File:  [local] / rpl / lapack / lapack / zgelsd.f
Revision 1.18: download - view: text, annotated - select for diffs - revision graph
Tue May 29 07:18:14 2018 UTC (6 years ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_33, rpl-4_1_32, rpl-4_1_31, rpl-4_1_30, rpl-4_1_29, rpl-4_1_28, HEAD
Mise à jour de Lapack.

    1: *> \brief <b> ZGELSD computes the minimum-norm solution to a linear least squares problem for GE matrices</b>
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZGELSD + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgelsd.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgelsd.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgelsd.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZGELSD( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK,
   22: *                          WORK, LWORK, RWORK, IWORK, INFO )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
   26: *       DOUBLE PRECISION   RCOND
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       INTEGER            IWORK( * )
   30: *       DOUBLE PRECISION   RWORK( * ), S( * )
   31: *       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * )
   32: *       ..
   33: *
   34: *
   35: *> \par Purpose:
   36: *  =============
   37: *>
   38: *> \verbatim
   39: *>
   40: *> ZGELSD computes the minimum-norm solution to a real linear least
   41: *> squares problem:
   42: *>     minimize 2-norm(| b - A*x |)
   43: *> using the singular value decomposition (SVD) of A. A is an M-by-N
   44: *> matrix which may be rank-deficient.
   45: *>
   46: *> Several right hand side vectors b and solution vectors x can be
   47: *> handled in a single call; they are stored as the columns of the
   48: *> M-by-NRHS right hand side matrix B and the N-by-NRHS solution
   49: *> matrix X.
   50: *>
   51: *> The problem is solved in three steps:
   52: *> (1) Reduce the coefficient matrix A to bidiagonal form with
   53: *>     Householder transformations, reducing the original problem
   54: *>     into a "bidiagonal least squares problem" (BLS)
   55: *> (2) Solve the BLS using a divide and conquer approach.
   56: *> (3) Apply back all the Householder transformations to solve
   57: *>     the original least squares problem.
   58: *>
   59: *> The effective rank of A is determined by treating as zero those
   60: *> singular values which are less than RCOND times the largest singular
   61: *> value.
   62: *>
   63: *> The divide and conquer algorithm makes very mild assumptions about
   64: *> floating point arithmetic. It will work on machines with a guard
   65: *> digit in add/subtract, or on those binary machines without guard
   66: *> digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
   67: *> Cray-2. It could conceivably fail on hexadecimal or decimal machines
   68: *> without guard digits, but we know of none.
   69: *> \endverbatim
   70: *
   71: *  Arguments:
   72: *  ==========
   73: *
   74: *> \param[in] M
   75: *> \verbatim
   76: *>          M is INTEGER
   77: *>          The number of rows of the matrix A. M >= 0.
   78: *> \endverbatim
   79: *>
   80: *> \param[in] N
   81: *> \verbatim
   82: *>          N is INTEGER
   83: *>          The number of columns of the matrix A. N >= 0.
   84: *> \endverbatim
   85: *>
   86: *> \param[in] NRHS
   87: *> \verbatim
   88: *>          NRHS is INTEGER
   89: *>          The number of right hand sides, i.e., the number of columns
   90: *>          of the matrices B and X. NRHS >= 0.
   91: *> \endverbatim
   92: *>
   93: *> \param[in,out] A
   94: *> \verbatim
   95: *>          A is COMPLEX*16 array, dimension (LDA,N)
   96: *>          On entry, the M-by-N matrix A.
   97: *>          On exit, A has been destroyed.
   98: *> \endverbatim
   99: *>
  100: *> \param[in] LDA
  101: *> \verbatim
  102: *>          LDA is INTEGER
  103: *>          The leading dimension of the array A. LDA >= max(1,M).
  104: *> \endverbatim
  105: *>
  106: *> \param[in,out] B
  107: *> \verbatim
  108: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
  109: *>          On entry, the M-by-NRHS right hand side matrix B.
  110: *>          On exit, B is overwritten by the N-by-NRHS solution matrix X.
