Annotation of rpl/lapack/lapack/zgelss.f, revision 1.10

1.8       bertrand    1: *> \brief <b> ZGELSS solves overdetermined or underdetermined systems for GE matrices</b>
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at 
                      6: *            http://www.netlib.org/lapack/explore-html/ 
                      7: *
                      8: *> \htmlonly
                      9: *> Download ZGELSS + dependencies 
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgelss.f"> 
                     11: *> [TGZ]</a> 
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgelss.f"> 
                     13: *> [ZIP]</a> 
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgelss.f"> 
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly 
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZGELSS( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK,
                     22: *                          WORK, LWORK, RWORK, INFO )
                     23: * 
                     24: *       .. Scalar Arguments ..
                     25: *       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
                     26: *       DOUBLE PRECISION   RCOND
                     27: *       ..
                     28: *       .. Array Arguments ..
                     29: *       DOUBLE PRECISION   RWORK( * ), S( * )
                     30: *       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * )
                     31: *       ..
                     32: *  
                     33: *
                     34: *> \par Purpose:
                     35: *  =============
                     36: *>
                     37: *> \verbatim
                     38: *>
                     39: *> ZGELSS computes the minimum norm solution to a complex linear
                     40: *> least squares problem:
                     41: *>
                     42: *> Minimize 2-norm(| b - A*x |).
                     43: *>
                     44: *> using the singular value decomposition (SVD) of A. A is an M-by-N
                     45: *> matrix which may be rank-deficient.
                     46: *>
                     47: *> Several right hand side vectors b and solution vectors x can be
                     48: *> handled in a single call; they are stored as the columns of the
                     49: *> M-by-NRHS right hand side matrix B and the N-by-NRHS solution matrix
                     50: *> X.
                     51: *>
                     52: *> The effective rank of A is determined by treating as zero those
                     53: *> singular values which are less than RCOND times the largest singular
                     54: *> value.
                     55: *> \endverbatim
                     56: *
                     57: *  Arguments:
                     58: *  ==========
                     59: *
                     60: *> \param[in] M
                     61: *> \verbatim
                     62: *>          M is INTEGER
                     63: *>          The number of rows of the matrix A. M >= 0.
                     64: *> \endverbatim
                     65: *>
                     66: *> \param[in] N
                     67: *> \verbatim
                     68: *>          N is INTEGER
                     69: *>          The number of columns of the matrix A. N >= 0.
                     70: *> \endverbatim
                     71: *>
                     72: *> \param[in] NRHS
                     73: *> \verbatim
                     74: *>          NRHS is INTEGER
                     75: *>          The number of right hand sides, i.e., the number of columns
                     76: *>          of the matrices B and X. NRHS >= 0.
                     77: *> \endverbatim
                     78: *>
                     79: *> \param[in,out] A
                     80: *> \verbatim
                     81: *>          A is COMPLEX*16 array, dimension (LDA,N)
                     82: *>          On entry, the M-by-N matrix A.
                     83: *>          On exit, the first min(m,n) rows of A are overwritten with
                     84: *>          its right singular vectors, stored rowwise.
                     85: *> \endverbatim
                     86: *>
                     87: *> \param[in] LDA
                     88: *> \verbatim
                     89: *>          LDA is INTEGER
                     90: *>          The leading dimension of the array A. LDA >= max(1,M).
                     91: *> \endverbatim
                     92: *>
                     93: *> \param[in,out] B
                     94: *> \verbatim
                     95: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
                     96: *>          On entry, the M-by-NRHS right hand side matrix B.
                     97: *>          On exit, B is overwritten by the N-by-NRHS solution matrix X.
                     98: *>          If m >= n and RANK = n, the residual sum-of-squares for
                     99: *>          the solution in the i-th column is given by the sum of
                    100: *>          squares of the modulus of elements n+1:m in that column.
                    101: *> \endverbatim
                    102: *>
                    103: *> \param[in] LDB
                    104: *> \verbatim
                    105: *>          LDB is INTEGER
                    106: *>          The leading dimension of the array B.  LDB >= max(1,M,N).
                    107: *> \endverbatim
                    108: *>
                    109: *> \param[out] S
                    110: *> \verbatim
                    111: *>          S is DOUBLE PRECISION array, dimension (min(M,N))
                    112: *>          The singular values of A in decreasing order.
                    113: *>          The condition number of A in the 2-norm = S(1)/S(min(m,n)).
                    114: *> \endverbatim
                    115: *>
                    116: *> \param[in] RCOND
                    117: *> \verbatim
                    118: *>          RCOND is DOUBLE PRECISION
                    119: *>          RCOND is used to determine the effective rank of A.
                    120: *>          Singular values S(i) <= RCOND*S(1) are treated as zero.
                    121: *>          If RCOND < 0, machine precision is used instead.
                    122: *> \endverbatim
                    123: *>
                    124: *> \param[out] RANK
                    125: *> \verbatim
                    126: *>          RANK is INTEGER
                    127: *>          The effective rank of A, i.e., the number of singular values
                    128: *>          which are greater than RCOND*S(1).
