NRHS
                    311:          DO 60 I = 1, N
                    312:             WORK( 2*MN+I ) = NTDONE
                    313:    60    CONTINUE
                    314:          DO 80 I = 1, N
                    315:             IF( WORK( 2*MN+I ).EQ.NTDONE ) THEN
                    316:                IF( JPVT( I ).NE.I ) THEN
                    317:                   K = I
                    318:                   T1 = B( K, J )
                    319:                   T2 = B( JPVT( K ), J )
                    320:    70             CONTINUE
                    321:                   B( JPVT( K ), J ) = T1
                    322:                   WORK( 2*MN+K ) = DONE
                    323:                   T1 = T2
                    324:                   K = JPVT( K )
                    325:                   T2 = B( JPVT( K ), J )
                    326:                   IF( JPVT( K ).NE.I )
                    327:      $               GO TO 70
                    328:                   B( I, J ) = T1
                    329:                   WORK( 2*MN+K ) = DONE
                    330:                END IF
                    331:             END IF
                    332:    80    CONTINUE
                    333:    90 CONTINUE
                    334: *
                    335: *     Undo scaling
                    336: *
                    337:       IF( IASCL.EQ.1 ) THEN
                    338:          CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, N, NRHS, B, LDB, INFO )
                    339:          CALL ZLASCL( 'U', 0, 0, SMLNUM, ANRM, RANK, RANK, A, LDA,
                    340:      $                INFO )
                    341:       ELSE IF( IASCL.EQ.2 ) THEN
                    342:          CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, N, NRHS, B, LDB, INFO )
                    343:          CALL ZLASCL( 'U', 0, 0, BIGNUM, ANRM, RANK, RANK, A, LDA,
                    344:      $                INFO )
                    345:       END IF
                    346:       IF( IBSCL.EQ.1 ) THEN
                    347:          CALL ZLASCL( 'G', 0, 0, SMLNUM, BNRM, N, NRHS, B, LDB, INFO )
                    348:       ELSE IF( IBSCL.EQ.2 ) THEN
                    349:          CALL ZLASCL( 'G', 0, 0, BIGNUM, BNRM, N, NRHS, B, LDB, INFO )
                    350:       END IF
                    351: *
                    352:   100 CONTINUE
                    353: *
                    354:       RETURN
                    355: *
                    356: *     End of ZGELSX
                    357: *
                    358:       END

CVSweb interface <joel.bertrand@systella.fr>