  111: *>          If m >= n and RANK = n, the residual sum-of-squares for
  112: *>          the solution in the i-th column is given by the sum of
  113: *>          squares of the modulus of elements n+1:m in that column.
  114: *> \endverbatim
  115: *>
  116: *> \param[in] LDB
  117: *> \verbatim
  118: *>          LDB is INTEGER
  119: *>          The leading dimension of the array B.  LDB >= max(1,M,N).
  120: *> \endverbatim
  121: *>
  122: *> \param[out] S
  123: *> \verbatim
  124: *>          S is DOUBLE PRECISION array, dimension (min(M,N))
  125: *>          The singular values of A in decreasing order.
  126: *>          The condition number of A in the 2-norm = S(1)/S(min(m,n)).
  127: *> \endverbatim
  128: *>
  129: *> \param[in] RCOND
  130: *> \verbatim
  131: *>          RCOND is DOUBLE PRECISION
  132: *>          RCOND is used to determine the effective rank of A.
  133: *>          Singular values S(i) <= RCOND*S(1) are treated as zero.
  134: *>          If RCOND < 0, machine precision is used instead.
  135: *> \endverbatim
  136: *>
  137: *> \param[out] RANK
  138: *> \verbatim
  139: *>          RANK is INTEGER
  140: *>          The effective rank of A, i.e., the number of singular values
  141: *>          which are greater than RCOND*S(1).
  142: *> \endverbatim
  143: *>
  144: *> \param[out] WORK
  145: *> \verbatim
  146: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
  147: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  148: *> \endverbatim
  149: *>
  150: *> \param[in] LWORK
  151: *> \verbatim
  152: *>          LWORK is INTEGER
  153: *>          The dimension of the array WORK. LWORK must be at least 1.
  154: *>          The exact minimum amount of workspace needed depends on M,
  155: *>          N and NRHS. As long as LWORK is at least
  156: *>              2*N + N*NRHS
  157: *>          if M is greater than or equal to N or
  158: *>              2*M + M*NRHS
  159: *>          if M is less than N, the code will execute correctly.
  160: *>          For good performance, LWORK should generally be larger.
  161: *>
  162: *>          If LWORK = -1, then a workspace query is assumed; the routine
  163: *>          only calculates the optimal size of the array WORK and the
  164: *>          minimum sizes of the arrays RWORK and IWORK, and returns
  165: *>          these values as the first entries of the WORK, RWORK and
  166: *>          IWORK arrays, and no error message related to LWORK is issued
  167: *>          by XERBLA.
  168: *> \endverbatim
  169: *>
  170: *> \param[out] RWORK
  171: *> \verbatim
  172: *>          RWORK is DOUBLE PRECISION array, dimension (MAX(1,LRWORK))
  173: *>          LRWORK >=
  174: *>             10*N + 2*N*SMLSIZ + 8*N*NLVL + 3*SMLSIZ*NRHS +
  175: *>             MAX( (SMLSIZ+1)**2, N*(1+NRHS) + 2*NRHS )
  176: *>          if M is greater than or equal to N or
  177: *>             10*M + 2*M*SMLSIZ + 8*M*NLVL + 3*SMLSIZ*NRHS +
  178: *>             MAX( (SMLSIZ+1)**2, N*(1+NRHS) + 2*NRHS )
  179: *>          if M is less than N, the code will execute correctly.
  180: *>          SMLSIZ is returned by ILAENV and is equal to the maximum
  181: *>          size of the subproblems at the bottom of the computation
  182: *>          tree (usually about 25), and
  183: *>             NLVL = MAX( 0, INT( LOG_2( MIN( M,N )/(SMLSIZ+1) ) ) + 1 )
  184: *>          On exit, if INFO = 0, RWORK(1) returns the minimum LRWORK.
  185: *> \endverbatim
  186: *>
  187: *> \param[out] IWORK
  188: *> \verbatim
  189: *>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
  190: *>          LIWORK >= max(1, 3*MINMN*NLVL + 11*MINMN),
  191: *>          where MINMN = MIN( M,N ).
