File:  [local] / rpl / lapack / lapack / zgelss.f
Revision 1.14: download - view: text, annotated - select for diffs - revision graph
Sat Aug 27 15:34:45 2016 UTC (7 years, 8 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_25, HEAD
Cohérence Lapack.

    1: *> \brief <b> ZGELSS solves overdetermined or underdetermined systems for GE matrices</b>
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download ZGELSS + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgelss.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgelss.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgelss.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZGELSS( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK,
   22: *                          WORK, LWORK, RWORK, INFO )
   23:    24: *       .. Scalar Arguments ..
   25: *       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
   26: *       DOUBLE PRECISION   RCOND
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       DOUBLE PRECISION   RWORK( * ), S( * )
   30: *       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * )
   31: *       ..
   32: *  
   33: *
   34: *> \par Purpose:
   35: *  =============
   36: *>
   37: *> \verbatim
   38: *>
   39: *> ZGELSS computes the minimum norm solution to a complex linear
   40: *> least squares problem:
   41: *>
   42: *> Minimize 2-norm(| b - A*x |).
   43: *>
   44: *> using the singular value decomposition (SVD) of A. A is an M-by-N
   45: *> matrix which may be rank-deficient.
   46: *>
   47: *> Several right hand side vectors b and solution vectors x can be
   48: *> handled in a single call; they are stored as the columns of the
   49: *> M-by-NRHS right hand side matrix B and the N-by-NRHS solution matrix
   50: *> X.
   51: *>
   52: *> The effective rank of A is determined by treating as zero those
   53: *> singular values which are less than RCOND times the largest singular
   54: *> value.
   55: *> \endverbatim
   56: *
   57: *  Arguments:
   58: *  ==========
   59: *
   60: *> \param[in] M
   61: *> \verbatim
   62: *>          M is INTEGER
   63: *>          The number of rows of the matrix A. M >= 0.
   64: *> \endverbatim
   65: *>
   66: *> \param[in] N
   67: *> \verbatim
   68: *>          N is INTEGER
   69: *>          The number of columns of the matrix A. N >= 0.
   70: *> \endverbatim
   71: *>
   72: *> \param[in] NRHS
   73: *> \verbatim
   74: *>          NRHS is INTEGER
   75: *>          The number of right hand sides, i.e., the number of columns
   76: *>          of the matrices B and X. NRHS >= 0.
   77: *> \endverbatim
   78: *>
   79: *> \param[in,out] A
   80: *> \verbatim
   81: *>          A is COMPLEX*16 array, dimension (LDA,N)
   82: *>          On entry, the M-by-N matrix A.
   83: *>          On exit, the first min(m,n) rows of A are overwritten with
   84: *>          its right singular vectors, stored rowwise.
   85: *> \endverbatim
   86: *>
   87: *> \param[in] LDA
   88: *> \verbatim
   89: *>          LDA is INTEGER
   90: *>          The leading dimension of the array A. LDA >= max(1,M).
   91: *> \endverbatim
   92: *>
   93: *> \param[in,out] B
   94: *> \verbatim
   95: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
   96: *>          On entry, the M-by-NRHS right hand side matrix B.
   97: *>          On exit, B is overwritten by the N-by-NRHS solution matrix X.
   98: *>          If m >= n and RANK = n, the residual sum-of-squares for
   99: *>          the solution in the i-th column is given by the sum of
  100: *>          squares of the modulus of elements n+1:m in that column.
  101: *> \endverbatim
  102: *>
  103: *> \param[in] LDB
  104: *> \verbatim
  105: *>          LDB is INTEGER
  106: *>          The leading dimension of the array B.  LDB >= max(1,M,N).
  107: *> \endverbatim
  108: *>
  109: *> \param[out] S
  110: *> \verbatim
  111: *>          S is DOUBLE PRECISION array, dimension (min(M,N))
  112: *>          The singular values of A in decreasing order.
  113: *>          The condition number of A in the 2-norm = S(1)/S(min(m,n)).
  114: *> \endverbatim
  115: *>
  116: *> \param[in] RCOND
  117: *> \verbatim
  118: *>          RCOND is DOUBLE PRECISION
  119: *>          RCOND is used to determine the effective rank of A.
  120: *>          Singular values S(i) <= RCOND*S(1) are treated as zero.
  121: *>          If RCOND < 0, machine precision is used instead.
  122: *> \endverbatim
  123: *>
  124: *> \param[out] RANK
  125: *> \verbatim
  126: *>          RANK is INTEGER
  127: *>          The effective rank of A, i.e., the number of singular values
  128: *>          which are greater than RCOND*S(1).