                    129: *> \endverbatim
                    130: *>
                    131: *> \param[out] WORK
                    132: *> \verbatim
                    133: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
                    134: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    135: *> \endverbatim
                    136: *>
                    137: *> \param[in] LWORK
                    138: *> \verbatim
                    139: *>          LWORK is INTEGER
                    140: *>          The dimension of the array WORK. LWORK >= 1, and also:
                    141: *>          LWORK >=  2*min(M,N) + max(M,N,NRHS)
                    142: *>          For good performance, LWORK should generally be larger.
                    143: *>
                    144: *>          If LWORK = -1, then a workspace query is assumed; the routine
                    145: *>          only calculates the optimal size of the WORK array, returns
                    146: *>          this value as the first entry of the WORK array, and no error
                    147: *>          message related to LWORK is issued by XERBLA.
                    148: *> \endverbatim
                    149: *>
                    150: *> \param[out] RWORK
                    151: *> \verbatim
                    152: *>          RWORK is DOUBLE PRECISION array, dimension (5*min(M,N))
                    153: *> \endverbatim
                    154: *>
                    155: *> \param[out] INFO
                    156: *> \verbatim
                    157: *>          INFO is INTEGER
                    158: *>          = 0:  successful exit
                    159: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
                    160: *>          > 0:  the algorithm for computing the SVD failed to converge;
                    161: *>                if INFO = i, i off-diagonal elements of an intermediate
                    162: *>                bidiagonal form did not converge to zero.
                    163: *> \endverbatim
                    164: *
                    165: *  Authors:
                    166: *  ========
                    167: *
                    168: *> \author Univ. of Tennessee 
                    169: *> \author Univ. of California Berkeley 
                    170: *> \author Univ. of Colorado Denver 
                    171: *> \author NAG Ltd. 
                    172: *
                    173: *> \date November 2011
                    174: *
                    175: *> \ingroup complex16GEsolve
                    176: *
                    177: *  =====================================================================
1.1       bertrand  178:       SUBROUTINE ZGELSS( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK,
                    179:      $                   WORK, LWORK, RWORK, INFO )
                    180: *
1.8       bertrand  181: *  -- LAPACK driver routine (version 3.4.0) --
1.1       bertrand  182: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    183: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.8       bertrand  184: *     November 2011
1.1       bertrand  185: *
                    186: *     .. Scalar Arguments ..
                    187:       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
                    188:       DOUBLE PRECISION   RCOND
                    189: *     ..
                    190: *     .. Array Arguments ..
                    191:       DOUBLE PRECISION   RWORK( * ), S( * )
                    192:       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * )
                    193: *     ..
                    194: *
                    195: *  =====================================================================
                    196: *
                    197: *     .. Parameters ..
                    198:       DOUBLE PRECISION   ZERO, ONE
                    199:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    200:       COMPLEX*16         CZERO, CONE
                    201:       PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
                    202:      $                   CONE = ( 1.0D+0, 0.0D+0 ) )
                    203: *     ..
                    204: *     .. Local Scalars ..
                    205:       LOGICAL            LQUERY
                    206:       INTEGER            BL, CHUNK, I, IASCL, IBSCL, IE, IL, IRWORK,
                    207:      $                   ITAU, ITAUP, ITAUQ, IWORK, LDWORK, MAXMN,
                    208:      $                   MAXWRK, MINMN, MINWRK, MM, MNTHR
1.8       bertrand  209:       INTEGER            LWORK_ZGEQRF, LWORK_ZUNMQR, LWORK_ZGEBRD,
                    210:      $                   LWORK_ZUNMBR, LWORK_ZUNGBR, LWORK_ZUNMLQ,
                    211:      $                   LWORK_ZGELQF
1.1       bertrand  212:       DOUBLE PRECISION   ANRM, BIGNUM, BNRM, EPS, SFMIN, SMLNUM, THR
                    213: *     ..
                    214: *     .. Local Arrays ..
1.8       bertrand  215:       COMPLEX*16         DUM( 1 )
1.1       bertrand  216: *     ..
                    217: *     .. External Subroutines ..
                    218:       EXTERNAL           DLABAD, DLASCL, DLASET, XERBLA, ZBDSQR, ZCOPY,
                    219:      $                   ZDRSCL, ZGEBRD, ZGELQF, ZGEMM, ZGEMV, ZGEQRF,
                    220:      $                   ZLACPY, ZLASCL, ZLASET, ZUNGBR, ZUNMBR, ZUNMLQ,
                    221:      $                   ZUNMQR
                    222: *     ..
                    223: *     .. External Functions ..
                    224:       INTEGER            ILAENV
                    225:       DOUBLE PRECISION   DLAMCH, ZLANGE
                    226:       EXTERNAL           ILAENV, DLAMCH, ZLANGE
                    227: *     ..
                    228: *     .. Intrinsic Functions ..
                    229:       INTRINSIC          MAX, MIN
                    230: *     ..
                    231: *     .. Executable Statements ..
