Annotation of rpl/lapack/lapack/zgelss.f, revision 1.4

1.1       bertrand    1:       SUBROUTINE ZGELSS( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK,
                      2:      $                   WORK, LWORK, RWORK, INFO )
                      3: *
                      4: *  -- LAPACK driver routine (version 3.2) --
                      5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      7: *     November 2006
                      8: *
                      9: *     .. Scalar Arguments ..
                     10:       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
                     11:       DOUBLE PRECISION   RCOND
                     12: *     ..
                     13: *     .. Array Arguments ..
                     14:       DOUBLE PRECISION   RWORK( * ), S( * )
                     15:       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * )
                     16: *     ..
                     17: *
                     18: *  Purpose
                     19: *  =======
                     20: *
                     21: *  ZGELSS computes the minimum norm solution to a complex linear
                     22: *  least squares problem:
                     23: *
                     24: *  Minimize 2-norm(| b - A*x |).
                     25: *
                     26: *  using the singular value decomposition (SVD) of A. A is an M-by-N
                     27: *  matrix which may be rank-deficient.
                     28: *
                     29: *  Several right hand side vectors b and solution vectors x can be
                     30: *  handled in a single call; they are stored as the columns of the
                     31: *  M-by-NRHS right hand side matrix B and the N-by-NRHS solution matrix
                     32: *  X.
                     33: *
                     34: *  The effective rank of A is determined by treating as zero those
                     35: *  singular values which are less than RCOND times the largest singular
                     36: *  value.
                     37: *
                     38: *  Arguments
                     39: *  =========
                     40: *
                     41: *  M       (input) INTEGER
                     42: *          The number of rows of the matrix A. M >= 0.
                     43: *
                     44: *  N       (input) INTEGER
                     45: *          The number of columns of the matrix A. N >= 0.
                     46: *
                     47: *  NRHS    (input) INTEGER
                     48: *          The number of right hand sides, i.e., the number of columns
                     49: *          of the matrices B and X. NRHS >= 0.
                     50: *
                     51: *  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
                     52: *          On entry, the M-by-N matrix A.
                     53: *          On exit, the first min(m,n) rows of A are overwritten with
                     54: *          its right singular vectors, stored rowwise.
                     55: *
                     56: *  LDA     (input) INTEGER
                     57: *          The leading dimension of the array A. LDA >= max(1,M).
                     58: *
                     59: *  B       (input/output) COMPLEX*16 array, dimension (LDB,NRHS)
                     60: *          On entry, the M-by-NRHS right hand side matrix B.
                     61: *          On exit, B is overwritten by the N-by-NRHS solution matrix X.
                     62: *          If m >= n and RANK = n, the residual sum-of-squares for
                     63: *          the solution in the i-th column is given by the sum of
                     64: *          squares of the modulus of elements n+1:m in that column.
                     65: *
                     66: *  LDB     (input) INTEGER
                     67: *          The leading dimension of the array B.  LDB >= max(1,M,N).
                     68: *
                     69: *  S       (output) DOUBLE PRECISION array, dimension (min(M,N))
                     70: *          The singular values of A in decreasing order.
                     71: *          The condition number of A in the 2-norm = S(1)/S(min(m,n)).
                     72: *
                     73: *  RCOND   (input) DOUBLE PRECISION
                     74: *          RCOND is used to determine the effective rank of A.
                     75: *          Singular values S(i) <= RCOND*S(1) are treated as zero.
                     76: *          If RCOND < 0, machine precision is used instead.
                     77: *
                     78: *  RANK    (output) INTEGER
                     79: *          The effective rank of A, i.e., the number of singular values
                     80: *          which are greater than RCOND*S(1).
                     81: *
                     82: *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
                     83: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                     84: *
                     85: *  LWORK   (input) INTEGER
                     86: *          The dimension of the array WORK. LWORK >= 1, and also:
                     87: *          LWORK >=  2*min(M,N) + max(M,N,NRHS)
                     88: *          For good performance, LWORK should generally be larger.
                     89: *
                     90: *          If LWORK = -1, then a workspace query is assumed; the routine
                     91: *          only calculates the optimal size of the WORK array, returns
                     92: *          this value as the first entry of the WORK array, and no error
                     93: *          message related to LWORK is issued by XERBLA.