  129: *> \endverbatim
  130: *>
  131: *> \param[out] WORK
  132: *> \verbatim
  133: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
  134: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  135: *> \endverbatim
  136: *>
  137: *> \param[in] LWORK
  138: *> \verbatim
  139: *>          LWORK is INTEGER
  140: *>          The dimension of the array WORK. LWORK >= 1, and also:
  141: *>          LWORK >=  2*min(M,N) + max(M,N,NRHS)
  142: *>          For good performance, LWORK should generally be larger.
  143: *>
  144: *>          If LWORK = -1, then a workspace query is assumed; the routine
  145: *>          only calculates the optimal size of the WORK array, returns
  146: *>          this value as the first entry of the WORK array, and no error
  147: *>          message related to LWORK is issued by XERBLA.
  148: *> \endverbatim
  149: *>
  150: *> \param[out] RWORK
  151: *> \verbatim
  152: *>          RWORK is DOUBLE PRECISION array, dimension (5*min(M,N))
  153: *> \endverbatim
  154: *>
  155: *> \param[out] INFO
  156: *> \verbatim
  157: *>          INFO is INTEGER
  158: *>          = 0:  successful exit
  159: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
  160: *>          > 0:  the algorithm for computing the SVD failed to converge;
  161: *>                if INFO = i, i off-diagonal elements of an intermediate
  162: *>                bidiagonal form did not converge to zero.
  163: *> \endverbatim
  164: *
  165: *  Authors:
  166: *  ========
  167: *
  168: *> \author Univ. of Tennessee 
  169: *> \author Univ. of California Berkeley 
  170: *> \author Univ. of Colorado Denver 
  171: *> \author NAG Ltd. 
  172: *
  173: *> \date June 2016
  174: *
  175: *> \ingroup complex16GEsolve
  176: *
  177: *  =====================================================================
  178:       SUBROUTINE ZGELSS( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK,
  179:      $                   WORK, LWORK, RWORK, INFO )
  180: *
  181: *  -- LAPACK driver routine (version 3.6.1) --
  182: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  183: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  184: *     June 2016
  185: *
  186: *     .. Scalar Arguments ..
  187:       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
  188:       DOUBLE PRECISION   RCOND
  189: *     ..
  190: *     .. Array Arguments ..
  191:       DOUBLE PRECISION   RWORK( * ), S( * )
  192:       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * )
  193: *     ..
  194: *
  195: *  =====================================================================
  196: *
  197: *     .. Parameters ..
  198:       DOUBLE PRECISION   ZERO, ONE
  199:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  200:       COMPLEX*16         CZERO, CONE
  201:       PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
  202:      $                   CONE = ( 1.0D+0, 0.0D+0 ) )
  203: *     ..
  204: *     .. Local Scalars ..
  205:       LOGICAL            LQUERY
  206:       INTEGER            BL, CHUNK, I, IASCL, IBSCL, IE, IL, IRWORK,
  207:      $                   ITAU, ITAUP, ITAUQ, IWORK, LDWORK, MAXMN,
  208:      $                   MAXWRK, MINMN, MINWRK, MM, MNTHR
  209:       INTEGER            LWORK_ZGEQRF, LWORK_ZUNMQR, LWORK_ZGEBRD,
  210:      $                   LWORK_ZUNMBR, LWORK_ZUNGBR, LWORK_ZUNMLQ,
  211:      $                   LWORK_ZGELQF
  212:       DOUBLE PRECISION   ANRM, BIGNUM, BNRM, EPS, SFMIN, SMLNUM, THR
  213: *     ..
  214: *     .. Local Arrays ..
  215:       COMPLEX*16         DUM( 1 )
  216: *     ..
  217: *     .. External Subroutines ..
  218:       EXTERNAL           DLABAD, DLASCL, DLASET, XERBLA, ZBDSQR, ZCOPY,
  219:      $                   ZDRSCL, ZGEBRD, ZGELQF, ZGEMM, ZGEMV, ZGEQRF,
  220:      $                   ZLACPY, ZLASCL, ZLASET, ZUNGBR, ZUNMBR, ZUNMLQ,
  221:      $                   ZUNMQR
  222: *     ..
  223: *     .. External Functions ..
  224:       INTEGER            ILAENV
  225:       DOUBLE PRECISION   DLAMCH, ZLANGE
  226:       EXTERNAL           ILAENV, DLAMCH, ZLANGE
  227: *     ..
  228: *     .. Intrinsic Functions ..
  229:       INTRINSIC          MAX, MIN
  230: *     ..
  231: *     .. Executable Statements ..