                    232: *
                    233: *     Test the input arguments
                    234: *
                    235:       INFO = 0
                    236:       MINMN = MIN( M, N )
                    237:       MAXMN = MAX( M, N )
                    238:       LQUERY = ( LWORK.EQ.-1 )
                    239:       IF( M.LT.0 ) THEN
                    240:          INFO = -1
                    241:       ELSE IF( N.LT.0 ) THEN
                    242:          INFO = -2
                    243:       ELSE IF( NRHS.LT.0 ) THEN
                    244:          INFO = -3
                    245:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
                    246:          INFO = -5
                    247:       ELSE IF( LDB.LT.MAX( 1, MAXMN ) ) THEN
                    248:          INFO = -7
                    249:       END IF
                    250: *
                    251: *     Compute workspace
                    252: *      (Note: Comments in the code beginning "Workspace:" describe the
                    253: *       minimal amount of workspace needed at that point in the code,
                    254: *       as well as the preferred amount for good performance.
                    255: *       CWorkspace refers to complex workspace, and RWorkspace refers
                    256: *       to real workspace. NB refers to the optimal block size for the
                    257: *       immediately following subroutine, as returned by ILAENV.)
                    258: *
                    259:       IF( INFO.EQ.0 ) THEN
                    260:          MINWRK = 1
                    261:          MAXWRK = 1
                    262:          IF( MINMN.GT.0 ) THEN
                    263:             MM = M
                    264:             MNTHR = ILAENV( 6, 'ZGELSS', ' ', M, N, NRHS, -1 )
                    265:             IF( M.GE.N .AND. M.GE.MNTHR ) THEN
                    266: *
                    267: *              Path 1a - overdetermined, with many more rows than
                    268: *                        columns
                    269: *
1.8       bertrand  270: *              Compute space needed for ZGEQRF
                    271:                CALL ZGEQRF( M, N, A, LDA, DUM(1), DUM(1), -1, INFO )
                    272:                LWORK_ZGEQRF=DUM(1)
                    273: *              Compute space needed for ZUNMQR
                    274:                CALL ZUNMQR( 'L', 'C', M, NRHS, N, A, LDA, DUM(1), B,
                    275:      $                   LDB, DUM(1), -1, INFO )
                    276:                LWORK_ZUNMQR=DUM(1)
1.1       bertrand  277:                MM = N
                    278:                MAXWRK = MAX( MAXWRK, N + N*ILAENV( 1, 'ZGEQRF', ' ', M,
                    279:      $                       N, -1, -1 ) )
                    280:                MAXWRK = MAX( MAXWRK, N + NRHS*ILAENV( 1, 'ZUNMQR', 'LC',
                    281:      $                       M, NRHS, N, -1 ) )
                    282:             END IF
                    283:             IF( M.GE.N ) THEN
                    284: *
                    285: *              Path 1 - overdetermined or exactly determined
                    286: *
1.8       bertrand  287: *              Compute space needed for ZGEBRD
                    288:                CALL ZGEBRD( MM, N, A, LDA, S, DUM(1), DUM(1),
                    289:      $                      DUM(1), DUM(1), -1, INFO )
                    290:                LWORK_ZGEBRD=DUM(1)
                    291: *              Compute space needed for ZUNMBR
                    292:                CALL ZUNMBR( 'Q', 'L', 'C', MM, NRHS, N, A, LDA, DUM(1),
                    293:      $                B, LDB, DUM(1), -1, INFO )
                    294:                LWORK_ZUNMBR=DUM(1)
                    295: *              Compute space needed for ZUNGBR
                    296:                CALL ZUNGBR( 'P', N, N, N, A, LDA, DUM(1),
                    297:      $                   DUM(1), -1, INFO )
                    298:                LWORK_ZUNGBR=DUM(1)
                    299: *              Compute total workspace needed 
                    300:                MAXWRK = MAX( MAXWRK, 2*N + LWORK_ZGEBRD )
                    301:                MAXWRK = MAX( MAXWRK, 2*N + LWORK_ZUNMBR )
                    302:                MAXWRK = MAX( MAXWRK, 2*N + LWORK_ZUNGBR )
1.1       bertrand  303:                MAXWRK = MAX( MAXWRK, N*NRHS )
                    304:                MINWRK = 2*N + MAX( NRHS, M )
                    305:             END IF
                    306:             IF( N.GT.M ) THEN
                    307:                MINWRK = 2*M + MAX( NRHS, N )
                    308:                IF( N.GE.MNTHR ) THEN
                    309: *
                    310: *                 Path 2a - underdetermined, with many more columns
                    311: *                 than rows
                    312: *
1.8       bertrand  313: *                 Compute space needed for ZGELQF
                    314:                   CALL ZGELQF( M, N, A, LDA, DUM(1), DUM(1),
                    315:      $                -1, INFO )
                    316:                   LWORK_ZGELQF=DUM(1)
                    317: *                 Compute space needed for ZGEBRD
                    318:                   CALL ZGEBRD( M, M, A, LDA, S, DUM(1), DUM(1),
                    319:      $                      DUM(1), DUM(1), -1, INFO )
                    320:                   LWORK_ZGEBRD=DUM(1)