                     94: *
                     95: *  RWORK   (workspace) DOUBLE PRECISION array, dimension (5*min(M,N))
                     96: *
                     97: *  INFO    (output) INTEGER
                     98: *          = 0:  successful exit
                     99: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
                    100: *          > 0:  the algorithm for computing the SVD failed to converge;
                    101: *                if INFO = i, i off-diagonal elements of an intermediate
                    102: *                bidiagonal form did not converge to zero.
                    103: *
                    104: *  =====================================================================
                    105: *
                    106: *     .. Parameters ..
                    107:       DOUBLE PRECISION   ZERO, ONE
                    108:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    109:       COMPLEX*16         CZERO, CONE
                    110:       PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
                    111:      $                   CONE = ( 1.0D+0, 0.0D+0 ) )
                    112: *     ..
                    113: *     .. Local Scalars ..
                    114:       LOGICAL            LQUERY
                    115:       INTEGER            BL, CHUNK, I, IASCL, IBSCL, IE, IL, IRWORK,
                    116:      $                   ITAU, ITAUP, ITAUQ, IWORK, LDWORK, MAXMN,
                    117:      $                   MAXWRK, MINMN, MINWRK, MM, MNTHR
                    118:       DOUBLE PRECISION   ANRM, BIGNUM, BNRM, EPS, SFMIN, SMLNUM, THR
                    119: *     ..
                    120: *     .. Local Arrays ..
                    121:       COMPLEX*16         VDUM( 1 )
                    122: *     ..
                    123: *     .. External Subroutines ..
                    124:       EXTERNAL           DLABAD, DLASCL, DLASET, XERBLA, ZBDSQR, ZCOPY,
                    125:      $                   ZDRSCL, ZGEBRD, ZGELQF, ZGEMM, ZGEMV, ZGEQRF,
                    126:      $                   ZLACPY, ZLASCL, ZLASET, ZUNGBR, ZUNMBR, ZUNMLQ,
                    127:      $                   ZUNMQR
                    128: *     ..
                    129: *     .. External Functions ..
                    130:       INTEGER            ILAENV
                    131:       DOUBLE PRECISION   DLAMCH, ZLANGE
                    132:       EXTERNAL           ILAENV, DLAMCH, ZLANGE
                    133: *     ..
                    134: *     .. Intrinsic Functions ..
                    135:       INTRINSIC          MAX, MIN
                    136: *     ..
                    137: *     .. Executable Statements ..
                    138: *
                    139: *     Test the input arguments
                    140: *
                    141:       INFO = 0
                    142:       MINMN = MIN( M, N )
                    143:       MAXMN = MAX( M, N )
                    144:       LQUERY = ( LWORK.EQ.-1 )
                    145:       IF( M.LT.0 ) THEN
                    146:          INFO = -1
                    147:       ELSE IF( N.LT.0 ) THEN
                    148:          INFO = -2
                    149:       ELSE IF( NRHS.LT.0 ) THEN
                    150:          INFO = -3
                    151:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
                    152:          INFO = -5
                    153:       ELSE IF( LDB.LT.MAX( 1, MAXMN ) ) THEN
                    154:          INFO = -7
                    155:       END IF
                    156: *
                    157: *     Compute workspace
                    158: *      (Note: Comments in the code beginning "Workspace:" describe the
                    159: *       minimal amount of workspace needed at that point in the code,
                    160: *       as well as the preferred amount for good performance.
                    161: *       CWorkspace refers to complex workspace, and RWorkspace refers
                    162: *       to real workspace. NB refers to the optimal block size for the
                    163: *       immediately following subroutine, as returned by ILAENV.)
