File:  [local] / rpl / lapack / lapack / zgelst.f
Revision 1.1: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:55:31 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Ajout de fichiers de lapack 3.11

    1: *> \brief <b> ZGELST solves overdetermined or underdetermined systems for GE matrices using QR or LQ factorization with compact WY representation of Q.</b>
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZGELST + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgelst.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgelst.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgelst.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZGELST( TRANS, M, N, NRHS, A, LDA, B, LDB, WORK, LWORK,
   22: *                          INFO )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       CHARACTER          TRANS
   26: *       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * )
   30: *       ..
   31: *
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *>
   38: *> ZGELST solves overdetermined or underdetermined real linear systems
   39: *> involving an M-by-N matrix A, or its conjugate-transpose, using a QR
   40: *> or LQ factorization of A with compact WY representation of Q.
   41: *> It is assumed that A has full rank.
   42: *>
   43: *> The following options are provided:
   44: *>
   45: *> 1. If TRANS = 'N' and m >= n:  find the least squares solution of
   46: *>    an overdetermined system, i.e., solve the least squares problem
   47: *>                 minimize || B - A*X ||.
   48: *>
   49: *> 2. If TRANS = 'N' and m < n:  find the minimum norm solution of
   50: *>    an underdetermined system A * X = B.
   51: *>
   52: *> 3. If TRANS = 'C' and m >= n:  find the minimum norm solution of
   53: *>    an underdetermined system A**T * X = B.
   54: *>
   55: *> 4. If TRANS = 'C' and m < n:  find the least squares solution of
   56: *>    an overdetermined system, i.e., solve the least squares problem
   57: *>                 minimize || B - A**T * X ||.
   58: *>
   59: *> Several right hand side vectors b and solution vectors x can be
   60: *> handled in a single call; they are stored as the columns of the
   61: *> M-by-NRHS right hand side matrix B and the N-by-NRHS solution
   62: *> matrix X.
   63: *> \endverbatim
   64: *
   65: *  Arguments:
   66: *  ==========
   67: *
   68: *> \param[in] TRANS
   69: *> \verbatim
   70: *>          TRANS is CHARACTER*1
   71: *>          = 'N': the linear system involves A;
   72: *>          = 'C': the linear system involves A**H.
   73: *> \endverbatim
   74: *>
   75: *> \param[in] M
   76: *> \verbatim
   77: *>          M is INTEGER
   78: *>          The number of rows of the matrix A.  M >= 0.
   79: *> \endverbatim
   80: *>
   81: *> \param[in] N
   82: *> \verbatim
   83: *>          N is INTEGER
   84: *>          The number of columns of the matrix A.  N >= 0.
   85: *> \endverbatim
   86: *>
   87: *> \param[in] NRHS
   88: *> \verbatim
   89: *>          NRHS is INTEGER
   90: *>          The number of right hand sides, i.e., the number of
   91: *>          columns of the matrices B and X. NRHS >=0.
   92: *> \endverbatim
   93: *>
   94: *> \param[in,out] A
   95: *> \verbatim
   96: *>          A is COMPLEX*16 array, dimension (LDA,N)
   97: *>          On entry, the M-by-N matrix A.
   98: *>          On exit,
   99: *>            if M >= N, A is overwritten by details of its QR
  100: *>                       factorization as returned by ZGEQRT;
  101: *>            if M <  N, A is overwritten by details of its LQ
  102: *>                       factorization as returned by ZGELQT.
  103: *> \endverbatim
  104: *>
  105: *> \param[in] LDA
  106: *> \verbatim
  107: *>          LDA is INTEGER
  108: *>          The leading dimension of the array A.  LDA >= max(1,M).
  109: *> \endverbatim
  110: *>
  111: *> \param[in,out] B
  112: *> \verbatim
  113: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
  114: *>          On entry, the matrix B of right hand side vectors, stored
  115: *>          columnwise; B is M-by-NRHS if TRANS = 'N', or N-by-NRHS
  116: *>          if TRANS = 'C'.