                    321: *                 Compute space needed for ZUNMBR
                    322:                   CALL ZUNMBR( 'Q', 'L', 'C', M, NRHS, N, A, LDA, 
                    323:      $                DUM(1), B, LDB, DUM(1), -1, INFO )
                    324:                   LWORK_ZUNMBR=DUM(1)
                    325: *                 Compute space needed for ZUNGBR
                    326:                   CALL ZUNGBR( 'P', M, M, M, A, LDA, DUM(1),
                    327:      $                   DUM(1), -1, INFO )
                    328:                   LWORK_ZUNGBR=DUM(1)
                    329: *                 Compute space needed for ZUNMLQ
                    330:                   CALL ZUNMLQ( 'L', 'C', N, NRHS, M, A, LDA, DUM(1),
                    331:      $                 B, LDB, DUM(1), -1, INFO )
                    332:                   LWORK_ZUNMLQ=DUM(1)
                    333: *                 Compute total workspace needed 
                    334:                   MAXWRK = M + LWORK_ZGELQF
                    335:                   MAXWRK = MAX( MAXWRK, 3*M + M*M + LWORK_ZGEBRD )
                    336:                   MAXWRK = MAX( MAXWRK, 3*M + M*M + LWORK_ZUNMBR )
                    337:                   MAXWRK = MAX( MAXWRK, 3*M + M*M + LWORK_ZUNGBR )
1.1       bertrand  338:                   IF( NRHS.GT.1 ) THEN
                    339:                      MAXWRK = MAX( MAXWRK, M*M + M + M*NRHS )
                    340:                   ELSE
                    341:                      MAXWRK = MAX( MAXWRK, M*M + 2*M )
                    342:                   END IF
1.8       bertrand  343:                   MAXWRK = MAX( MAXWRK, M + LWORK_ZUNMLQ )
1.1       bertrand  344:                ELSE
                    345: *
                    346: *                 Path 2 - underdetermined
                    347: *
1.8       bertrand  348: *                 Compute space needed for ZGEBRD
                    349:                   CALL ZGEBRD( M, N, A, LDA, S, DUM(1), DUM(1),
                    350:      $                      DUM(1), DUM(1), -1, INFO )
                    351:                   LWORK_ZGEBRD=DUM(1)
                    352: *                 Compute space needed for ZUNMBR
                    353:                   CALL ZUNMBR( 'Q', 'L', 'C', M, NRHS, M, A, LDA, 
                    354:      $                DUM(1), B, LDB, DUM(1), -1, INFO )
                    355:                   LWORK_ZUNMBR=DUM(1)
                    356: *                 Compute space needed for ZUNGBR
                    357:                   CALL ZUNGBR( 'P', M, N, M, A, LDA, DUM(1),
                    358:      $                   DUM(1), -1, INFO )
                    359:                   LWORK_ZUNGBR=DUM(1)
                    360:                   MAXWRK = 2*M + LWORK_ZGEBRD
                    361:                   MAXWRK = MAX( MAXWRK, 2*M + LWORK_ZUNMBR )
                    362:                   MAXWRK = MAX( MAXWRK, 2*M + LWORK_ZUNGBR )
1.1       bertrand  363:                   MAXWRK = MAX( MAXWRK, N*NRHS )
                    364:                END IF
                    365:             END IF
                    366:             MAXWRK = MAX( MINWRK, MAXWRK )
                    367:          END IF
                    368:          WORK( 1 ) = MAXWRK
                    369: *
                    370:          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY )
                    371:      $      INFO = -12
                    372:       END IF
                    373: *
                    374:       IF( INFO.NE.0 ) THEN
                    375:          CALL XERBLA( 'ZGELSS', -INFO )
                    376:          RETURN
                    377:       ELSE IF( LQUERY ) THEN
                    378:          RETURN
                    379:       END IF
                    380: *
                    381: *     Quick return if possible
                    382: *
                    383:       IF( M.EQ.0 .OR. N.EQ.0 ) THEN
                    384:          RANK = 0
                    385:          RETURN
                    386:       END IF
                    387: *
                    388: *     Get machine parameters
                    389: *
                    390:       EPS = DLAMCH( 'P' )
                    391:       SFMIN = DLAMCH( 'S' )
                    392:       SMLNUM = SFMIN / EPS
                    393:       BIGNUM = ONE / SMLNUM
                    394:       CALL DLABAD( SMLNUM, BIGNUM )
                    395: *
                    396: *     Scale A if max element outside range [SMLNUM,BIGNUM]
                    397: *
                    398:       ANRM = ZLANGE( 'M', M, N, A, LDA, RWORK )
                    399:       IASCL = 0
                    400:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
                    401: *
                    402: *        Scale matrix norm up to SMLNUM
                    403: *
                    404:          CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
                    405:          IASCL = 1
                    406:       ELSE IF( ANRM.GT.BIGNUM ) THEN
                    407: *
                    408: *        Scale matrix norm down to BIGNUM
                    409: *
                    410:          CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
                    411:          IASCL = 2
                    412:       ELSE IF( ANRM.EQ.ZERO ) THEN
                    413: *
                    414: *        Matrix all zero. Return zero solution.