  232: *
  233: *     Test the input arguments
  234: *
  235:       INFO = 0
  236:       MINMN = MIN( M, N )
  237:       MAXMN = MAX( M, N )
  238:       LQUERY = ( LWORK.EQ.-1 )
  239:       IF( M.LT.0 ) THEN
  240:          INFO = -1
  241:       ELSE IF( N.LT.0 ) THEN
  242:          INFO = -2
  243:       ELSE IF( NRHS.LT.0 ) THEN
  244:          INFO = -3
  245:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  246:          INFO = -5
  247:       ELSE IF( LDB.LT.MAX( 1, MAXMN ) ) THEN
  248:          INFO = -7
  249:       END IF
  250: *
  251: *     Compute workspace
  252: *      (Note: Comments in the code beginning "Workspace:" describe the
  253: *       minimal amount of workspace needed at that point in the code,
  254: *       as well as the preferred amount for good performance.
  255: *       CWorkspace refers to complex workspace, and RWorkspace refers
  256: *       to real workspace. NB refers to the optimal block size for the
  257: *       immediately following subroutine, as returned by ILAENV.)
  258: *
  259:       IF( INFO.EQ.0 ) THEN
  260:          MINWRK = 1
  261:          MAXWRK = 1
  262:          IF( MINMN.GT.0 ) THEN
  263:             MM = M
  264:             MNTHR = ILAENV( 6, 'ZGELSS', ' ', M, N, NRHS, -1 )
  265:             IF( M.GE.N .AND. M.GE.MNTHR ) THEN
  266: *
  267: *              Path 1a - overdetermined, with many more rows than
  268: *                        columns
  269: *
  270: *              Compute space needed for ZGEQRF
  271:                CALL ZGEQRF( M, N, A, LDA, DUM(1), DUM(1), -1, INFO )
  272:                LWORK_ZGEQRF=DUM(1)
  273: *              Compute space needed for ZUNMQR
  274:                CALL ZUNMQR( 'L', 'C', M, NRHS, N, A, LDA, DUM(1), B,
  275:      $                   LDB, DUM(1), -1, INFO )
  276:                LWORK_ZUNMQR=DUM(1)
  277:                MM = N
  278:                MAXWRK = MAX( MAXWRK, N + N*ILAENV( 1, 'ZGEQRF', ' ', M,
  279:      $                       N, -1, -1 ) )
  280:                MAXWRK = MAX( MAXWRK, N + NRHS*ILAENV( 1, 'ZUNMQR', 'LC',
  281:      $                       M, NRHS, N, -1 ) )
  282:             END IF
  283:             IF( M.GE.N ) THEN
  284: *
  285: *              Path 1 - overdetermined or exactly determined
  286: *
  287: *              Compute space needed for ZGEBRD
  288:                CALL ZGEBRD( MM, N, A, LDA, S, S, DUM(1), DUM(1), DUM(1),
  289:      $                      -1, INFO )
  290:                LWORK_ZGEBRD=DUM(1)
  291: *              Compute space needed for ZUNMBR
  292:                CALL ZUNMBR( 'Q', 'L', 'C', MM, NRHS, N, A, LDA, DUM(1),
  293:      $                B, LDB, DUM(1), -1, INFO )
  294:                LWORK_ZUNMBR=DUM(1)
  295: *              Compute space needed for ZUNGBR
  296:                CALL ZUNGBR( 'P', N, N, N, A, LDA, DUM(1),
  297:      $                   DUM(1), -1, INFO )
  298:                LWORK_ZUNGBR=DUM(1)
  299: *              Compute total workspace needed 
  300:                MAXWRK = MAX( MAXWRK, 2*N + LWORK_ZGEBRD )
  301:                MAXWRK = MAX( MAXWRK, 2*N + LWORK_ZUNMBR )
  302:                MAXWRK = MAX( MAXWRK, 2*N + LWORK_ZUNGBR )
  303:                MAXWRK = MAX( MAXWRK, N*NRHS )
  304:                MINWRK = 2*N + MAX( NRHS, M )
  305:             END IF
  306:             IF( N.GT.M ) THEN
  307:                MINWRK = 2*M + MAX( NRHS, N )
  308:                IF( N.GE.MNTHR ) THEN
  309: *
  310: *                 Path 2a - underdetermined, with many more columns
  311: *                 than rows
  312: *
  313: *                 Compute space needed for ZGELQF
  314:                   CALL ZGELQF( M, N, A, LDA, DUM(1), DUM(1),
  315:      $                -1, INFO )
  316:                   LWORK_ZGELQF=DUM(1)
  317: *                 Compute space needed for ZGEBRD
  318:                   CALL ZGEBRD( M, M, A, LDA, S, S, DUM(1), DUM(1),
  319:      $                         DUM(1), -1, INFO )