                    164: *
                    165:       IF( INFO.EQ.0 ) THEN
                    166:          MINWRK = 1
                    167:          MAXWRK = 1
                    168:          IF( MINMN.GT.0 ) THEN
                    169:             MM = M
                    170:             MNTHR = ILAENV( 6, 'ZGELSS', ' ', M, N, NRHS, -1 )
                    171:             IF( M.GE.N .AND. M.GE.MNTHR ) THEN
                    172: *
                    173: *              Path 1a - overdetermined, with many more rows than
                    174: *                        columns
                    175: *
                    176:                MM = N
                    177:                MAXWRK = MAX( MAXWRK, N + N*ILAENV( 1, 'ZGEQRF', ' ', M,
                    178:      $                       N, -1, -1 ) )
                    179:                MAXWRK = MAX( MAXWRK, N + NRHS*ILAENV( 1, 'ZUNMQR', 'LC',
                    180:      $                       M, NRHS, N, -1 ) )
                    181:             END IF
                    182:             IF( M.GE.N ) THEN
                    183: *
                    184: *              Path 1 - overdetermined or exactly determined
                    185: *
                    186:                MAXWRK = MAX( MAXWRK, 2*N + ( MM + N )*ILAENV( 1,
                    187:      $                       'ZGEBRD', ' ', MM, N, -1, -1 ) )
                    188:                MAXWRK = MAX( MAXWRK, 2*N + NRHS*ILAENV( 1, 'ZUNMBR',
                    189:      $                       'QLC', MM, NRHS, N, -1 ) )
                    190:                MAXWRK = MAX( MAXWRK, 2*N + ( N - 1 )*ILAENV( 1,
                    191:      $                       'ZUNGBR', 'P', N, N, N, -1 ) )
                    192:                MAXWRK = MAX( MAXWRK, N*NRHS )
                    193:                MINWRK = 2*N + MAX( NRHS, M )
                    194:             END IF
                    195:             IF( N.GT.M ) THEN
                    196:                MINWRK = 2*M + MAX( NRHS, N )
                    197:                IF( N.GE.MNTHR ) THEN
                    198: *
                    199: *                 Path 2a - underdetermined, with many more columns
                    200: *                 than rows
                    201: *
                    202:                   MAXWRK = M + M*ILAENV( 1, 'ZGELQF', ' ', M, N, -1,
                    203:      $                     -1 )
                    204:                   MAXWRK = MAX( MAXWRK, 3*M + M*M + 2*M*ILAENV( 1,
                    205:      $                          'ZGEBRD', ' ', M, M, -1, -1 ) )
                    206:                   MAXWRK = MAX( MAXWRK, 3*M + M*M + NRHS*ILAENV( 1,
                    207:      $                          'ZUNMBR', 'QLC', M, NRHS, M, -1 ) )
                    208:                   MAXWRK = MAX( MAXWRK, 3*M + M*M + ( M - 1 )*ILAENV( 1,
                    209:      $                          'ZUNGBR', 'P', M, M, M, -1 ) )
                    210:                   IF( NRHS.GT.1 ) THEN
                    211:                      MAXWRK = MAX( MAXWRK, M*M + M + M*NRHS )
                    212:                   ELSE
                    213:                      MAXWRK = MAX( MAXWRK, M*M + 2*M )
                    214:                   END IF
                    215:                   MAXWRK = MAX( MAXWRK, M + NRHS*ILAENV( 1, 'ZUNMLQ',
                    216:      $                          'LC', N, NRHS, M, -1 ) )
                    217:                ELSE
                    218: *
                    219: *                 Path 2 - underdetermined
                    220: *
                    221:                   MAXWRK = 2*M + ( N + M )*ILAENV( 1, 'ZGEBRD', ' ', M,
                    222:      $                     N, -1, -1 )
                    223:                   MAXWRK = MAX( MAXWRK, 2*M + NRHS*ILAENV( 1, 'ZUNMBR',
                    224:      $                          'QLC', M, NRHS, M, -1 ) )
                    225:                   MAXWRK = MAX( MAXWRK, 2*M + M*ILAENV( 1, 'ZUNGBR',
                    226:      $                          'P', M, N, M, -1 ) )
                    227:                   MAXWRK = MAX( MAXWRK, N*NRHS )
                    228:                END IF
                    229:             END IF
                    230:             MAXWRK = MAX( MINWRK, MAXWRK )
                    231:          END IF
                    232:          WORK( 1 ) = MAXWRK
                    233: *
                    234:          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY )
                    235:      $      INFO = -12
                    236:       END IF
                    237: *
                    238:       IF( INFO.NE.0 ) THEN
                    239:          CALL XERBLA( 'ZGELSS', -INFO )
                    240:          RETURN
                    241:       ELSE IF( LQUERY ) THEN
                    242:          RETURN
                    243:       END IF
                    244: *
                    245: *     Quick return if possible
                    246: *
                    247:       IF( M.EQ.0 .OR. N.EQ.0 ) THEN
                    248:          RANK = 0
                    249:          RETURN
                    250:       END IF
                    251: *
                    252: *     Get machine parameters
                    253: *
                    254:       EPS = DLAMCH( 'P' )
                    255:       SFMIN = DLAMCH( 'S' )
                    256:       SMLNUM = SFMIN / EPS
                    257:       BIGNUM = ONE / SMLNUM
                    258:       CALL DLABAD( SMLNUM, BIGNUM )
                    259: *
                    260: *     Scale A if max element outside range [SMLNUM,BIGNUM]
                    261: *
                    262:       ANRM = ZLANGE( 'M', M, N, A, LDA, RWORK )
                    263:       IASCL = 0
                    264:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
                    265: *
                    266: *        Scale matrix norm up to SMLNUM
                    267: *
                    268:          CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
                    269:          IASCL = 1
                    270:       ELSE IF( ANRM.GT.BIGNUM ) THEN
                    271: *
                    272: *        Scale matrix norm down to BIGNUM
                    273: *
                    274:          CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
                    275:          IASCL = 2
                    276:       ELSE IF( ANRM.EQ.ZERO ) THEN
                    277: *
                    278: *        Matrix all zero. Return zero solution.
                    279: *
                    280:          CALL ZLASET( 'F', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB )
                    281:          CALL DLASET( 'F', MINMN, 1, ZERO, ZERO, S, MINMN )
                    282:          RANK = 0
                    283:          GO TO 70
                    284:       END IF
                    285: *
                    286: *     Scale B if max element outside range [SMLNUM,BIGNUM]
                    287: *
                    288:       BNRM = ZLANGE( 'M', M, NRHS, B, LDB, RWORK )
                    289:       IBSCL = 0
                    290:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
                    291: *
                    292: *        Scale matrix norm up to SMLNUM
                    293: *
                    294:          CALL ZLASCL( 'G', 0, 0, BNRM, SMLNUM, M, NRHS, B, LDB, INFO )
                    295:          IBSCL = 1
                    296:       ELSE IF( BNRM.GT.BIGNUM ) THEN
                    297: *
                    298: *        Scale matrix norm down to BIGNUM
                    299: *
                    300:          CALL ZLASCL( 'G', 0, 0, BNRM, BIGNUM, M, NRHS, B, LDB, INFO )
                    301:          IBSCL = 2
                    302:       END IF
                    303: *
                    304: *     Overdetermined case
                    305: *
                    306:       IF( M.GE.N ) THEN
                    307: *
                    308: *        Path 1 - overdetermined or exactly determined
                    309: *
                    310:          MM = M
                    311:          IF( M.GE.MNTHR ) THEN
                    312: *
                    313: *           Path 1a - overdetermined, with many more rows than columns
                    314: *
                    315:             MM = N
                    316:             ITAU = 1
                    317:             IWORK = ITAU + N
                    318: *
                    319: *           Compute A=Q*R
                    320: *           (CWorkspace: need 2*N, prefer N+N*NB)
                    321: *           (RWorkspace: none)
                    322: *
                    323:             CALL ZGEQRF( M, N, A, LDA, WORK( ITAU ), WORK( IWORK ),
                    324:      $                   LWORK-IWORK+1, INFO )
                    325: *
                    326: *           Multiply B by transpose(Q)