                    415: *
                    416:          CALL ZLASET( 'F', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB )
                    417:          CALL DLASET( 'F', MINMN, 1, ZERO, ZERO, S, MINMN )
                    418:          RANK = 0
                    419:          GO TO 70
                    420:       END IF
                    421: *
                    422: *     Scale B if max element outside range [SMLNUM,BIGNUM]
                    423: *
                    424:       BNRM = ZLANGE( 'M', M, NRHS, B, LDB, RWORK )
                    425:       IBSCL = 0
                    426:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
                    427: *
                    428: *        Scale matrix norm up to SMLNUM
                    429: *
                    430:          CALL ZLASCL( 'G', 0, 0, BNRM, SMLNUM, M, NRHS, B, LDB, INFO )
                    431:          IBSCL = 1
                    432:       ELSE IF( BNRM.GT.BIGNUM ) THEN
                    433: *
                    434: *        Scale matrix norm down to BIGNUM
                    435: *
                    436:          CALL ZLASCL( 'G', 0, 0, BNRM, BIGNUM, M, NRHS, B, LDB, INFO )
                    437:          IBSCL = 2
                    438:       END IF
                    439: *
                    440: *     Overdetermined case
                    441: *
                    442:       IF( M.GE.N ) THEN
                    443: *
                    444: *        Path 1 - overdetermined or exactly determined
                    445: *
                    446:          MM = M
                    447:          IF( M.GE.MNTHR ) THEN
                    448: *
                    449: *           Path 1a - overdetermined, with many more rows than columns
                    450: *
                    451:             MM = N
                    452:             ITAU = 1
                    453:             IWORK = ITAU + N
                    454: *
                    455: *           Compute A=Q*R
                    456: *           (CWorkspace: need 2*N, prefer N+N*NB)
                    457: *           (RWorkspace: none)
                    458: *
                    459:             CALL ZGEQRF( M, N, A, LDA, WORK( ITAU ), WORK( IWORK ),
                    460:      $                   LWORK-IWORK+1, INFO )
                    461: *
                    462: *           Multiply B by transpose(Q)
                    463: *           (CWorkspace: need N+NRHS, prefer N+NRHS*NB)
                    464: *           (RWorkspace: none)
                    465: *
                    466:             CALL ZUNMQR( 'L', 'C', M, NRHS, N, A, LDA, WORK( ITAU ), B,
                    467:      $                   LDB, WORK( IWORK ), LWORK-IWORK+1, INFO )
                    468: *
                    469: *           Zero out below R
                    470: *
                    471:             IF( N.GT.1 )
                    472:      $         CALL ZLASET( 'L', N-1, N-1, CZERO, CZERO, A( 2, 1 ),
                    473:      $                      LDA )
                    474:          END IF
                    475: *
                    476:          IE = 1
                    477:          ITAUQ = 1
                    478:          ITAUP = ITAUQ + N
                    479:          IWORK = ITAUP + N
                    480: *
                    481: *        Bidiagonalize R in A
                    482: *        (CWorkspace: need 2*N+MM, prefer 2*N+(MM+N)*NB)
                    483: *        (RWorkspace: need N)
                    484: *
                    485:          CALL ZGEBRD( MM, N, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
                    486:      $                WORK( ITAUP ), WORK( IWORK ), LWORK-IWORK+1,
                    487:      $                INFO )
                    488: *
                    489: *        Multiply B by transpose of left bidiagonalizing vectors of R
                    490: *        (CWorkspace: need 2*N+NRHS, prefer 2*N+NRHS*NB)
                    491: *        (RWorkspace: none)
                    492: *
                    493:          CALL ZUNMBR( 'Q', 'L', 'C', MM, NRHS, N, A, LDA, WORK( ITAUQ ),
                    494:      $                B, LDB, WORK( IWORK ), LWORK-IWORK+1, INFO )
                    495: *
                    496: *        Generate right bidiagonalizing vectors of R in A
                    497: *        (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB)
                    498: *        (RWorkspace: none)
                    499: *
                    500:          CALL ZUNGBR( 'P', N, N, N, A, LDA, WORK( ITAUP ),
                    501:      $                WORK( IWORK ), LWORK-IWORK+1, INFO )
                    502:          IRWORK = IE + N
                    503: *
                    504: *        Perform bidiagonal QR iteration
                    505: *          multiply B by transpose of left singular vectors
                    506: *          compute right singular vectors in A
                    507: *        (CWorkspace: none)
                    508: *        (RWorkspace: need BDSPAC)
                    509: *
