Annotation of rpl/lapack/lapack/zgelsx.f, revision 1.12

1.9       bertrand    1: *> \brief <b> ZGELSX solves overdetermined or underdetermined systems for GE matrices</b>
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at 
                      6: *            http://www.netlib.org/lapack/explore-html/ 
                      7: *
                      8: *> \htmlonly
                      9: *> Download ZGELSX + dependencies 
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgelsx.f"> 
                     11: *> [TGZ]</a> 
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgelsx.f"> 
                     13: *> [ZIP]</a> 
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgelsx.f"> 
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly 
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZGELSX( M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK,
                     22: *                          WORK, RWORK, INFO )
                     23: * 
                     24: *       .. Scalar Arguments ..
                     25: *       INTEGER            INFO, LDA, LDB, M, N, NRHS, RANK
                     26: *       DOUBLE PRECISION   RCOND
                     27: *       ..
                     28: *       .. Array Arguments ..
                     29: *       INTEGER            JPVT( * )
                     30: *       DOUBLE PRECISION   RWORK( * )
                     31: *       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * )
                     32: *       ..
                     33: *  
                     34: *
                     35: *> \par Purpose:
                     36: *  =============
                     37: *>
                     38: *> \verbatim
                     39: *>
                     40: *> This routine is deprecated and has been replaced by routine ZGELSY.
                     41: *>
                     42: *> ZGELSX computes the minimum-norm solution to a complex linear least
                     43: *> squares problem:
                     44: *>     minimize || A * X - B ||
                     45: *> using a complete orthogonal factorization of A.  A is an M-by-N
                     46: *> matrix which may be rank-deficient.
                     47: *>
                     48: *> Several right hand side vectors b and solution vectors x can be
                     49: *> handled in a single call; they are stored as the columns of the
                     50: *> M-by-NRHS right hand side matrix B and the N-by-NRHS solution
                     51: *> matrix X.
                     52: *>
                     53: *> The routine first computes a QR factorization with column pivoting:
                     54: *>     A * P = Q * [ R11 R12 ]
                     55: *>                 [  0  R22 ]
                     56: *> with R11 defined as the largest leading submatrix whose estimated
                     57: *> condition number is less than 1/RCOND.  The order of R11, RANK,
                     58: *> is the effective rank of A.
                     59: *>
                     60: *> Then, R22 is considered to be negligible, and R12 is annihilated
                     61: *> by unitary transformations from the right, arriving at the
                     62: *> complete orthogonal factorization:
                     63: *>    A * P = Q * [ T11 0 ] * Z
                     64: *>                [  0  0 ]
                     65: *> The minimum-norm solution is then
                     66: *>    X = P * Z**H [ inv(T11)*Q1**H*B ]
                     67: *>                 [        0         ]
                     68: *> where Q1 consists of the first RANK columns of Q.
                     69: *> \endverbatim
                     70: *
                     71: *  Arguments:
                     72: *  ==========
                     73: *
                     74: *> \param[in] M
                     75: *> \verbatim
                     76: *>          M is INTEGER
                     77: *>          The number of rows of the matrix A.  M >= 0.
                     78: *> \endverbatim
                     79: *>
                     80: *> \param[in] N
                     81: *> \verbatim
                     82: *>          N is INTEGER
                     83: *>          The number of columns of the matrix A.  N >= 0.
                     84: *> \endverbatim
                     85: *>
                     86: *> \param[in] NRHS
                     87: *> \verbatim
                     88: *>          NRHS is INTEGER
                     89: *>          The number of right hand sides, i.e., the number of
                     90: *>          columns of matrices B and X. NRHS >= 0.
                     91: *> \endverbatim
                     92: *>
                     93: *> \param[in,out] A
                     94: *> \verbatim
                     95: *>          A is COMPLEX*16 array, dimension (LDA,N)
                     96: *>          On entry, the M-by-N matrix A.
                     97: *>          On exit, A has been overwritten by details of its
                     98: *>          complete orthogonal factorization.