                    327: *           (CWorkspace: need N+NRHS, prefer N+NRHS*NB)
                    328: *           (RWorkspace: none)
                    329: *
                    330:             CALL ZUNMQR( 'L', 'C', M, NRHS, N, A, LDA, WORK( ITAU ), B,
                    331:      $                   LDB, WORK( IWORK ), LWORK-IWORK+1, INFO )
                    332: *
                    333: *           Zero out below R
                    334: *
                    335:             IF( N.GT.1 )
                    336:      $         CALL ZLASET( 'L', N-1, N-1, CZERO, CZERO, A( 2, 1 ),
                    337:      $                      LDA )
                    338:          END IF
                    339: *
                    340:          IE = 1
                    341:          ITAUQ = 1
                    342:          ITAUP = ITAUQ + N
                    343:          IWORK = ITAUP + N
                    344: *
                    345: *        Bidiagonalize R in A
                    346: *        (CWorkspace: need 2*N+MM, prefer 2*N+(MM+N)*NB)
                    347: *        (RWorkspace: need N)
                    348: *
                    349:          CALL ZGEBRD( MM, N, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
                    350:      $                WORK( ITAUP ), WORK( IWORK ), LWORK-IWORK+1,
                    351:      $                INFO )
                    352: *
                    353: *        Multiply B by transpose of left bidiagonalizing vectors of R
                    354: *        (CWorkspace: need 2*N+NRHS, prefer 2*N+NRHS*NB)
                    355: *        (RWorkspace: none)
                    356: *
                    357:          CALL ZUNMBR( 'Q', 'L', 'C', MM, NRHS, N, A, LDA, WORK( ITAUQ ),
                    358:      $                B, LDB, WORK( IWORK ), LWORK-IWORK+1, INFO )
                    359: *
                    360: *        Generate right bidiagonalizing vectors of R in A
                    361: *        (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB)
                    362: *        (RWorkspace: none)
                    363: *
                    364:          CALL ZUNGBR( 'P', N, N, N, A, LDA, WORK( ITAUP ),
                    365:      $                WORK( IWORK ), LWORK-IWORK+1, INFO )
                    366:          IRWORK = IE + N
                    367: *
                    368: *        Perform bidiagonal QR iteration
                    369: *          multiply B by transpose of left singular vectors
                    370: *          compute right singular vectors in A
                    371: *        (CWorkspace: none)
                    372: *        (RWorkspace: need BDSPAC)
                    373: *
                    374:          CALL ZBDSQR( 'U', N, N, 0, NRHS, S, RWORK( IE ), A, LDA, VDUM,
                    375:      $                1, B, LDB, RWORK( IRWORK ), INFO )
                    376:          IF( INFO.NE.0 )
                    377:      $      GO TO 70
                    378: *
                    379: *        Multiply B by reciprocals of singular values
                    380: *
                    381:          THR = MAX( RCOND*S( 1 ), SFMIN )
                    382:          IF( RCOND.LT.ZERO )
                    383:      $      THR = MAX( EPS*S( 1 ), SFMIN )
                    384:          RANK = 0
                    385:          DO 10 I = 1, N
                    386:             IF( S( I ).GT.THR ) THEN
                    387:                CALL ZDRSCL( NRHS, S( I ), B( I, 1 ), LDB )
                    388:                RANK = RANK + 1
                    389:             ELSE
                    390:                CALL ZLASET( 'F', 1, NRHS, CZERO, CZERO, B( I, 1 ), LDB )
                    391:             END IF
                    392:    10    CONTINUE
                    393: *
                    394: *        Multiply B by right singular vectors
                    395: *        (CWorkspace: need N, prefer N*NRHS)
                    396: *        (RWorkspace: none)
                    397: *
                    398:          IF( LWORK.GE.LDB*NRHS .AND. NRHS.GT.1 ) THEN
                    399:             CALL ZGEMM( 'C', 'N', N, NRHS, N, CONE, A, LDA, B, LDB,
                    400:      $                  CZERO, WORK, LDB )
                    401:             CALL ZLACPY( 'G', N, NRHS, WORK, LDB, B, LDB )
                    402:          ELSE IF( NRHS.GT.1 ) THEN
                    403:             CHUNK = LWORK / N
                    404:             DO 20 I = 1, NRHS, CHUNK
                    405:                BL = MIN( NRHS-I+1, CHUNK )