1.8       bertrand  510:          CALL ZBDSQR( 'U', N, N, 0, NRHS, S, RWORK( IE ), A, LDA, DUM,
1.1       bertrand  511:      $                1, B, LDB, RWORK( IRWORK ), INFO )
                    512:          IF( INFO.NE.0 )
                    513:      $      GO TO 70
                    514: *
                    515: *        Multiply B by reciprocals of singular values
                    516: *
                    517:          THR = MAX( RCOND*S( 1 ), SFMIN )
                    518:          IF( RCOND.LT.ZERO )
                    519:      $      THR = MAX( EPS*S( 1 ), SFMIN )
                    520:          RANK = 0
                    521:          DO 10 I = 1, N
                    522:             IF( S( I ).GT.THR ) THEN
                    523:                CALL ZDRSCL( NRHS, S( I ), B( I, 1 ), LDB )
                    524:                RANK = RANK + 1
                    525:             ELSE
                    526:                CALL ZLASET( 'F', 1, NRHS, CZERO, CZERO, B( I, 1 ), LDB )
                    527:             END IF
                    528:    10    CONTINUE
                    529: *
                    530: *        Multiply B by right singular vectors
                    531: *        (CWorkspace: need N, prefer N*NRHS)
                    532: *        (RWorkspace: none)
                    533: *
                    534:          IF( LWORK.GE.LDB*NRHS .AND. NRHS.GT.1 ) THEN
                    535:             CALL ZGEMM( 'C', 'N', N, NRHS, N, CONE, A, LDA, B, LDB,
                    536:      $                  CZERO, WORK, LDB )
                    537:             CALL ZLACPY( 'G', N, NRHS, WORK, LDB, B, LDB )
                    538:          ELSE IF( NRHS.GT.1 ) THEN
                    539:             CHUNK = LWORK / N
                    540:             DO 20 I = 1, NRHS, CHUNK
                    541:                BL = MIN( NRHS-I+1, CHUNK )
                    542:                CALL ZGEMM( 'C', 'N', N, BL, N, CONE, A, LDA, B( 1, I ),
                    543:      $                     LDB, CZERO, WORK, N )
                    544:                CALL ZLACPY( 'G', N, BL, WORK, N, B( 1, I ), LDB )
                    545:    20       CONTINUE
                    546:          ELSE
                    547:             CALL ZGEMV( 'C', N, N, CONE, A, LDA, B, 1, CZERO, WORK, 1 )
                    548:             CALL ZCOPY( N, WORK, 1, B, 1 )
                    549:          END IF
                    550: *
                    551:       ELSE IF( N.GE.MNTHR .AND. LWORK.GE.3*M+M*M+MAX( M, NRHS, N-2*M ) )
                    552:      $          THEN
                    553: *
                    554: *        Underdetermined case, M much less than N
                    555: *
                    556: *        Path 2a - underdetermined, with many more columns than rows
                    557: *        and sufficient workspace for an efficient algorithm
                    558: *
                    559:          LDWORK = M
                    560:          IF( LWORK.GE.3*M+M*LDA+MAX( M, NRHS, N-2*M ) )
                    561:      $      LDWORK = LDA
                    562:          ITAU = 1
                    563:          IWORK = M + 1
                    564: *
                    565: *        Compute A=L*Q
                    566: *        (CWorkspace: need 2*M, prefer M+M*NB)
                    567: *        (RWorkspace: none)
                    568: *
                    569:          CALL ZGELQF( M, N, A, LDA, WORK( ITAU ), WORK( IWORK ),
                    570:      $                LWORK-IWORK+1, INFO )
                    571:          IL = IWORK
                    572: *
                    573: *        Copy L to WORK(IL), zeroing out above it
                    574: *
                    575:          CALL ZLACPY( 'L', M, M, A, LDA, WORK( IL ), LDWORK )
                    576:          CALL ZLASET( 'U', M-1, M-1, CZERO, CZERO, WORK( IL+LDWORK ),
                    577:      $                LDWORK )
                    578:          IE = 1
                    579:          ITAUQ = IL + LDWORK*M
                    580:          ITAUP = ITAUQ + M
                    581:          IWORK = ITAUP + M
                    582: *
                    583: *        Bidiagonalize L in WORK(IL)
                    584: *        (CWorkspace: need M*M+4*M, prefer M*M+3*M+2*M*NB)
                    585: *        (RWorkspace: need M)
                    586: *
                    587:          CALL ZGEBRD( M, M, WORK( IL ), LDWORK, S, RWORK( IE ),
                    588:      $                WORK( ITAUQ ), WORK( ITAUP ), WORK( IWORK ),
                    589:      $                LWORK-IWORK+1, INFO )
                    590: *
                    591: *        Multiply B by transpose of left bidiagonalizing vectors of L
                    592: *        (CWorkspace: need M*M+3*M+NRHS, prefer M*M+3*M+NRHS*NB)
                    593: *        (RWorkspace: none)
                    594: *
                    595:          CALL ZUNMBR( 'Q', 'L', 'C', M, NRHS, M, WORK( IL ), LDWORK,
                    596:      $                WORK( ITAUQ ), B, LDB, WORK( IWORK ),
                    597:      $                LWORK-IWORK+1, INFO )
                    598: *