                     99: *> \endverbatim
                    100: *>
                    101: *> \param[in] LDA
                    102: *> \verbatim
                    103: *>          LDA is INTEGER
                    104: *>          The leading dimension of the array A.  LDA >= max(1,M).
                    105: *> \endverbatim
                    106: *>
                    107: *> \param[in,out] B
                    108: *> \verbatim
                    109: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
                    110: *>          On entry, the M-by-NRHS right hand side matrix B.
                    111: *>          On exit, the N-by-NRHS solution matrix X.
                    112: *>          If m >= n and RANK = n, the residual sum-of-squares for
                    113: *>          the solution in the i-th column is given by the sum of
                    114: *>          squares of elements N+1:M in that column.
                    115: *> \endverbatim
                    116: *>
                    117: *> \param[in] LDB
                    118: *> \verbatim
                    119: *>          LDB is INTEGER
                    120: *>          The leading dimension of the array B. LDB >= max(1,M,N).
                    121: *> \endverbatim
                    122: *>
                    123: *> \param[in,out] JPVT
                    124: *> \verbatim
                    125: *>          JPVT is INTEGER array, dimension (N)
                    126: *>          On entry, if JPVT(i) .ne. 0, the i-th column of A is an
                    127: *>          initial column, otherwise it is a free column.  Before
                    128: *>          the QR factorization of A, all initial columns are
                    129: *>          permuted to the leading positions; only the remaining
                    130: *>          free columns are moved as a result of column pivoting
                    131: *>          during the factorization.
                    132: *>          On exit, if JPVT(i) = k, then the i-th column of A*P
                    133: *>          was the k-th column of A.
                    134: *> \endverbatim
                    135: *>
                    136: *> \param[in] RCOND
                    137: *> \verbatim
                    138: *>          RCOND is DOUBLE PRECISION
                    139: *>          RCOND is used to determine the effective rank of A, which
                    140: *>          is defined as the order of the largest leading triangular
                    141: *>          submatrix R11 in the QR factorization with pivoting of A,
                    142: *>          whose estimated condition number < 1/RCOND.
                    143: *> \endverbatim
                    144: *>
                    145: *> \param[out] RANK
                    146: *> \verbatim
                    147: *>          RANK is INTEGER
                    148: *>          The effective rank of A, i.e., the order of the submatrix
                    149: *>          R11.  This is the same as the order of the submatrix T11
                    150: *>          in the complete orthogonal factorization of A.
                    151: *> \endverbatim
                    152: *>
                    153: *> \param[out] WORK
                    154: *> \verbatim
                    155: *>          WORK is COMPLEX*16 array, dimension
                    156: *>                      (min(M,N) + max( N, 2*min(M,N)+NRHS )),
                    157: *> \endverbatim
                    158: *>
                    159: *> \param[out] RWORK
                    160: *> \verbatim
                    161: *>          RWORK is DOUBLE PRECISION array, dimension (2*N)
                    162: *> \endverbatim
                    163: *>
                    164: *> \param[out] INFO
                    165: *> \verbatim
                    166: *>          INFO is INTEGER
                    167: *>          = 0:  successful exit
                    168: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    169: *> \endverbatim
                    170: *
                    171: *  Authors:
                    172: *  ========
                    173: *
                    174: *> \author Univ. of Tennessee 
                    175: *> \author Univ. of California Berkeley 
                    176: *> \author Univ. of Colorado Denver 
                    177: *> \author NAG Ltd. 
                    178: *
                    179: *> \date November 2011
                    180: *
                    181: *> \ingroup complex16GEsolve
                    182: *
                    183: *  =====================================================================
1.1       bertrand  184:       SUBROUTINE ZGELSX( M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK,
                    185:      $                   WORK, RWORK, INFO )
                    186: *
1.9       bertrand  187: *  -- LAPACK driver routine (version 3.4.0) --
1.1       bertrand  188: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    189: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.9       bertrand  190: *     November 2011
1.1       bertrand  191: *
                    192: *     .. Scalar Arguments ..
                    193:       INTEGER            INFO, LDA, LDB, M, N, NRHS, RANK
                    194:       DOUBLE PRECISION   RCOND
                    195: *     ..
