Annotation of rpl/lapack/lapack/zgelsx.f, revision 1.18

1.9       bertrand    1: *> \brief <b> ZGELSX solves overdetermined or underdetermined systems for GE matrices</b>
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.15      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.9       bertrand    7: *
                      8: *> \htmlonly
1.15      bertrand    9: *> Download ZGELSX + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgelsx.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgelsx.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgelsx.f">
1.9       bertrand   15: *> [TXT]</a>
1.15      bertrand   16: *> \endhtmlonly
1.9       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZGELSX( M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK,
                     22: *                          WORK, RWORK, INFO )
1.15      bertrand   23: *
1.9       bertrand   24: *       .. Scalar Arguments ..
                     25: *       INTEGER            INFO, LDA, LDB, M, N, NRHS, RANK
                     26: *       DOUBLE PRECISION   RCOND
                     27: *       ..
                     28: *       .. Array Arguments ..
                     29: *       INTEGER            JPVT( * )
                     30: *       DOUBLE PRECISION   RWORK( * )
                     31: *       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * )
                     32: *       ..
1.15      bertrand   33: *
1.9       bertrand   34: *
                     35: *> \par Purpose:
                     36: *  =============
                     37: *>
                     38: *> \verbatim
                     39: *>
                     40: *> This routine is deprecated and has been replaced by routine ZGELSY.
                     41: *>
                     42: *> ZGELSX computes the minimum-norm solution to a complex linear least
                     43: *> squares problem:
                     44: *>     minimize || A * X - B ||
                     45: *> using a complete orthogonal factorization of A.  A is an M-by-N
                     46: *> matrix which may be rank-deficient.
                     47: *>
                     48: *> Several right hand side vectors b and solution vectors x can be
                     49: *> handled in a single call; they are stored as the columns of the
                     50: *> M-by-NRHS right hand side matrix B and the N-by-NRHS solution
                     51: *> matrix X.
                     52: *>
                     53: *> The routine first computes a QR factorization with column pivoting:
                     54: *>     A * P = Q * [ R11 R12 ]
                     55: *>                 [  0  R22 ]
                     56: *> with R11 defined as the largest leading submatrix whose estimated
                     57: *> condition number is less than 1/RCOND.  The order of R11, RANK,
                     58: *> is the effective rank of A.
                     59: *>
                     60: *> Then, R22 is considered to be negligible, and R12 is annihilated
                     61: *> by unitary transformations from the right, arriving at the
                     62: *> complete orthogonal factorization:
                     63: *>    A * P = Q * [ T11 0 ] * Z
                     64: *>                [  0  0 ]
                     65: *> The minimum-norm solution is then
                     66: *>    X = P * Z**H [ inv(T11)*Q1**H*B ]
                     67: *>                 [        0         ]
                     68: *> where Q1 consists of the first RANK columns of Q.
                     69: *> \endverbatim
                     70: *
                     71: *  Arguments:
                     72: *  ==========
                     73: *
                     74: *> \param[in] M
                     75: *> \verbatim
                     76: *>          M is INTEGER
                     77: *>          The number of rows of the matrix A.  M >= 0.
                     78: *> \endverbatim
                     79: *>
                     80: *> \param[in] N
                     81: *> \verbatim
                     82: *>          N is INTEGER
                     83: *>          The number of columns of the matrix A.  N >= 0.
                     84: *> \endverbatim
                     85: *>
                     86: *> \param[in] NRHS
                     87: *> \verbatim
                     88: *>          NRHS is INTEGER
                     89: *>          The number of right hand sides, i.e., the number of
                     90: *>          columns of matrices B and X. NRHS >= 0.
                     91: *> \endverbatim
                     92: *>
                     93: *> \param[in,out] A
                     94: *> \verbatim
                     95: *>          A is COMPLEX*16 array, dimension (LDA,N)
                     96: *>          On entry, the M-by-N matrix A.
                     97: *>          On exit, A has been overwritten by details of its
                     98: *>          complete orthogonal factorization.