  117: *>          On exit, if INFO = 0, B is overwritten by the solution
  118: *>          vectors, stored columnwise:
  119: *>          if TRANS = 'N' and m >= n, rows 1 to n of B contain the least
  120: *>          squares solution vectors; the residual sum of squares for the
  121: *>          solution in each column is given by the sum of squares of
  122: *>          modulus of elements N+1 to M in that column;
  123: *>          if TRANS = 'N' and m < n, rows 1 to N of B contain the
  124: *>          minimum norm solution vectors;
  125: *>          if TRANS = 'C' and m >= n, rows 1 to M of B contain the
  126: *>          minimum norm solution vectors;
  127: *>          if TRANS = 'C' and m < n, rows 1 to M of B contain the
  128: *>          least squares solution vectors; the residual sum of squares
  129: *>          for the solution in each column is given by the sum of
  130: *>          squares of the modulus of elements M+1 to N in that column.
  131: *> \endverbatim
  132: *>
  133: *> \param[in] LDB
  134: *> \verbatim
  135: *>          LDB is INTEGER
  136: *>          The leading dimension of the array B. LDB >= MAX(1,M,N).
  137: *> \endverbatim
  138: *>
  139: *> \param[out] WORK
  140: *> \verbatim
  141: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
  142: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  143: *> \endverbatim
  144: *>
  145: *> \param[in] LWORK
  146: *> \verbatim
  147: *>          LWORK is INTEGER
  148: *>          The dimension of the array WORK.
  149: *>          LWORK >= max( 1, MN + max( MN, NRHS ) ).
  150: *>          For optimal performance,
  151: *>          LWORK >= max( 1, (MN + max( MN, NRHS ))*NB ).
  152: *>          where MN = min(M,N) and NB is the optimum block size.
  153: *>
  154: *>          If LWORK = -1, then a workspace query is assumed; the routine
  155: *>          only calculates the optimal size of the WORK array, returns
  156: *>          this value as the first entry of the WORK array, and no error
  157: *>          message related to LWORK is issued by XERBLA.
  158: *> \endverbatim
  159: *>
  160: *> \param[out] INFO
  161: *> \verbatim
  162: *>          INFO is INTEGER
  163: *>          = 0:  successful exit
  164: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  165: *>          > 0:  if INFO =  i, the i-th diagonal element of the
  166: *>                triangular factor of A is zero, so that A does not have
  167: *>                full rank; the least squares solution could not be
  168: *>                computed.
  169: *> \endverbatim
  170: *
  171: *  Authors:
  172: *  ========
  173: *
  174: *> \author Univ. of Tennessee
  175: *> \author Univ. of California Berkeley
  176: *> \author Univ. of Colorado Denver
  177: *> \author NAG Ltd.
  178: *
  179: *> \ingroup complex16GEsolve
  180: *
  181: *> \par Contributors:
  182: *  ==================
  183: *>
  184: *> \verbatim
  185: *>
  186: *>  November 2022,  Igor Kozachenko,
  187: *>                  Computer Science Division,
  188: *>                  University of California, Berkeley
  189: *> \endverbatim
  190: *
  191: *  =====================================================================
  192:       SUBROUTINE ZGELST( TRANS, M, N, NRHS, A, LDA, B, LDB, WORK, LWORK,
  193:      $                   INFO )
  194: *
  195: *  -- LAPACK driver routine --
  196: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  197: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  198: *
  199: *     .. Scalar Arguments ..
  200:       CHARACTER          TRANS
  201:       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS
  202: *     ..
  203: *     .. Array Arguments ..
  204:       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * )
  205: *     ..
  206: *
  207: *  =====================================================================
  208: *
  209: *     .. Parameters ..
  210:       DOUBLE PRECISION   ZERO, ONE
  211:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  212:       COMPLEX*16         CZERO
  213:       PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ) )
  214: *     ..
  215: *     .. Local Scalars ..
  216:       LOGICAL            LQUERY, TPSD
  217:       INTEGER            BROW, I, IASCL, IBSCL, J, LWOPT, MN, MNNRHS,
  218:      $                   NB, NBMIN, SCLLEN
  219:       DOUBLE PRECISION   ANRM, BIGNUM, BNRM, SMLNUM
  220: *     ..
  221: *     .. Local Arrays ..
  222:       DOUBLE PRECISION   RWORK( 1 )
  223: *     ..
  224: *     .. External Functions ..
  225:       LOGICAL            LSAME
  226:       INTEGER            ILAENV
  227:       DOUBLE PRECISION   DLAMCH, ZLANGE
  228:       EXTERNAL           LSAME, ILAENV, DLAMCH, ZLANGE
  229: *     ..