  320:                   LWORK_ZGEBRD=DUM(1)
  321: *                 Compute space needed for ZUNMBR
  322:                   CALL ZUNMBR( 'Q', 'L', 'C', M, NRHS, N, A, LDA, 
  323:      $                DUM(1), B, LDB, DUM(1), -1, INFO )
  324:                   LWORK_ZUNMBR=DUM(1)
  325: *                 Compute space needed for ZUNGBR
  326:                   CALL ZUNGBR( 'P', M, M, M, A, LDA, DUM(1),
  327:      $                   DUM(1), -1, INFO )
  328:                   LWORK_ZUNGBR=DUM(1)
  329: *                 Compute space needed for ZUNMLQ
  330:                   CALL ZUNMLQ( 'L', 'C', N, NRHS, M, A, LDA, DUM(1),
  331:      $                 B, LDB, DUM(1), -1, INFO )
  332:                   LWORK_ZUNMLQ=DUM(1)
  333: *                 Compute total workspace needed 
  334:                   MAXWRK = M + LWORK_ZGELQF
  335:                   MAXWRK = MAX( MAXWRK, 3*M + M*M + LWORK_ZGEBRD )
  336:                   MAXWRK = MAX( MAXWRK, 3*M + M*M + LWORK_ZUNMBR )
  337:                   MAXWRK = MAX( MAXWRK, 3*M + M*M + LWORK_ZUNGBR )
  338:                   IF( NRHS.GT.1 ) THEN
  339:                      MAXWRK = MAX( MAXWRK, M*M + M + M*NRHS )
  340:                   ELSE
  341:                      MAXWRK = MAX( MAXWRK, M*M + 2*M )
  342:                   END IF
  343:                   MAXWRK = MAX( MAXWRK, M + LWORK_ZUNMLQ )
  344:                ELSE
  345: *
  346: *                 Path 2 - underdetermined
  347: *
  348: *                 Compute space needed for ZGEBRD
  349:                   CALL ZGEBRD( M, N, A, LDA, S, S, DUM(1), DUM(1),
  350:      $                         DUM(1), -1, INFO )
  351:                   LWORK_ZGEBRD=DUM(1)
  352: *                 Compute space needed for ZUNMBR
  353:                   CALL ZUNMBR( 'Q', 'L', 'C', M, NRHS, M, A, LDA, 
  354:      $                DUM(1), B, LDB, DUM(1), -1, INFO )
  355:                   LWORK_ZUNMBR=DUM(1)
  356: *                 Compute space needed for ZUNGBR
  357:                   CALL ZUNGBR( 'P', M, N, M, A, LDA, DUM(1),
  358:      $                   DUM(1), -1, INFO )
  359:                   LWORK_ZUNGBR=DUM(1)
  360:                   MAXWRK = 2*M + LWORK_ZGEBRD
  361:                   MAXWRK = MAX( MAXWRK, 2*M + LWORK_ZUNMBR )
  362:                   MAXWRK = MAX( MAXWRK, 2*M + LWORK_ZUNGBR )
  363:                   MAXWRK = MAX( MAXWRK, N*NRHS )
  364:                END IF
  365:             END IF
  366:             MAXWRK = MAX( MINWRK, MAXWRK )
  367:          END IF
  368:          WORK( 1 ) = MAXWRK
  369: *
  370:          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY )
  371:      $      INFO = -12
  372:       END IF
  373: *
  374:       IF( INFO.NE.0 ) THEN
  375:          CALL XERBLA( 'ZGELSS', -INFO )
  376:          RETURN
  377:       ELSE IF( LQUERY ) THEN
  378:          RETURN
  379:       END IF
  380: *
  381: *     Quick return if possible
  382: *
  383:       IF( M.EQ.0 .OR. N.EQ.0 ) THEN
  384:          RANK = 0
  385:          RETURN
  386:       END IF
  387: *
  388: *     Get machine parameters
  389: *
  390:       EPS = DLAMCH( 'P' )
  391:       SFMIN = DLAMCH( 'S' )
  392:       SMLNUM = SFMIN / EPS
  393:       BIGNUM = ONE / SMLNUM
  394:       CALL DLABAD( SMLNUM, BIGNUM )
  395: *
  396: *     Scale A if max element outside range [SMLNUM,BIGNUM]
  397: *
  398:       ANRM = ZLANGE( 'M', M, N, A, LDA, RWORK )
  399:       IASCL = 0
  400:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
  401: *
  402: *        Scale matrix norm up to SMLNUM
  403: *
  404:          CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
  405:          IASCL = 1
  406:       ELSE IF( ANRM.GT.BIGNUM ) THEN
  407: *
  408: *        Scale matrix norm down to BIGNUM
  409: *
  410:          CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
  411:          IASCL = 2
  412:       ELSE IF( ANRM.EQ.ZERO ) THEN
  413: *
  414: *        Matrix all zero. Return zero solution.