                    196: *     .. Array Arguments ..
                    197:       INTEGER            JPVT( * )
                    198:       DOUBLE PRECISION   RWORK( * )
                    199:       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * )
                    200: *     ..
                    201: *
                    202: *  =====================================================================
                    203: *
                    204: *     .. Parameters ..
                    205:       INTEGER            IMAX, IMIN
                    206:       PARAMETER          ( IMAX = 1, IMIN = 2 )
                    207:       DOUBLE PRECISION   ZERO, ONE, DONE, NTDONE
                    208:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, DONE = ZERO,
                    209:      $                   NTDONE = ONE )
                    210:       COMPLEX*16         CZERO, CONE
                    211:       PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
                    212:      $                   CONE = ( 1.0D+0, 0.0D+0 ) )
                    213: *     ..
                    214: *     .. Local Scalars ..
                    215:       INTEGER            I, IASCL, IBSCL, ISMAX, ISMIN, J, K, MN
                    216:       DOUBLE PRECISION   ANRM, BIGNUM, BNRM, SMAX, SMAXPR, SMIN, SMINPR,
                    217:      $                   SMLNUM
                    218:       COMPLEX*16         C1, C2, S1, S2, T1, T2
                    219: *     ..
                    220: *     .. External Subroutines ..
                    221:       EXTERNAL           XERBLA, ZGEQPF, ZLAIC1, ZLASCL, ZLASET, ZLATZM,
                    222:      $                   ZTRSM, ZTZRQF, ZUNM2R
                    223: *     ..
                    224: *     .. External Functions ..
                    225:       DOUBLE PRECISION   DLAMCH, ZLANGE
                    226:       EXTERNAL           DLAMCH, ZLANGE
                    227: *     ..
                    228: *     .. Intrinsic Functions ..
                    229:       INTRINSIC          ABS, DCONJG, MAX, MIN
                    230: *     ..
                    231: *     .. Executable Statements ..
                    232: *
                    233:       MN = MIN( M, N )
                    234:       ISMIN = MN + 1
                    235:       ISMAX = 2*MN + 1
                    236: *
                    237: *     Test the input arguments.
                    238: *
                    239:       INFO = 0
                    240:       IF( M.LT.0 ) THEN
                    241:          INFO = -1
                    242:       ELSE IF( N.LT.0 ) THEN
                    243:          INFO = -2
                    244:       ELSE IF( NRHS.LT.0 ) THEN
                    245:          INFO = -3
                    246:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
                    247:          INFO = -5
                    248:       ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN
                    249:          INFO = -7
                    250:       END IF
                    251: *
                    252:       IF( INFO.NE.0 ) THEN
                    253:          CALL XERBLA( 'ZGELSX', -INFO )
                    254:          RETURN
                    255:       END IF
                    256: *
                    257: *     Quick return if possible
                    258: *
                    259:       IF( MIN( M, N, NRHS ).EQ.0 ) THEN
                    260:          RANK = 0
                    261:          RETURN
                    262:       END IF
                    263: *
                    264: *     Get machine parameters
                    265: *
                    266:       SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'P' )
                    267:       BIGNUM = ONE / SMLNUM
                    268:       CALL DLABAD( SMLNUM, BIGNUM )
                    269: *
                    270: *     Scale A, B if max elements outside range [SMLNUM,BIGNUM]
                    271: *
                    272:       ANRM = ZLANGE( 'M', M, N, A, LDA, RWORK )
                    273:       IASCL = 0
                    274:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
                    275: *
                    276: *        Scale matrix norm up to SMLNUM
                    277: *
                    278:          CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
                    279:          IASCL = 1
                    280:       ELSE IF( ANRM.GT.BIGNUM ) THEN
                    281: *
                    282: *        Scale matrix norm down to BIGNUM
                    283: *
                    284:          CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
                    285:          IASCL = 2
                    286:       ELSE IF( ANRM.EQ.ZERO ) THEN
                    287: *
                    288: *        Matrix all zero. Return zero solution.