                     99: *> \endverbatim
                    100: *>
                    101: *> \param[in] LDA
                    102: *> \verbatim
                    103: *>          LDA is INTEGER
                    104: *>          The leading dimension of the array A.  LDA >= max(1,M).
                    105: *> \endverbatim
                    106: *>
                    107: *> \param[in,out] B
                    108: *> \verbatim
                    109: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
                    110: *>          On entry, the M-by-NRHS right hand side matrix B.
                    111: *>          On exit, the N-by-NRHS solution matrix X.
                    112: *>          If m >= n and RANK = n, the residual sum-of-squares for
                    113: *>          the solution in the i-th column is given by the sum of
                    114: *>          squares of elements N+1:M in that column.
                    115: *> \endverbatim
                    116: *>
                    117: *> \param[in] LDB
                    118: *> \verbatim
                    119: *>          LDB is INTEGER
                    120: *>          The leading dimension of the array B. LDB >= max(1,M,N).
                    121: *> \endverbatim
                    122: *>
                    123: *> \param[in,out] JPVT
                    124: *> \verbatim
                    125: *>          JPVT is INTEGER array, dimension (N)
                    126: *>          On entry, if JPVT(i) .ne. 0, the i-th column of A is an
                    127: *>          initial column, otherwise it is a free column.  Before
                    128: *>          the QR factorization of A, all initial columns are
                    129: *>          permuted to the leading positions; only the remaining
                    130: *>          free columns are moved as a result of column pivoting
                    131: *>          during the factorization.
                    132: *>          On exit, if JPVT(i) = k, then the i-th column of A*P
                    133: *>          was the k-th column of A.
                    134: *> \endverbatim
                    135: *>
                    136: *> \param[in] RCOND
                    137: *> \verbatim
                    138: *>          RCOND is DOUBLE PRECISION
                    139: *>          RCOND is used to determine the effective rank of A, which
                    140: *>          is defined as the order of the largest leading triangular
                    141: *>          submatrix R11 in the QR factorization with pivoting of A,
                    142: *>          whose estimated condition number < 1/RCOND.
                    143: *> \endverbatim
                    144: *>
                    145: *> \param[out] RANK
                    146: *> \verbatim
                    147: *>          RANK is INTEGER
                    148: *>          The effective rank of A, i.e., the order of the submatrix
                    149: *>          R11.  This is the same as the order of the submatrix T11
                    150: *>          in the complete orthogonal factorization of A.
                    151: *> \endverbatim
                    152: *>
                    153: *> \param[out] WORK
                    154: *> \verbatim
                    155: *>          WORK is COMPLEX*16 array, dimension
                    156: *>                      (min(M,N) + max( N, 2*min(M,N)+NRHS )),
                    157: *> \endverbatim
                    158: *>
                    159: *> \param[out] RWORK
                    160: *> \verbatim
                    161: *>          RWORK is DOUBLE PRECISION array, dimension (2*N)
                    162: *> \endverbatim
                    163: *>
                    164: *> \param[out] INFO
                    165: *> \verbatim
                    166: *>          INFO is INTEGER
                    167: *>          = 0:  successful exit
                    168: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    169: *> \endverbatim
                    170: *
                    171: *  Authors:
                    172: *  ========
                    173: *
1.15      bertrand  174: *> \author Univ. of Tennessee
                    175: *> \author Univ. of California Berkeley
                    176: *> \author Univ. of Colorado Denver
                    177: *> \author NAG Ltd.
1.9       bertrand  178: *
                    179: *> \ingroup complex16GEsolve
                    180: *
                    181: *  =====================================================================
1.1       bertrand  182:       SUBROUTINE ZGELSX( M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK,
                    183:      $                   WORK, RWORK, INFO )
                    184: *
1.18    ! bertrand  185: *  -- LAPACK driver routine --
1.1       bertrand  186: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    187: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    188: *
                    189: *     .. Scalar Arguments ..
                    190:       INTEGER            INFO, LDA, LDB, M, N, NRHS, RANK
                    191:       DOUBLE PRECISION   RCOND
                    192: *     ..