  230: *     .. External Subroutines ..
  231:       EXTERNAL           ZGELQT, ZGEQRT, ZGEMLQT, ZGEMQRT, DLABAD,
  232:      $                   ZLASCL, ZLASET, ZTRTRS, XERBLA
  233: *     ..
  234: *     .. Intrinsic Functions ..
  235:       INTRINSIC          DBLE, MAX, MIN
  236: *     ..
  237: *     .. Executable Statements ..
  238: *
  239: *     Test the input arguments.
  240: *
  241:       INFO = 0
  242:       MN = MIN( M, N )
  243:       LQUERY = ( LWORK.EQ.-1 )
  244:       IF( .NOT.( LSAME( TRANS, 'N' ) .OR. LSAME( TRANS, 'C' ) ) ) THEN
  245:          INFO = -1
  246:       ELSE IF( M.LT.0 ) THEN
  247:          INFO = -2
  248:       ELSE IF( N.LT.0 ) THEN
  249:          INFO = -3
  250:       ELSE IF( NRHS.LT.0 ) THEN
  251:          INFO = -4
  252:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  253:          INFO = -6
  254:       ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN
  255:          INFO = -8
  256:       ELSE IF( LWORK.LT.MAX( 1, MN+MAX( MN, NRHS ) ) .AND. .NOT.LQUERY )
  257:      $          THEN
  258:          INFO = -10
  259:       END IF
  260: *
  261: *     Figure out optimal block size and optimal workspace size
  262: *
  263:       IF( INFO.EQ.0 .OR. INFO.EQ.-10 ) THEN
  264: *
  265:          TPSD = .TRUE.
  266:          IF( LSAME( TRANS, 'N' ) )
  267:      $      TPSD = .FALSE.
  268: *
  269:          NB = ILAENV( 1, 'ZGELST', ' ', M, N, -1, -1 )
  270: *
  271:          MNNRHS = MAX( MN, NRHS )
  272:          LWOPT = MAX( 1, (MN+MNNRHS)*NB )
  273:          WORK( 1 ) = DBLE( LWOPT )
  274: *
  275:       END IF
  276: *
  277:       IF( INFO.NE.0 ) THEN
  278:          CALL XERBLA( 'ZGELST ', -INFO )
  279:          RETURN
  280:       ELSE IF( LQUERY ) THEN
  281:          RETURN
  282:       END IF
  283: *
  284: *     Quick return if possible
  285: *
  286:       IF( MIN( M, N, NRHS ).EQ.0 ) THEN
  287:          CALL ZLASET( 'Full', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB )
  288:          WORK( 1 ) = DBLE( LWOPT )
  289:          RETURN
  290:       END IF
  291: *
  292: *     *GEQRT and *GELQT routines cannot accept NB larger than min(M,N)
  293: *
  294:       IF( NB.GT.MN ) NB = MN
  295: *
  296: *     Determine the block size from the supplied LWORK
  297: *     ( at this stage we know that LWORK >= (minimum required workspace,
  298: *     but it may be less than optimal)
  299: *
  300:       NB = MIN( NB, LWORK/( MN + MNNRHS ) )
  301: *
  302: *     The minimum value of NB, when blocked code is used
  303: *
  304:       NBMIN = MAX( 2, ILAENV( 2, 'ZGELST', ' ', M, N, -1, -1 ) )
  305: *
  306:       IF( NB.LT.NBMIN ) THEN
  307:          NB = 1
  308:       END IF
  309: *
  310: *     Get machine parameters
  311: *
  312:       SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'P' )
  313:       BIGNUM = ONE / SMLNUM
  314:       CALL DLABAD( SMLNUM, BIGNUM )
  315: *
  316: *     Scale A, B if max element outside range [SMLNUM,BIGNUM]
  317: *
  318:       ANRM = ZLANGE( 'M', M, N, A, LDA, RWORK )
  319:       IASCL = 0
  320:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
  321: *
  322: *        Scale matrix norm up to SMLNUM
  323: *
  324:          CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
  325:          IASCL = 1
  326:       ELSE IF( ANRM.GT.BIGNUM ) THEN
  327: *
  328: *        Scale matrix norm down to BIGNUM
  329: *
  330:          CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
  331:          IASCL = 2
  332:       ELSE IF( ANRM.EQ.ZERO ) THEN
  333: *
  334: *        Matrix all zero. Return zero solution.