                    289: *
                    290:          CALL ZLASET( 'F', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB )
                    291:          RANK = 0
                    292:          GO TO 100
                    293:       END IF
                    294: *
                    295:       BNRM = ZLANGE( 'M', M, NRHS, B, LDB, RWORK )
                    296:       IBSCL = 0
                    297:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
                    298: *
                    299: *        Scale matrix norm up to SMLNUM
                    300: *
                    301:          CALL ZLASCL( 'G', 0, 0, BNRM, SMLNUM, M, NRHS, B, LDB, INFO )
                    302:          IBSCL = 1
                    303:       ELSE IF( BNRM.GT.BIGNUM ) THEN
                    304: *
                    305: *        Scale matrix norm down to BIGNUM
                    306: *
                    307:          CALL ZLASCL( 'G', 0, 0, BNRM, BIGNUM, M, NRHS, B, LDB, INFO )
                    308:          IBSCL = 2
                    309:       END IF
                    310: *
                    311: *     Compute QR factorization with column pivoting of A:
                    312: *        A * P = Q * R
                    313: *
                    314:       CALL ZGEQPF( M, N, A, LDA, JPVT, WORK( 1 ), WORK( MN+1 ), RWORK,
                    315:      $             INFO )
                    316: *
                    317: *     complex workspace MN+N. Real workspace 2*N. Details of Householder
                    318: *     rotations stored in WORK(1:MN).
                    319: *
                    320: *     Determine RANK using incremental condition estimation
                    321: *
                    322:       WORK( ISMIN ) = CONE
                    323:       WORK( ISMAX ) = CONE
                    324:       SMAX = ABS( A( 1, 1 ) )
                    325:       SMIN = SMAX
                    326:       IF( ABS( A( 1, 1 ) ).EQ.ZERO ) THEN
                    327:          RANK = 0
                    328:          CALL ZLASET( 'F', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB )
                    329:          GO TO 100
                    330:       ELSE
                    331:          RANK = 1
                    332:       END IF
                    333: *
                    334:    10 CONTINUE
                    335:       IF( RANK.LT.MN ) THEN
                    336:          I = RANK + 1
                    337:          CALL ZLAIC1( IMIN, RANK, WORK( ISMIN ), SMIN, A( 1, I ),
                    338:      $                A( I, I ), SMINPR, S1, C1 )
                    339:          CALL ZLAIC1( IMAX, RANK, WORK( ISMAX ), SMAX, A( 1, I ),
                    340:      $                A( I, I ), SMAXPR, S2, C2 )
                    341: *
                    342:          IF( SMAXPR*RCOND.LE.SMINPR ) THEN
                    343:             DO 20 I = 1, RANK
                    344:                WORK( ISMIN+I-1 ) = S1*WORK( ISMIN+I-1 )
                    345:                WORK( ISMAX+I-1 ) = S2*WORK( ISMAX+I-1 )
                    346:    20       CONTINUE
                    347:             WORK( ISMIN+RANK ) = C1
                    348:             WORK( ISMAX+RANK ) = C2
                    349:             SMIN = SMINPR
                    350:             SMAX = SMAXPR
                    351:             RANK = RANK + 1
                    352:             GO TO 10
                    353:          END IF
                    354:       END IF
                    355: *
                    356: *     Logically partition R = [ R11 R12 ]
                    357: *                             [  0  R22 ]
                    358: *     where R11 = R(1:RANK,1:RANK)
                    359: *
                    360: *     [R11,R12] = [ T11, 0 ] * Y
                    361: *
                    362:       IF( RANK.LT.N )
                    363:      $   CALL ZTZRQF( RANK, N, A, LDA, WORK( MN+1 ), INFO )
                    364: *
                    365: *     Details of Householder rotations stored in WORK(MN+1:2*MN)
                    366: *
1.8       bertrand  367: *     B(1:M,1:NRHS) := Q**H * B(1:M,1:NRHS)
1.1       bertrand  368: *