                    193: *     .. Array Arguments ..
                    194:       INTEGER            JPVT( * )
                    195:       DOUBLE PRECISION   RWORK( * )
                    196:       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * )
                    197: *     ..
                    198: *
                    199: *  =====================================================================
                    200: *
                    201: *     .. Parameters ..
                    202:       INTEGER            IMAX, IMIN
                    203:       PARAMETER          ( IMAX = 1, IMIN = 2 )
                    204:       DOUBLE PRECISION   ZERO, ONE, DONE, NTDONE
                    205:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, DONE = ZERO,
                    206:      $                   NTDONE = ONE )
                    207:       COMPLEX*16         CZERO, CONE
                    208:       PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
                    209:      $                   CONE = ( 1.0D+0, 0.0D+0 ) )
                    210: *     ..
                    211: *     .. Local Scalars ..
                    212:       INTEGER            I, IASCL, IBSCL, ISMAX, ISMIN, J, K, MN
                    213:       DOUBLE PRECISION   ANRM, BIGNUM, BNRM, SMAX, SMAXPR, SMIN, SMINPR,
                    214:      $                   SMLNUM
                    215:       COMPLEX*16         C1, C2, S1, S2, T1, T2
                    216: *     ..
                    217: *     .. External Subroutines ..
                    218:       EXTERNAL           XERBLA, ZGEQPF, ZLAIC1, ZLASCL, ZLASET, ZLATZM,
                    219:      $                   ZTRSM, ZTZRQF, ZUNM2R
                    220: *     ..
                    221: *     .. External Functions ..
                    222:       DOUBLE PRECISION   DLAMCH, ZLANGE
                    223:       EXTERNAL           DLAMCH, ZLANGE
                    224: *     ..
                    225: *     .. Intrinsic Functions ..
                    226:       INTRINSIC          ABS, DCONJG, MAX, MIN
                    227: *     ..
                    228: *     .. Executable Statements ..
                    229: *
                    230:       MN = MIN( M, N )
                    231:       ISMIN = MN + 1
                    232:       ISMAX = 2*MN + 1
                    233: *
                    234: *     Test the input arguments.
                    235: *
                    236:       INFO = 0
                    237:       IF( M.LT.0 ) THEN
                    238:          INFO = -1
                    239:       ELSE IF( N.LT.0 ) THEN
                    240:          INFO = -2
                    241:       ELSE IF( NRHS.LT.0 ) THEN
                    242:          INFO = -3
                    243:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
                    244:          INFO = -5
                    245:       ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN
                    246:          INFO = -7
                    247:       END IF
                    248: *
                    249:       IF( INFO.NE.0 ) THEN
                    250:          CALL XERBLA( 'ZGELSX', -INFO )
                    251:          RETURN
                    252:       END IF
                    253: *
                    254: *     Quick return if possible
                    255: *
                    256:       IF( MIN( M, N, NRHS ).EQ.0 ) THEN
                    257:          RANK = 0
                    258:          RETURN
                    259:       END IF
                    260: *
                    261: *     Get machine parameters
                    262: *
                    263:       SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'P' )
                    264:       BIGNUM = ONE / SMLNUM
                    265:       CALL DLABAD( SMLNUM, BIGNUM )
                    266: *
                    267: *     Scale A, B if max elements outside range [SMLNUM,BIGNUM]
                    268: *
                    269:       ANRM = ZLANGE( 'M', M, N, A, LDA, RWORK )
                    270:       IASCL = 0
                    271:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
                    272: *
                    273: *        Scale matrix norm up to SMLNUM
                    274: *
                    275:          CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
                    276:          IASCL = 1
                    277:       ELSE IF( ANRM.GT.BIGNUM ) THEN
                    278: *
                    279: *        Scale matrix norm down to BIGNUM
                    280: *
                    281:          CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
                    282:          IASCL = 2
                    283:       ELSE IF( ANRM.EQ.ZERO ) THEN
                    284: *
                    285: *        Matrix all zero. Return zero solution.