  415: *
  416:          CALL ZLASET( 'F', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB )
  417:          CALL DLASET( 'F', MINMN, 1, ZERO, ZERO, S, MINMN )
  418:          RANK = 0
  419:          GO TO 70
  420:       END IF
  421: *
  422: *     Scale B if max element outside range [SMLNUM,BIGNUM]
  423: *
  424:       BNRM = ZLANGE( 'M', M, NRHS, B, LDB, RWORK )
  425:       IBSCL = 0
  426:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
  427: *
  428: *        Scale matrix norm up to SMLNUM
  429: *
  430:          CALL ZLASCL( 'G', 0, 0, BNRM, SMLNUM, M, NRHS, B, LDB, INFO )
  431:          IBSCL = 1
  432:       ELSE IF( BNRM.GT.BIGNUM ) THEN
  433: *
  434: *        Scale matrix norm down to BIGNUM
  435: *
  436:          CALL ZLASCL( 'G', 0, 0, BNRM, BIGNUM, M, NRHS, B, LDB, INFO )
  437:          IBSCL = 2
  438:       END IF
  439: *
  440: *     Overdetermined case
  441: *
  442:       IF( M.GE.N ) THEN
  443: *
  444: *        Path 1 - overdetermined or exactly determined
  445: *
  446:          MM = M
  447:          IF( M.GE.MNTHR ) THEN
  448: *
  449: *           Path 1a - overdetermined, with many more rows than columns
  450: *
  451:             MM = N
  452:             ITAU = 1
  453:             IWORK = ITAU + N
  454: *
  455: *           Compute A=Q*R
  456: *           (CWorkspace: need 2*N, prefer N+N*NB)
  457: *           (RWorkspace: none)
  458: *
  459:             CALL ZGEQRF( M, N, A, LDA, WORK( ITAU ), WORK( IWORK ),
  460:      $                   LWORK-IWORK+1, INFO )
  461: *
  462: *           Multiply B by transpose(Q)
  463: *           (CWorkspace: need N+NRHS, prefer N+NRHS*NB)
  464: *           (RWorkspace: none)
  465: *
  466:             CALL ZUNMQR( 'L', 'C', M, NRHS, N, A, LDA, WORK( ITAU ), B,
  467:      $                   LDB, WORK( IWORK ), LWORK-IWORK+1, INFO )
  468: *
  469: *           Zero out below R
  470: *
  471:             IF( N.GT.1 )
  472:      $         CALL ZLASET( 'L', N-1, N-1, CZERO, CZERO, A( 2, 1 ),
  473:      $                      LDA )
  474:          END IF
  475: *
  476:          IE = 1
  477:          ITAUQ = 1
  478:          ITAUP = ITAUQ + N
  479:          IWORK = ITAUP + N
  480: *
  481: *        Bidiagonalize R in A
  482: *        (CWorkspace: need 2*N+MM, prefer 2*N+(MM+N)*NB)
  483: *        (RWorkspace: need N)
  484: *
  485:          CALL ZGEBRD( MM, N, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
  486:      $                WORK( ITAUP ), WORK( IWORK ), LWORK-IWORK+1,
  487:      $                INFO )
  488: *
  489: *        Multiply B by transpose of left bidiagonalizing vectors of R
  490: *        (CWorkspace: need 2*N+NRHS, prefer 2*N+NRHS*NB)
  491: *        (RWorkspace: none)
  492: *
  493:          CALL ZUNMBR( 'Q', 'L', 'C', MM, NRHS, N, A, LDA, WORK( ITAUQ ),
  494:      $                B, LDB, WORK( IWORK ), LWORK-IWORK+1, INFO )
  495: *
  496: *        Generate right bidiagonalizing vectors of R in A
  497: *        (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB)
  498: *        (RWorkspace: none)
  499: *
  500:          CALL ZUNGBR( 'P', N, N, N, A, LDA, WORK( ITAUP ),
  501:      $                WORK( IWORK ), LWORK-IWORK+1, INFO )
  502:          IRWORK = IE + N
  503: *
  504: *        Perform bidiagonal QR iteration
  505: *          multiply B by transpose of left singular vectors
  506: *          compute right singular vectors in A
  507: *        (CWorkspace: none)
  508: *        (RWorkspace: need BDSPAC)
  509: *
  510:          CALL ZBDSQR( 'U', N, N, 0, NRHS, S, RWORK( IE ), A, LDA, DUM,
  511:      $                1, B, LDB, RWORK( IRWORK ), INFO )