                    406:                CALL ZGEMM( 'C', 'N', N, BL, N, CONE, A, LDA, B( 1, I ),
                    407:      $                     LDB, CZERO, WORK, N )
                    408:                CALL ZLACPY( 'G', N, BL, WORK, N, B( 1, I ), LDB )
                    409:    20       CONTINUE
                    410:          ELSE
                    411:             CALL ZGEMV( 'C', N, N, CONE, A, LDA, B, 1, CZERO, WORK, 1 )
                    412:             CALL ZCOPY( N, WORK, 1, B, 1 )
                    413:          END IF
                    414: *
                    415:       ELSE IF( N.GE.MNTHR .AND. LWORK.GE.3*M+M*M+MAX( M, NRHS, N-2*M ) )
                    416:      $          THEN
                    417: *
                    418: *        Underdetermined case, M much less than N
                    419: *
                    420: *        Path 2a - underdetermined, with many more columns than rows
                    421: *        and sufficient workspace for an efficient algorithm
                    422: *
                    423:          LDWORK = M
                    424:          IF( LWORK.GE.3*M+M*LDA+MAX( M, NRHS, N-2*M ) )
                    425:      $      LDWORK = LDA
                    426:          ITAU = 1
                    427:          IWORK = M + 1
                    428: *
                    429: *        Compute A=L*Q
                    430: *        (CWorkspace: need 2*M, prefer M+M*NB)
                    431: *        (RWorkspace: none)
                    432: *
                    433:          CALL ZGELQF( M, N, A, LDA, WORK( ITAU ), WORK( IWORK ),
                    434:      $                LWORK-IWORK+1, INFO )
                    435:          IL = IWORK
                    436: *
                    437: *        Copy L to WORK(IL), zeroing out above it
                    438: *
                    439:          CALL ZLACPY( 'L', M, M, A, LDA, WORK( IL ), LDWORK )
                    440:          CALL ZLASET( 'U', M-1, M-1, CZERO, CZERO, WORK( IL+LDWORK ),
                    441:      $                LDWORK )
                    442:          IE = 1
                    443:          ITAUQ = IL + LDWORK*M
                    444:          ITAUP = ITAUQ + M
                    445:          IWORK = ITAUP + M
                    446: *
                    447: *        Bidiagonalize L in WORK(IL)
                    448: *        (CWorkspace: need M*M+4*M, prefer M*M+3*M+2*M*NB)
                    449: *        (RWorkspace: need M)
                    450: *
                    451:          CALL ZGEBRD( M, M, WORK( IL ), LDWORK, S, RWORK( IE ),
                    452:      $                WORK( ITAUQ ), WORK( ITAUP ), WORK( IWORK ),
                    453:      $                LWORK-IWORK+1, INFO )
                    454: *
                    455: *        Multiply B by transpose of left bidiagonalizing vectors of L
                    456: *        (CWorkspace: need M*M+3*M+NRHS, prefer M*M+3*M+NRHS*NB)
                    457: *        (RWorkspace: none)
                    458: *
                    459:          CALL ZUNMBR( 'Q', 'L', 'C', M, NRHS, M, WORK( IL ), LDWORK,
                    460:      $                WORK( ITAUQ ), B, LDB, WORK( IWORK ),
                    461:      $                LWORK-IWORK+1, INFO )
                    462: *
                    463: *        Generate right bidiagonalizing vectors of R in WORK(IL)
                    464: *        (CWorkspace: need M*M+4*M-1, prefer M*M+3*M+(M-1)*NB)
                    465: *        (RWorkspace: none)
                    466: *
                    467:          CALL ZUNGBR( 'P', M, M, M, WORK( IL ), LDWORK, WORK( ITAUP ),
                    468:      $                WORK( IWORK ), LWORK-IWORK+1, INFO )
                    469:          IRWORK = IE + M
                    470: *
                    471: *        Perform bidiagonal QR iteration, computing right singular
                    472: *        vectors of L in WORK(IL) and multiplying B by transpose of
                    473: *        left singular vectors
                    474: *        (CWorkspace: need M*M)
                    475: *        (RWorkspace: need BDSPAC)
                    476: *
                    477:          CALL ZBDSQR( 'U', M, M, 0, NRHS, S, RWORK( IE ), WORK( IL ),
                    478:      $                LDWORK, A, LDA, B, LDB, RWORK( IRWORK ), INFO )
                    479:          IF( INFO.NE.0 )
                    480:      $      GO TO 70
                    481: *