                    286: *
                    287:          CALL ZLASET( 'F', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB )
                    288:          RANK = 0
                    289:          GO TO 100
                    290:       END IF
                    291: *
                    292:       BNRM = ZLANGE( 'M', M, NRHS, B, LDB, RWORK )
                    293:       IBSCL = 0
                    294:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
                    295: *
                    296: *        Scale matrix norm up to SMLNUM
                    297: *
                    298:          CALL ZLASCL( 'G', 0, 0, BNRM, SMLNUM, M, NRHS, B, LDB, INFO )
                    299:          IBSCL = 1
                    300:       ELSE IF( BNRM.GT.BIGNUM ) THEN
                    301: *
                    302: *        Scale matrix norm down to BIGNUM
                    303: *
                    304:          CALL ZLASCL( 'G', 0, 0, BNRM, BIGNUM, M, NRHS, B, LDB, INFO )
                    305:          IBSCL = 2
                    306:       END IF
                    307: *
                    308: *     Compute QR factorization with column pivoting of A:
                    309: *        A * P = Q * R
                    310: *
                    311:       CALL ZGEQPF( M, N, A, LDA, JPVT, WORK( 1 ), WORK( MN+1 ), RWORK,
                    312:      $             INFO )
                    313: *
                    314: *     complex workspace MN+N. Real workspace 2*N. Details of Householder
                    315: *     rotations stored in WORK(1:MN).
                    316: *
                    317: *     Determine RANK using incremental condition estimation
                    318: *
                    319:       WORK( ISMIN ) = CONE
                    320:       WORK( ISMAX ) = CONE
                    321:       SMAX = ABS( A( 1, 1 ) )
                    322:       SMIN = SMAX
                    323:       IF( ABS( A( 1, 1 ) ).EQ.ZERO ) THEN
                    324:          RANK = 0
                    325:          CALL ZLASET( 'F', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB )
                    326:          GO TO 100
                    327:       ELSE
                    328:          RANK = 1
                    329:       END IF
                    330: *
                    331:    10 CONTINUE
                    332:       IF( RANK.LT.MN ) THEN
                    333:          I = RANK + 1
                    334:          CALL ZLAIC1( IMIN, RANK, WORK( ISMIN ), SMIN, A( 1, I ),
                    335:      $                A( I, I ), SMINPR, S1, C1 )
                    336:          CALL ZLAIC1( IMAX, RANK, WORK( ISMAX ), SMAX, A( 1, I ),
                    337:      $                A( I, I ), SMAXPR, S2, C2 )
                    338: *
                    339:          IF( SMAXPR*RCOND.LE.SMINPR ) THEN
                    340:             DO 20 I = 1, RANK
                    341:                WORK( ISMIN+I-1 ) = S1*WORK( ISMIN+I-1 )
                    342:                WORK( ISMAX+I-1 ) = S2*WORK( ISMAX+I-1 )
                    343:    20       CONTINUE
                    344:             WORK( ISMIN+RANK ) = C1
                    345:             WORK( ISMAX+RANK ) = C2
                    346:             SMIN = SMINPR
                    347:             SMAX = SMAXPR
                    348:             RANK = RANK + 1
                    349:             GO TO 10
                    350:          END IF
                    351:       END IF
                    352: *
                    353: *     Logically partition R = [ R11 R12 ]
                    354: *                             [  0  R22 ]
                    355: *     where R11 = R(1:RANK,1:RANK)
                    356: *
                    357: *     [R11,R12] = [ T11, 0 ] * Y
                    358: *
                    359:       IF( RANK.LT.N )
                    360:      $   CALL ZTZRQF( RANK, N, A, LDA, WORK( MN+1 ), INFO )
                    361: *
                    362: *     Details of Householder rotations stored in WORK(MN+1:2*MN)
                    363: *
1.8       bertrand  364: *     B(1:M,1:NRHS) := Q**H * B(1:M,1:NRHS)
1.1       bertrand  365: *