  512:          IF( INFO.NE.0 )
  513:      $      GO TO 70
  514: *
  515: *        Multiply B by reciprocals of singular values
  516: *
  517:          THR = MAX( RCOND*S( 1 ), SFMIN )
  518:          IF( RCOND.LT.ZERO )
  519:      $      THR = MAX( EPS*S( 1 ), SFMIN )
  520:          RANK = 0
  521:          DO 10 I = 1, N
  522:             IF( S( I ).GT.THR ) THEN
  523:                CALL ZDRSCL( NRHS, S( I ), B( I, 1 ), LDB )
  524:                RANK = RANK + 1
  525:             ELSE
  526:                CALL ZLASET( 'F', 1, NRHS, CZERO, CZERO, B( I, 1 ), LDB )
  527:             END IF
  528:    10    CONTINUE
  529: *
  530: *        Multiply B by right singular vectors
  531: *        (CWorkspace: need N, prefer N*NRHS)
  532: *        (RWorkspace: none)
  533: *
  534:          IF( LWORK.GE.LDB*NRHS .AND. NRHS.GT.1 ) THEN
  535:             CALL ZGEMM( 'C', 'N', N, NRHS, N, CONE, A, LDA, B, LDB,
  536:      $                  CZERO, WORK, LDB )
  537:             CALL ZLACPY( 'G', N, NRHS, WORK, LDB, B, LDB )
  538:          ELSE IF( NRHS.GT.1 ) THEN
  539:             CHUNK = LWORK / N
  540:             DO 20 I = 1, NRHS, CHUNK
  541:                BL = MIN( NRHS-I+1, CHUNK )
  542:                CALL ZGEMM( 'C', 'N', N, BL, N, CONE, A, LDA, B( 1, I ),
  543:      $                     LDB, CZERO, WORK, N )
  544:                CALL ZLACPY( 'G', N, BL, WORK, N, B( 1, I ), LDB )
  545:    20       CONTINUE
  546:          ELSE
  547:             CALL ZGEMV( 'C', N, N, CONE, A, LDA, B, 1, CZERO, WORK, 1 )
  548:             CALL ZCOPY( N, WORK, 1, B, 1 )
  549:          END IF
  550: *
  551:       ELSE IF( N.GE.MNTHR .AND. LWORK.GE.3*M+M*M+MAX( M, NRHS, N-2*M ) )
  552:      $          THEN
  553: *
  554: *        Underdetermined case, M much less than N
  555: *
  556: *        Path 2a - underdetermined, with many more columns than rows
  557: *        and sufficient workspace for an efficient algorithm
  558: *
  559:          LDWORK = M
  560:          IF( LWORK.GE.3*M+M*LDA+MAX( M, NRHS, N-2*M ) )
  561:      $      LDWORK = LDA
  562:          ITAU = 1
  563:          IWORK = M + 1
  564: *
  565: *        Compute A=L*Q
  566: *        (CWorkspace: need 2*M, prefer M+M*NB)
  567: *        (RWorkspace: none)
  568: *
  569:          CALL ZGELQF( M, N, A, LDA, WORK( ITAU ), WORK( IWORK ),
  570:      $                LWORK-IWORK+1, INFO )
  571:          IL = IWORK
  572: *
  573: *        Copy L to WORK(IL), zeroing out above it
  574: *
  575:          CALL ZLACPY( 'L', M, M, A, LDA, WORK( IL ), LDWORK )
  576:          CALL ZLASET( 'U', M-1, M-1, CZERO, CZERO, WORK( IL+LDWORK ),
  577:      $                LDWORK )
  578:          IE = 1
  579:          ITAUQ = IL + LDWORK*M
  580:          ITAUP = ITAUQ + M
  581:          IWORK = ITAUP + M
  582: *
  583: *        Bidiagonalize L in WORK(IL)
  584: *        (CWorkspace: need M*M+4*M, prefer M*M+3*M+2*M*NB)
  585: *        (RWorkspace: need M)
  586: *
  587:          CALL ZGEBRD( M, M, WORK( IL ), LDWORK, S, RWORK( IE ),
  588:      $                WORK( ITAUQ ), WORK( ITAUP ), WORK( IWORK ),
  589:      $                LWORK-IWORK+1, INFO )
  590: *
  591: *        Multiply B by transpose of left bidiagonalizing vectors of L
  592: *        (CWorkspace: need M*M+3*M+NRHS, prefer M*M+3*M+NRHS*NB)
  593: *        (RWorkspace: none)
  594: *
  595:          CALL ZUNMBR( 'Q', 'L', 'C', M, NRHS, M, WORK( IL ), LDWORK,
  596:      $                WORK( ITAUQ ), B, LDB, WORK( IWORK ),
  597:      $                LWORK-IWORK+1, INFO )
  598: *
  599: *        Generate right bidiagonalizing vectors of R in WORK(IL)