                    599: *        Generate right bidiagonalizing vectors of R in WORK(IL)
                    600: *        (CWorkspace: need M*M+4*M-1, prefer M*M+3*M+(M-1)*NB)
                    601: *        (RWorkspace: none)
                    602: *
                    603:          CALL ZUNGBR( 'P', M, M, M, WORK( IL ), LDWORK, WORK( ITAUP ),
                    604:      $                WORK( IWORK ), LWORK-IWORK+1, INFO )
                    605:          IRWORK = IE + M
                    606: *
                    607: *        Perform bidiagonal QR iteration, computing right singular
                    608: *        vectors of L in WORK(IL) and multiplying B by transpose of
                    609: *        left singular vectors
                    610: *        (CWorkspace: need M*M)
                    611: *        (RWorkspace: need BDSPAC)
                    612: *
                    613:          CALL ZBDSQR( 'U', M, M, 0, NRHS, S, RWORK( IE ), WORK( IL ),
                    614:      $                LDWORK, A, LDA, B, LDB, RWORK( IRWORK ), INFO )
                    615:          IF( INFO.NE.0 )
                    616:      $      GO TO 70
                    617: *
                    618: *        Multiply B by reciprocals of singular values
                    619: *
                    620:          THR = MAX( RCOND*S( 1 ), SFMIN )
                    621:          IF( RCOND.LT.ZERO )
                    622:      $      THR = MAX( EPS*S( 1 ), SFMIN )
                    623:          RANK = 0
                    624:          DO 30 I = 1, M
                    625:             IF( S( I ).GT.THR ) THEN
                    626:                CALL ZDRSCL( NRHS, S( I ), B( I, 1 ), LDB )
                    627:                RANK = RANK + 1
                    628:             ELSE
                    629:                CALL ZLASET( 'F', 1, NRHS, CZERO, CZERO, B( I, 1 ), LDB )
                    630:             END IF
                    631:    30    CONTINUE
                    632:          IWORK = IL + M*LDWORK
                    633: *
                    634: *        Multiply B by right singular vectors of L in WORK(IL)
                    635: *        (CWorkspace: need M*M+2*M, prefer M*M+M+M*NRHS)
                    636: *        (RWorkspace: none)
                    637: *
                    638:          IF( LWORK.GE.LDB*NRHS+IWORK-1 .AND. NRHS.GT.1 ) THEN
                    639:             CALL ZGEMM( 'C', 'N', M, NRHS, M, CONE, WORK( IL ), LDWORK,
                    640:      $                  B, LDB, CZERO, WORK( IWORK ), LDB )
                    641:             CALL ZLACPY( 'G', M, NRHS, WORK( IWORK ), LDB, B, LDB )
                    642:          ELSE IF( NRHS.GT.1 ) THEN
                    643:             CHUNK = ( LWORK-IWORK+1 ) / M
                    644:             DO 40 I = 1, NRHS, CHUNK
                    645:                BL = MIN( NRHS-I+1, CHUNK )
                    646:                CALL ZGEMM( 'C', 'N', M, BL, M, CONE, WORK( IL ), LDWORK,
                    647:      $                     B( 1, I ), LDB, CZERO, WORK( IWORK ), M )
                    648:                CALL ZLACPY( 'G', M, BL, WORK( IWORK ), M, B( 1, I ),
                    649:      $                      LDB )
                    650:    40       CONTINUE
                    651:          ELSE
                    652:             CALL ZGEMV( 'C', M, M, CONE, WORK( IL ), LDWORK, B( 1, 1 ),
                    653:      $                  1, CZERO, WORK( IWORK ), 1 )
                    654:             CALL ZCOPY( M, WORK( IWORK ), 1, B( 1, 1 ), 1 )
                    655:          END IF
                    656: *
                    657: *        Zero out below first M rows of B
                    658: *
                    659:          CALL ZLASET( 'F', N-M, NRHS, CZERO, CZERO, B( M+1, 1 ), LDB )
                    660:          IWORK = ITAU + M
                    661: *
                    662: *        Multiply transpose(Q) by B
                    663: *        (CWorkspace: need M+NRHS, prefer M+NHRS*NB)
                    664: *        (RWorkspace: none)
                    665: *
                    666:          CALL ZUNMLQ( 'L', 'C', N, NRHS, M, A, LDA, WORK( ITAU ), B,
                    667:      $                LDB, WORK( IWORK ), LWORK-IWORK+1, INFO )
                    668: *
                    669:       ELSE
                    670: *
                    671: *        Path 2 - remaining underdetermined cases
                    672: *
                    673:          IE = 1
                    674:          ITAUQ = 1
                    675:          ITAUP = ITAUQ + M
                    676:          IWORK = ITAUP + M
                    677: *
                    678: *        Bidiagonalize A
                    679: *        (CWorkspace: need 3*M, prefer 2*M+(M+N)*NB)
                    680: *        (RWorkspace: need N)
                    681: *
                    682:          CALL ZGEBRD( M, N, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
                    683:      $                WORK( ITAUP ), WORK( IWORK ), LWORK-IWORK+1,
                    684:      $                INFO )