  335: *
  336:          CALL ZLASET( 'Full', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB )
  337:          WORK( 1 ) = DBLE( LWOPT )
  338:          RETURN
  339:       END IF
  340: *
  341:       BROW = M
  342:       IF( TPSD )
  343:      $   BROW = N
  344:       BNRM = ZLANGE( 'M', BROW, NRHS, B, LDB, RWORK )
  345:       IBSCL = 0
  346:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
  347: *
  348: *        Scale matrix norm up to SMLNUM
  349: *
  350:          CALL ZLASCL( 'G', 0, 0, BNRM, SMLNUM, BROW, NRHS, B, LDB,
  351:      $                INFO )
  352:          IBSCL = 1
  353:       ELSE IF( BNRM.GT.BIGNUM ) THEN
  354: *
  355: *        Scale matrix norm down to BIGNUM
  356: *
  357:          CALL ZLASCL( 'G', 0, 0, BNRM, BIGNUM, BROW, NRHS, B, LDB,
  358:      $                INFO )
  359:          IBSCL = 2
  360:       END IF
  361: *
  362:       IF( M.GE.N ) THEN
  363: *
  364: *        M > N:
  365: *        Compute the blocked QR factorization of A,
  366: *        using the compact WY representation of Q,
  367: *        workspace at least N, optimally N*NB.
  368: *
  369:          CALL ZGEQRT( M, N, NB, A, LDA, WORK( 1 ), NB,
  370:      $                WORK( MN*NB+1 ), INFO )
  371: *
  372:          IF( .NOT.TPSD ) THEN
  373: *
  374: *           M > N, A is not transposed:
  375: *           Overdetermined system of equations,
  376: *           least-squares problem, min || A * X - B ||.
  377: *
  378: *           Compute B(1:M,1:NRHS) := Q**T * B(1:M,1:NRHS),
  379: *           using the compact WY representation of Q,
  380: *           workspace at least NRHS, optimally NRHS*NB.
  381: *
  382:             CALL ZGEMQRT( 'Left', 'Conjugate transpose', M, NRHS, N, NB,
  383:      $                    A, LDA, WORK( 1 ), NB, B, LDB,
  384:      $                    WORK( MN*NB+1 ), INFO )
  385: *
  386: *           Compute B(1:N,1:NRHS) := inv(R) * B(1:N,1:NRHS)
  387: *
  388:             CALL ZTRTRS( 'Upper', 'No transpose', 'Non-unit', N, NRHS,
  389:      $                   A, LDA, B, LDB, INFO )
  390: *
  391:             IF( INFO.GT.0 ) THEN
  392:                RETURN
  393:             END IF
  394: *
  395:             SCLLEN = N
  396: *
  397:          ELSE
  398: *
  399: *           M > N, A is transposed:
  400: *           Underdetermined system of equations,
  401: *           minimum norm solution of A**T * X = B.
  402: *
  403: *           Compute B := inv(R**T) * B in two row blocks of B.
  404: *
  405: *           Block 1: B(1:N,1:NRHS) := inv(R**T) * B(1:N,1:NRHS)
  406: *
  407:             CALL ZTRTRS( 'Upper', 'Conjugate transpose', 'Non-unit',
  408:      $                   N, NRHS, A, LDA, B, LDB, INFO )
  409: *
  410:             IF( INFO.GT.0 ) THEN
  411:                RETURN
  412:             END IF
  413: *
  414: *           Block 2: Zero out all rows below the N-th row in B:
  415: *           B(N+1:M,1:NRHS) = ZERO
  416: *
  417:             DO  J = 1, NRHS
  418:                DO I = N + 1, M
  419:                   B( I, J ) = ZERO
  420:                END DO
  421:             END DO
  422: *
  423: *           Compute B(1:M,1:NRHS) := Q(1:N,:) * B(1:N,1:NRHS),
  424: *           using the compact WY representation of Q,
  425: *           workspace at least NRHS, optimally NRHS*NB.
  426: *
  427:             CALL ZGEMQRT( 'Left', 'No transpose', M, NRHS, N, NB,
  428:      $                    A, LDA, WORK( 1 ), NB, B, LDB,
  429:      $                    WORK( MN*NB+1 ), INFO )
  430: *
  431:             SCLLEN = M
  432: *
  433:          END IF
  434: *
  435:       ELSE
  436: *
  437: *        M < N:
  438: *        Compute the blocked LQ factorization of A,
  439: *        using the compact WY representation of Q,
  440: *        workspace at least M, optimally M*NB.