  600: *        (CWorkspace: need M*M+4*M-1, prefer M*M+3*M+(M-1)*NB)
  601: *        (RWorkspace: none)
  602: *
  603:          CALL ZUNGBR( 'P', M, M, M, WORK( IL ), LDWORK, WORK( ITAUP ),
  604:      $                WORK( IWORK ), LWORK-IWORK+1, INFO )
  605:          IRWORK = IE + M
  606: *
  607: *        Perform bidiagonal QR iteration, computing right singular
  608: *        vectors of L in WORK(IL) and multiplying B by transpose of
  609: *        left singular vectors
  610: *        (CWorkspace: need M*M)
  611: *        (RWorkspace: need BDSPAC)
  612: *
  613:          CALL ZBDSQR( 'U', M, M, 0, NRHS, S, RWORK( IE ), WORK( IL ),
  614:      $                LDWORK, A, LDA, B, LDB, RWORK( IRWORK ), INFO )
  615:          IF( INFO.NE.0 )
  616:      $      GO TO 70
  617: *
  618: *        Multiply B by reciprocals of singular values
  619: *
  620:          THR = MAX( RCOND*S( 1 ), SFMIN )
  621:          IF( RCOND.LT.ZERO )
  622:      $      THR = MAX( EPS*S( 1 ), SFMIN )
  623:          RANK = 0
  624:          DO 30 I = 1, M
  625:             IF( S( I ).GT.THR ) THEN
  626:                CALL ZDRSCL( NRHS, S( I ), B( I, 1 ), LDB )
  627:                RANK = RANK + 1
  628:             ELSE
  629:                CALL ZLASET( 'F', 1, NRHS, CZERO, CZERO, B( I, 1 ), LDB )
  630:             END IF
  631:    30    CONTINUE
  632:          IWORK = IL + M*LDWORK
  633: *
  634: *        Multiply B by right singular vectors of L in WORK(IL)
  635: *        (CWorkspace: need M*M+2*M, prefer M*M+M+M*NRHS)
  636: *        (RWorkspace: none)
  637: *
  638:          IF( LWORK.GE.LDB*NRHS+IWORK-1 .AND. NRHS.GT.1 ) THEN
  639:             CALL ZGEMM( 'C', 'N', M, NRHS, M, CONE, WORK( IL ), LDWORK,
  640:      $                  B, LDB, CZERO, WORK( IWORK ), LDB )
  641:             CALL ZLACPY( 'G', M, NRHS, WORK( IWORK ), LDB, B, LDB )
  642:          ELSE IF( NRHS.GT.1 ) THEN
  643:             CHUNK = ( LWORK-IWORK+1 ) / M
  644:             DO 40 I = 1, NRHS, CHUNK
  645:                BL = MIN( NRHS-I+1, CHUNK )
  646:                CALL ZGEMM( 'C', 'N', M, BL, M, CONE, WORK( IL ), LDWORK,
  647:      $                     B( 1, I ), LDB, CZERO, WORK( IWORK ), M )
  648:                CALL ZLACPY( 'G', M, BL, WORK( IWORK ), M, B( 1, I ),
  649:      $                      LDB )
  650:    40       CONTINUE
  651:          ELSE
  652:             CALL ZGEMV( 'C', M, M, CONE, WORK( IL ), LDWORK, B( 1, 1 ),
  653:      $                  1, CZERO, WORK( IWORK ), 1 )
  654:             CALL ZCOPY( M, WORK( IWORK ), 1, B( 1, 1 ), 1 )
  655:          END IF
  656: *
  657: *        Zero out below first M rows of B
  658: *
  659:          CALL ZLASET( 'F', N-M, NRHS, CZERO, CZERO, B( M+1, 1 ), LDB )
  660:          IWORK = ITAU + M
  661: *
  662: *        Multiply transpose(Q) by B
  663: *        (CWorkspace: need M+NRHS, prefer M+NHRS*NB)
  664: *        (RWorkspace: none)
  665: *
  666:          CALL ZUNMLQ( 'L', 'C', N, NRHS, M, A, LDA, WORK( ITAU ), B,
  667:      $                LDB, WORK( IWORK ), LWORK-IWORK+1, INFO )
  668: *
  669:       ELSE
  670: *
  671: *        Path 2 - remaining underdetermined cases
  672: *
  673:          IE = 1
  674:          ITAUQ = 1
  675:          ITAUP = ITAUQ + M
  676:          IWORK = ITAUP + M
  677: *
  678: *        Bidiagonalize A
  679: *        (CWorkspace: need 3*M, prefer 2*M+(M+N)*NB)
  680: *        (RWorkspace: need N)
  681: *
  682:          CALL ZGEBRD( M, N, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
  683:      $                WORK( ITAUP ), WORK( IWORK ), LWORK-IWORK+1,
  684:      $                INFO )
  685: *
  686: *        Multiply B by transpose of left bidiagonalizing vectors