                    366:       CALL ZUNM2R( 'Left', 'Conjugate transpose', M, NRHS, MN, A, LDA,
                    367:      $             WORK( 1 ), B, LDB, WORK( 2*MN+1 ), INFO )
                    368: *
                    369: *     workspace NRHS
                    370: *
                    371: *      B(1:RANK,1:NRHS) := inv(T11) * B(1:RANK,1:NRHS)
                    372: *
                    373:       CALL ZTRSM( 'Left', 'Upper', 'No transpose', 'Non-unit', RANK,
                    374:      $            NRHS, CONE, A, LDA, B, LDB )
                    375: *
                    376:       DO 40 I = RANK + 1, N
                    377:          DO 30 J = 1, NRHS
                    378:             B( I, J ) = CZERO
                    379:    30    CONTINUE
                    380:    40 CONTINUE
                    381: *
1.8       bertrand  382: *     B(1:N,1:NRHS) := Y**H * B(1:N,1:NRHS)
1.1       bertrand  383: *
                    384:       IF( RANK.LT.N ) THEN
                    385:          DO 50 I = 1, RANK
                    386:             CALL ZLATZM( 'Left', N-RANK+1, NRHS, A( I, RANK+1 ), LDA,
                    387:      $                   DCONJG( WORK( MN+I ) ), B( I, 1 ),
                    388:      $                   B( RANK+1, 1 ), LDB, WORK( 2*MN+1 ) )
                    389:    50    CONTINUE
                    390:       END IF
                    391: *
                    392: *     workspace NRHS
                    393: *
                    394: *     B(1:N,1:NRHS) := P * B(1:N,1:NRHS)
                    395: *
                    396:       DO 90 J = 1, NRHS
                    397:          DO 60 I = 1, N
                    398:             WORK( 2*MN+I ) = NTDONE
                    399:    60    CONTINUE
                    400:          DO 80 I = 1, N
                    401:             IF( WORK( 2*MN+I ).EQ.NTDONE ) THEN
                    402:                IF( JPVT( I ).NE.I ) THEN
                    403:                   K = I
                    404:                   T1 = B( K, J )
                    405:                   T2 = B( JPVT( K ), J )
                    406:    70             CONTINUE
                    407:                   B( JPVT( K ), J ) = T1
                    408:                   WORK( 2*MN+K ) = DONE
                    409:                   T1 = T2
                    410:                   K = JPVT( K )
                    411:                   T2 = B( JPVT( K ), J )
                    412:                   IF( JPVT( K ).NE.I )
                    413:      $               GO TO 70
                    414:                   B( I, J ) = T1
                    415:                   WORK( 2*MN+K ) = DONE
                    416:                END IF
                    417:             END IF
                    418:    80    CONTINUE
                    419:    90 CONTINUE
                    420: *
                    421: *     Undo scaling
                    422: *
                    423:       IF( IASCL.EQ.1 ) THEN
                    424:          CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, N, NRHS, B, LDB, INFO )
                    425:          CALL ZLASCL( 'U', 0, 0, SMLNUM, ANRM, RANK, RANK, A, LDA,
                    426:      $                INFO )
                    427:       ELSE IF( IASCL.EQ.2 ) THEN
                    428:          CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, N, NRHS, B, LDB, INFO )
                    429:          CALL ZLASCL( 'U', 0, 0, BIGNUM, ANRM, RANK, RANK, A, LDA,
                    430:      $                INFO )
                    431:       END IF
                    432:       IF( IBSCL.EQ.1 ) THEN
                    433:          CALL ZLASCL( 'G', 0, 0, SMLNUM, BNRM, N, NRHS, B, LDB, INFO )
                    434:       ELSE IF( IBSCL.EQ.2 ) THEN
                    435:          CALL ZLASCL( 'G', 0, 0, BIGNUM, BNRM, N, NRHS, B, LDB, INFO )
                    436:       END IF
                    437: *
                    438:   100 CONTINUE
                    439: *
                    440:       RETURN
                    441: *
                    442: *     End of ZGELSX
                    443: *
                    444:       END

CVSweb interface <joel.bertrand@systella.fr>