                    482: *        Multiply B by reciprocals of singular values
                    483: *
                    484:          THR = MAX( RCOND*S( 1 ), SFMIN )
                    485:          IF( RCOND.LT.ZERO )
                    486:      $      THR = MAX( EPS*S( 1 ), SFMIN )
                    487:          RANK = 0
                    488:          DO 30 I = 1, M
                    489:             IF( S( I ).GT.THR ) THEN
                    490:                CALL ZDRSCL( NRHS, S( I ), B( I, 1 ), LDB )
                    491:                RANK = RANK + 1
                    492:             ELSE
                    493:                CALL ZLASET( 'F', 1, NRHS, CZERO, CZERO, B( I, 1 ), LDB )
                    494:             END IF
                    495:    30    CONTINUE
                    496:          IWORK = IL + M*LDWORK
                    497: *
                    498: *        Multiply B by right singular vectors of L in WORK(IL)
                    499: *        (CWorkspace: need M*M+2*M, prefer M*M+M+M*NRHS)
                    500: *        (RWorkspace: none)
                    501: *
                    502:          IF( LWORK.GE.LDB*NRHS+IWORK-1 .AND. NRHS.GT.1 ) THEN
                    503:             CALL ZGEMM( 'C', 'N', M, NRHS, M, CONE, WORK( IL ), LDWORK,
                    504:      $                  B, LDB, CZERO, WORK( IWORK ), LDB )
                    505:             CALL ZLACPY( 'G', M, NRHS, WORK( IWORK ), LDB, B, LDB )
                    506:          ELSE IF( NRHS.GT.1 ) THEN
                    507:             CHUNK = ( LWORK-IWORK+1 ) / M
                    508:             DO 40 I = 1, NRHS, CHUNK
                    509:                BL = MIN( NRHS-I+1, CHUNK )
                    510:                CALL ZGEMM( 'C', 'N', M, BL, M, CONE, WORK( IL ), LDWORK,
                    511:      $                     B( 1, I ), LDB, CZERO, WORK( IWORK ), M )
                    512:                CALL ZLACPY( 'G', M, BL, WORK( IWORK ), M, B( 1, I ),
                    513:      $                      LDB )
                    514:    40       CONTINUE
                    515:          ELSE
                    516:             CALL ZGEMV( 'C', M, M, CONE, WORK( IL ), LDWORK, B( 1, 1 ),
                    517:      $                  1, CZERO, WORK( IWORK ), 1 )
                    518:             CALL ZCOPY( M, WORK( IWORK ), 1, B( 1, 1 ), 1 )
                    519:          END IF
                    520: *
                    521: *        Zero out below first M rows of B
                    522: *
                    523:          CALL ZLASET( 'F', N-M, NRHS, CZERO, CZERO, B( M+1, 1 ), LDB )
                    524:          IWORK = ITAU + M
                    525: *
                    526: *        Multiply transpose(Q) by B
                    527: *        (CWorkspace: need M+NRHS, prefer M+NHRS*NB)
                    528: *        (RWorkspace: none)
                    529: *
                    530:          CALL ZUNMLQ( 'L', 'C', N, NRHS, M, A, LDA, WORK( ITAU ), B,
                    531:      $                LDB, WORK( IWORK ), LWORK-IWORK+1, INFO )
                    532: *
                    533:       ELSE
                    534: *
                    535: *        Path 2 - remaining underdetermined cases
                    536: *
                    537:          IE = 1
                    538:          ITAUQ = 1
                    539:          ITAUP = ITAUQ + M
                    540:          IWORK = ITAUP + M
                    541: *
                    542: *        Bidiagonalize A
                    543: *        (CWorkspace: need 3*M, prefer 2*M+(M+N)*NB)
                    544: *        (RWorkspace: need N)
                    545: *
                    546:          CALL ZGEBRD( M, N, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
                    547:      $                WORK( ITAUP ), WORK( IWORK ), LWORK-IWORK+1,
                    548:      $                INFO )
                    549: *
                    550: *        Multiply B by transpose of left bidiagonalizing vectors
                    551: *        (CWorkspace: need 2*M+NRHS, prefer 2*M+NRHS*NB)
                    552: *        (RWorkspace: none)
                    553: *
                    554:          CALL ZUNMBR( 'Q', 'L', 'C', M, NRHS, N, A, LDA, WORK( ITAUQ ),
                    555:      $                B, LDB, WORK( IWORK ), LWORK-IWORK+1, INFO )
                    556: *
                    557: *        Generate right bidiagonalizing vectors in A
                    558: *        (CWorkspace: need 3*M, prefer 2*M+M*NB)