  687: *        (CWorkspace: need 2*M+NRHS, prefer 2*M+NRHS*NB)
  688: *        (RWorkspace: none)
  689: *
  690:          CALL ZUNMBR( 'Q', 'L', 'C', M, NRHS, N, A, LDA, WORK( ITAUQ ),
  691:      $                B, LDB, WORK( IWORK ), LWORK-IWORK+1, INFO )
  692: *
  693: *        Generate right bidiagonalizing vectors in A
  694: *        (CWorkspace: need 3*M, prefer 2*M+M*NB)
  695: *        (RWorkspace: none)
  696: *
  697:          CALL ZUNGBR( 'P', M, N, M, A, LDA, WORK( ITAUP ),
  698:      $                WORK( IWORK ), LWORK-IWORK+1, INFO )
  699:          IRWORK = IE + M
  700: *
  701: *        Perform bidiagonal QR iteration,
  702: *           computing right singular vectors of A in A and
  703: *           multiplying B by transpose of left singular vectors
  704: *        (CWorkspace: none)
  705: *        (RWorkspace: need BDSPAC)
  706: *
  707:          CALL ZBDSQR( 'L', M, N, 0, NRHS, S, RWORK( IE ), A, LDA, DUM,
  708:      $                1, B, LDB, RWORK( IRWORK ), INFO )
  709:          IF( INFO.NE.0 )
  710:      $      GO TO 70
  711: *
  712: *        Multiply B by reciprocals of singular values
  713: *
  714:          THR = MAX( RCOND*S( 1 ), SFMIN )
  715:          IF( RCOND.LT.ZERO )
  716:      $      THR = MAX( EPS*S( 1 ), SFMIN )
  717:          RANK = 0
  718:          DO 50 I = 1, M
  719:             IF( S( I ).GT.THR ) THEN
  720:                CALL ZDRSCL( NRHS, S( I ), B( I, 1 ), LDB )
  721:                RANK = RANK + 1
  722:             ELSE
  723:                CALL ZLASET( 'F', 1, NRHS, CZERO, CZERO, B( I, 1 ), LDB )
  724:             END IF
  725:    50    CONTINUE
  726: *
  727: *        Multiply B by right singular vectors of A
  728: *        (CWorkspace: need N, prefer N*NRHS)
  729: *        (RWorkspace: none)
  730: *
  731:          IF( LWORK.GE.LDB*NRHS .AND. NRHS.GT.1 ) THEN
  732:             CALL ZGEMM( 'C', 'N', N, NRHS, M, CONE, A, LDA, B, LDB,
  733:      $                  CZERO, WORK, LDB )
  734:             CALL ZLACPY( 'G', N, NRHS, WORK, LDB, B, LDB )
  735:          ELSE IF( NRHS.GT.1 ) THEN
  736:             CHUNK = LWORK / N
  737:             DO 60 I = 1, NRHS, CHUNK
  738:                BL = MIN( NRHS-I+1, CHUNK )
  739:                CALL ZGEMM( 'C', 'N', N, BL, M, CONE, A, LDA, B( 1, I ),
  740:      $                     LDB, CZERO, WORK, N )
  741:                CALL ZLACPY( 'F', N, BL, WORK, N, B( 1, I ), LDB )
  742:    60       CONTINUE
  743:          ELSE
  744:             CALL ZGEMV( 'C', M, N, CONE, A, LDA, B, 1, CZERO, WORK, 1 )
  745:             CALL ZCOPY( N, WORK, 1, B, 1 )
  746:          END IF
  747:       END IF
  748: *
  749: *     Undo scaling
  750: *
  751:       IF( IASCL.EQ.1 ) THEN
  752:          CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, N, NRHS, B, LDB, INFO )
  753:          CALL DLASCL( 'G', 0, 0, SMLNUM, ANRM, MINMN, 1, S, MINMN,
  754:      $                INFO )
  755:       ELSE IF( IASCL.EQ.2 ) THEN
  756:          CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, N, NRHS, B, LDB, INFO )
  757:          CALL DLASCL( 'G', 0, 0, BIGNUM, ANRM, MINMN, 1, S, MINMN,
  758:      $                INFO )
  759:       END IF
  760:       IF( IBSCL.EQ.1 ) THEN
  761:          CALL ZLASCL( 'G', 0, 0, SMLNUM, BNRM, N, NRHS, B, LDB, INFO )
  762:       ELSE IF( IBSCL.EQ.2 ) THEN
  763:          CALL ZLASCL( 'G', 0, 0, BIGNUM, BNRM, N, NRHS, B, LDB, INFO )
  764:       END IF
  765:    70 CONTINUE
  766:       WORK( 1 ) = MAXWRK
  767:       RETURN
  768: *
  769: *     End of ZGELSS
  770: *
  771:       END

CVSweb interface <joel.bertrand@systella.fr>