                    685: *
                    686: *        Multiply B by transpose of left bidiagonalizing vectors
                    687: *        (CWorkspace: need 2*M+NRHS, prefer 2*M+NRHS*NB)
                    688: *        (RWorkspace: none)
                    689: *
                    690:          CALL ZUNMBR( 'Q', 'L', 'C', M, NRHS, N, A, LDA, WORK( ITAUQ ),
                    691:      $                B, LDB, WORK( IWORK ), LWORK-IWORK+1, INFO )
                    692: *
                    693: *        Generate right bidiagonalizing vectors in A
                    694: *        (CWorkspace: need 3*M, prefer 2*M+M*NB)
                    695: *        (RWorkspace: none)
                    696: *
                    697:          CALL ZUNGBR( 'P', M, N, M, A, LDA, WORK( ITAUP ),
                    698:      $                WORK( IWORK ), LWORK-IWORK+1, INFO )
                    699:          IRWORK = IE + M
                    700: *
                    701: *        Perform bidiagonal QR iteration,
                    702: *           computing right singular vectors of A in A and
                    703: *           multiplying B by transpose of left singular vectors
                    704: *        (CWorkspace: none)
                    705: *        (RWorkspace: need BDSPAC)
                    706: *
1.8       bertrand  707:          CALL ZBDSQR( 'L', M, N, 0, NRHS, S, RWORK( IE ), A, LDA, DUM,
1.1       bertrand  708:      $                1, B, LDB, RWORK( IRWORK ), INFO )
                    709:          IF( INFO.NE.0 )
                    710:      $      GO TO 70
                    711: *
                    712: *        Multiply B by reciprocals of singular values
                    713: *
                    714:          THR = MAX( RCOND*S( 1 ), SFMIN )
                    715:          IF( RCOND.LT.ZERO )
                    716:      $      THR = MAX( EPS*S( 1 ), SFMIN )
                    717:          RANK = 0
                    718:          DO 50 I = 1, M
                    719:             IF( S( I ).GT.THR ) THEN
                    720:                CALL ZDRSCL( NRHS, S( I ), B( I, 1 ), LDB )
                    721:                RANK = RANK + 1
                    722:             ELSE
                    723:                CALL ZLASET( 'F', 1, NRHS, CZERO, CZERO, B( I, 1 ), LDB )
                    724:             END IF
                    725:    50    CONTINUE
                    726: *
                    727: *        Multiply B by right singular vectors of A
                    728: *        (CWorkspace: need N, prefer N*NRHS)
                    729: *        (RWorkspace: none)
                    730: *
                    731:          IF( LWORK.GE.LDB*NRHS .AND. NRHS.GT.1 ) THEN
                    732:             CALL ZGEMM( 'C', 'N', N, NRHS, M, CONE, A, LDA, B, LDB,
                    733:      $                  CZERO, WORK, LDB )
                    734:             CALL ZLACPY( 'G', N, NRHS, WORK, LDB, B, LDB )
                    735:          ELSE IF( NRHS.GT.1 ) THEN
                    736:             CHUNK = LWORK / N
                    737:             DO 60 I = 1, NRHS, CHUNK
                    738:                BL = MIN( NRHS-I+1, CHUNK )
                    739:                CALL ZGEMM( 'C', 'N', N, BL, M, CONE, A, LDA, B( 1, I ),
                    740:      $                     LDB, CZERO, WORK, N )
                    741:                CALL ZLACPY( 'F', N, BL, WORK, N, B( 1, I ), LDB )
                    742:    60       CONTINUE
                    743:          ELSE
                    744:             CALL ZGEMV( 'C', M, N, CONE, A, LDA, B, 1, CZERO, WORK, 1 )
                    745:             CALL ZCOPY( N, WORK, 1, B, 1 )
                    746:          END IF
                    747:       END IF
                    748: *
                    749: *     Undo scaling
                    750: *
                    751:       IF( IASCL.EQ.1 ) THEN
                    752:          CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, N, NRHS, B, LDB, INFO )
                    753:          CALL DLASCL( 'G', 0, 0, SMLNUM, ANRM, MINMN, 1, S, MINMN,
                    754:      $                INFO )
                    755:       ELSE IF( IASCL.EQ.2 ) THEN
                    756:          CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, N, NRHS, B, LDB, INFO )
                    757:          CALL DLASCL( 'G', 0, 0, BIGNUM, ANRM, MINMN, 1, S, MINMN,
                    758:      $                INFO )
                    759:       END IF
                    760:       IF( IBSCL.EQ.1 ) THEN
                    761:          CALL ZLASCL( 'G', 0, 0, SMLNUM, BNRM, N, NRHS, B, LDB, INFO )
                    762:       ELSE IF( IBSCL.EQ.2 ) THEN
                    763:          CALL ZLASCL( 'G', 0, 0, BIGNUM, BNRM, N, NRHS, B, LDB, INFO )
                    764:       END IF
                    765:    70 CONTINUE
                    766:       WORK( 1 ) = MAXWRK
                    767:       RETURN
                    768: *
                    769: *     End of ZGELSS
                    770: *
                    771:       END

CVSweb interface <joel.bertrand@systella.fr>