                    559: *        (RWorkspace: none)
                    560: *
                    561:          CALL ZUNGBR( 'P', M, N, M, A, LDA, WORK( ITAUP ),
                    562:      $                WORK( IWORK ), LWORK-IWORK+1, INFO )
                    563:          IRWORK = IE + M
                    564: *
                    565: *        Perform bidiagonal QR iteration,
                    566: *           computing right singular vectors of A in A and
                    567: *           multiplying B by transpose of left singular vectors
                    568: *        (CWorkspace: none)
                    569: *        (RWorkspace: need BDSPAC)
                    570: *
                    571:          CALL ZBDSQR( 'L', M, N, 0, NRHS, S, RWORK( IE ), A, LDA, VDUM,
                    572:      $                1, B, LDB, RWORK( IRWORK ), INFO )
                    573:          IF( INFO.NE.0 )
                    574:      $      GO TO 70
                    575: *
                    576: *        Multiply B by reciprocals of singular values
                    577: *
                    578:          THR = MAX( RCOND*S( 1 ), SFMIN )
                    579:          IF( RCOND.LT.ZERO )
                    580:      $      THR = MAX( EPS*S( 1 ), SFMIN )
                    581:          RANK = 0
                    582:          DO 50 I = 1, M
                    583:             IF( S( I ).GT.THR ) THEN
                    584:                CALL ZDRSCL( NRHS, S( I ), B( I, 1 ), LDB )
                    585:                RANK = RANK + 1
                    586:             ELSE
                    587:                CALL ZLASET( 'F', 1, NRHS, CZERO, CZERO, B( I, 1 ), LDB )
                    588:             END IF
                    589:    50    CONTINUE
                    590: *
                    591: *        Multiply B by right singular vectors of A
                    592: *        (CWorkspace: need N, prefer N*NRHS)
                    593: *        (RWorkspace: none)
                    594: *
                    595:          IF( LWORK.GE.LDB*NRHS .AND. NRHS.GT.1 ) THEN
                    596:             CALL ZGEMM( 'C', 'N', N, NRHS, M, CONE, A, LDA, B, LDB,
                    597:      $                  CZERO, WORK, LDB )
                    598:             CALL ZLACPY( 'G', N, NRHS, WORK, LDB, B, LDB )
                    599:          ELSE IF( NRHS.GT.1 ) THEN
                    600:             CHUNK = LWORK / N
                    601:             DO 60 I = 1, NRHS, CHUNK
                    602:                BL = MIN( NRHS-I+1, CHUNK )
                    603:                CALL ZGEMM( 'C', 'N', N, BL, M, CONE, A, LDA, B( 1, I ),
                    604:      $                     LDB, CZERO, WORK, N )
                    605:                CALL ZLACPY( 'F', N, BL, WORK, N, B( 1, I ), LDB )
                    606:    60       CONTINUE
                    607:          ELSE
                    608:             CALL ZGEMV( 'C', M, N, CONE, A, LDA, B, 1, CZERO, WORK, 1 )
                    609:             CALL ZCOPY( N, WORK, 1, B, 1 )
                    610:          END IF
                    611:       END IF
                    612: *
                    613: *     Undo scaling
                    614: *
                    615:       IF( IASCL.EQ.1 ) THEN
                    616:          CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, N, NRHS, B, LDB, INFO )
                    617:          CALL DLASCL( 'G', 0, 0, SMLNUM, ANRM, MINMN, 1, S, MINMN,
                    618:      $                INFO )
                    619:       ELSE IF( IASCL.EQ.2 ) THEN
                    620:          CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, N, NRHS, B, LDB, INFO )
                    621:          CALL DLASCL( 'G', 0, 0, BIGNUM, ANRM, MINMN, 1, S, MINMN,
                    622:      $                INFO )
                    623:       END IF
                    624:       IF( IBSCL.EQ.1 ) THEN
                    625:          CALL ZLASCL( 'G', 0, 0, SMLNUM, BNRM, N, NRHS, B, LDB, INFO )
                    626:       ELSE IF( IBSCL.EQ.2 ) THEN
                    627:          CALL ZLASCL( 'G', 0, 0, BIGNUM, BNRM, N, NRHS, B, LDB, INFO )
                    628:       END IF
                    629:    70 CONTINUE
                    630:       WORK( 1 ) = MAXWRK
                    631:       RETURN
                    632: *
                    633: *     End of ZGELSS
                    634: *
                    635:       END

CVSweb interface <joel.bertrand@systella.fr>