                    369:       CALL ZUNM2R( 'Left', 'Conjugate transpose', M, NRHS, MN, A, LDA,
                    370:      $             WORK( 1 ), B, LDB, WORK( 2*MN+1 ), INFO )
                    371: *
                    372: *     workspace NRHS
                    373: *
                    374: *      B(1:RANK,1:NRHS) := inv(T11) * B(1:RANK,1:NRHS)
                    375: *
                    376:       CALL ZTRSM( 'Left', 'Upper', 'No transpose', 'Non-unit', RANK,
                    377:      $            NRHS, CONE, A, LDA, B, LDB )
                    378: *
                    379:       DO 40 I = RANK + 1, N
                    380:          DO 30 J = 1, NRHS
                    381:             B( I, J ) = CZERO
                    382:    30    CONTINUE
                    383:    40 CONTINUE
                    384: *
1.8       bertrand  385: *     B(1:N,1:NRHS) := Y**H * B(1:N,1:NRHS)
1.1       bertrand  386: *
                    387:       IF( RANK.LT.N ) THEN
                    388:          DO 50 I = 1, RANK
                    389:             CALL ZLATZM( 'Left', N-RANK+1, NRHS, A( I, RANK+1 ), LDA,
                    390:      $                   DCONJG( WORK( MN+I ) ), B( I, 1 ),
                    391:      $                   B( RANK+1, 1 ), LDB, WORK( 2*MN+1 ) )
                    392:    50    CONTINUE
                    393:       END IF
                    394: *
                    395: *     workspace NRHS
                    396: *
                    397: *     B(1:N,1:NRHS) := P * B(1:N,1:NRHS)
                    398: *
                    399:       DO 90 J = 1, NRHS
                    400:          DO 60 I = 1, N
                    401:             WORK( 2*MN+I ) = NTDONE
                    402:    60    CONTINUE
                    403:          DO 80 I = 1, N
                    404:             IF( WORK( 2*MN+I ).EQ.NTDONE ) THEN
                    405:                IF( JPVT( I ).NE.I ) THEN
                    406:                   K = I
                    407:                   T1 = B( K, J )
                    408:                   T2 = B( JPVT( K ), J )
                    409:    70             CONTINUE
                    410:                   B( JPVT( K ), J ) = T1
                    411:                   WORK( 2*MN+K ) = DONE
                    412:                   T1 = T2
                    413:                   K = JPVT( K )
                    414:                   T2 = B( JPVT( K ), J )
                    415:                   IF( JPVT( K ).NE.I )
                    416:      $               GO TO 70
                    417:                   B( I, J ) = T1
                    418:                   WORK( 2*MN+K ) = DONE
                    419:                END IF
                    420:             END IF
                    421:    80    CONTINUE
                    422:    90 CONTINUE
                    423: *
                    424: *     Undo scaling
                    425: *
                    426:       IF( IASCL.EQ.1 ) THEN
                    427:          CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, N, NRHS, B, LDB, INFO )
                    428:          CALL ZLASCL( 'U', 0, 0, SMLNUM, ANRM, RANK, RANK, A, LDA,
                    429:      $                INFO )
                    430:       ELSE IF( IASCL.EQ.2 ) THEN
                    431:          CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, N, NRHS, B, LDB, INFO )
                    432:          CALL ZLASCL( 'U', 0, 0, BIGNUM, ANRM, RANK, RANK, A, LDA,
                    433:      $                INFO )
                    434:       END IF
                    435:       IF( IBSCL.EQ.1 ) THEN
                    436:          CALL ZLASCL( 'G', 0, 0, SMLNUM, BNRM, N, NRHS, B, LDB, INFO )
                    437:       ELSE IF( IBSCL.EQ.2 ) THEN
                    438:          CALL ZLASCL( 'G', 0, 0, BIGNUM, BNRM, N, NRHS, B, LDB, INFO )
                    439:       END IF
                    440: *
                    441:   100 CONTINUE
                    442: *
                    443:       RETURN
                    444: *
                    445: *     End of ZGELSX
                    446: *
                    447:       END

CVSweb interface <joel.bertrand@systella.fr>