  441: *
  442:          CALL ZGELQT( M, N, NB, A, LDA, WORK( 1 ), NB,
  443:      $                WORK( MN*NB+1 ), INFO )
  444: *
  445:          IF( .NOT.TPSD ) THEN
  446: *
  447: *           M < N, A is not transposed:
  448: *           Underdetermined system of equations,
  449: *           minimum norm solution of A * X = B.
  450: *
  451: *           Compute B := inv(L) * B in two row blocks of B.
  452: *
  453: *           Block 1: B(1:M,1:NRHS) := inv(L) * B(1:M,1:NRHS)
  454: *
  455:             CALL ZTRTRS( 'Lower', 'No transpose', 'Non-unit', M, NRHS,
  456:      $                   A, LDA, B, LDB, INFO )
  457: *
  458:             IF( INFO.GT.0 ) THEN
  459:                RETURN
  460:             END IF
  461: *
  462: *           Block 2: Zero out all rows below the M-th row in B:
  463: *           B(M+1:N,1:NRHS) = ZERO
  464: *
  465:             DO J = 1, NRHS
  466:                DO I = M + 1, N
  467:                   B( I, J ) = ZERO
  468:                END DO
  469:             END DO
  470: *
  471: *           Compute B(1:N,1:NRHS) := Q(1:N,:)**T * B(1:M,1:NRHS),
  472: *           using the compact WY representation of Q,
  473: *           workspace at least NRHS, optimally NRHS*NB.
  474: *
  475:             CALL ZGEMLQT( 'Left', 'Conjugate transpose', N, NRHS, M, NB,
  476:      $                   A, LDA, WORK( 1 ), NB, B, LDB,
  477:      $                   WORK( MN*NB+1 ), INFO )
  478: *
  479:             SCLLEN = N
  480: *
  481:          ELSE
  482: *
  483: *           M < N, A is transposed:
  484: *           Overdetermined system of equations,
  485: *           least-squares problem, min || A**T * X - B ||.
  486: *
  487: *           Compute B(1:N,1:NRHS) := Q * B(1:N,1:NRHS),
  488: *           using the compact WY representation of Q,
  489: *           workspace at least NRHS, optimally NRHS*NB.
  490: *
  491:             CALL ZGEMLQT( 'Left', 'No transpose', N, NRHS, M, NB,
  492:      $                    A, LDA, WORK( 1 ), NB, B, LDB,
  493:      $                    WORK( MN*NB+1), INFO )
  494: *
  495: *           Compute B(1:M,1:NRHS) := inv(L**T) * B(1:M,1:NRHS)
  496: *
  497:             CALL ZTRTRS( 'Lower', 'Conjugate transpose', 'Non-unit',
  498:      $                   M, NRHS, A, LDA, B, LDB, INFO )
  499: *
  500:             IF( INFO.GT.0 ) THEN
  501:                RETURN
  502:             END IF
  503: *
  504:             SCLLEN = M
  505: *
  506:          END IF
  507: *
  508:       END IF
  509: *
  510: *     Undo scaling
  511: *
  512:       IF( IASCL.EQ.1 ) THEN
  513:          CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, SCLLEN, NRHS, B, LDB,
  514:      $                INFO )
  515:       ELSE IF( IASCL.EQ.2 ) THEN
  516:          CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, SCLLEN, NRHS, B, LDB,
  517:      $                INFO )
  518:       END IF
  519:       IF( IBSCL.EQ.1 ) THEN
  520:          CALL ZLASCL( 'G', 0, 0, SMLNUM, BNRM, SCLLEN, NRHS, B, LDB,
  521:      $                INFO )
  522:       ELSE IF( IBSCL.EQ.2 ) THEN
  523:          CALL ZLASCL( 'G', 0, 0, BIGNUM, BNRM, SCLLEN, NRHS, B, LDB,
  524:      $                INFO )
  525:       END IF
  526: *
  527:       WORK( 1 ) = DBLE( LWOPT )
  528: *
  529:       RETURN
  530: *
  531: *     End of ZGELST
  532: *
  533:       END

CVSweb interface <joel.bertrand@systella.fr>