  192: *>          On exit, if INFO = 0, IWORK(1) returns the minimum LIWORK.
  193: *> \endverbatim
  194: *>
  195: *> \param[out] INFO
  196: *> \verbatim
  197: *>          INFO is INTEGER
  198: *>          = 0: successful exit
  199: *>          < 0: if INFO = -i, the i-th argument had an illegal value.
  200: *>          > 0:  the algorithm for computing the SVD failed to converge;
  201: *>                if INFO = i, i off-diagonal elements of an intermediate
  202: *>                bidiagonal form did not converge to zero.
  203: *> \endverbatim
  204: *
  205: *  Authors:
  206: *  ========
  207: *
  208: *> \author Univ. of Tennessee
  209: *> \author Univ. of California Berkeley
  210: *> \author Univ. of Colorado Denver
  211: *> \author NAG Ltd.
  212: *
  213: *> \date June 2017
  214: *
  215: *> \ingroup complex16GEsolve
  216: *
  217: *> \par Contributors:
  218: *  ==================
  219: *>
  220: *>     Ming Gu and Ren-Cang Li, Computer Science Division, University of
  221: *>       California at Berkeley, USA \n
  222: *>     Osni Marques, LBNL/NERSC, USA \n
  223: *
  224: *  =====================================================================
  225:       SUBROUTINE ZGELSD( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK,
  226:      $                   WORK, LWORK, RWORK, IWORK, INFO )
  227: *
  228: *  -- LAPACK driver routine (version 3.7.1) --
  229: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  230: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  231: *     June 2017
  232: *
  233: *     .. Scalar Arguments ..
  234:       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
  235:       DOUBLE PRECISION   RCOND
  236: *     ..
  237: *     .. Array Arguments ..
  238:       INTEGER            IWORK( * )
  239:       DOUBLE PRECISION   RWORK( * ), S( * )
  240:       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * )
  241: *     ..
  242: *
  243: *  =====================================================================
  244: *
  245: *     .. Parameters ..
  246:       DOUBLE PRECISION   ZERO, ONE, TWO
  247:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0 )
  248:       COMPLEX*16         CZERO
  249:       PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ) )
  250: *     ..
  251: *     .. Local Scalars ..
  252:       LOGICAL            LQUERY
  253:       INTEGER            IASCL, IBSCL, IE, IL, ITAU, ITAUP, ITAUQ,
  254:      $                   LDWORK, LIWORK, LRWORK, MAXMN, MAXWRK, MINMN,
  255:      $                   MINWRK, MM, MNTHR, NLVL, NRWORK, NWORK, SMLSIZ
  256:       DOUBLE PRECISION   ANRM, BIGNUM, BNRM, EPS, SFMIN, SMLNUM
  257: *     ..
  258: *     .. External Subroutines ..
  259:       EXTERNAL           DLABAD, DLASCL, DLASET, XERBLA, ZGEBRD, ZGELQF,
  260:      $                   ZGEQRF, ZLACPY, ZLALSD, ZLASCL, ZLASET, ZUNMBR,
  261:      $                   ZUNMLQ, ZUNMQR
  262: *     ..
  263: *     .. External Functions ..
  264:       INTEGER            ILAENV
  265:       DOUBLE PRECISION   DLAMCH, ZLANGE
  266:       EXTERNAL           ILAENV, DLAMCH, ZLANGE
  267: *     ..
  268: *     .. Intrinsic Functions ..
  269:       INTRINSIC          INT, LOG, MAX, MIN, DBLE
  270: *     ..
  271: *     .. Executable Statements ..
  272: *
  273: *     Test the input arguments.
  274: *
  275:       INFO = 0
  276:       MINMN = MIN( M, N )
  277:       MAXMN = MAX( M, N )
  278:       LQUERY = ( LWORK.EQ.-1 )
  279:       IF( M.LT.0 ) THEN
  280:          INFO = -1
  281:       ELSE IF( N.LT.0 ) THEN
  282:          INFO = -2
  283:       ELSE IF( NRHS.LT.0 ) THEN
  284:          INFO = -3
  285:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  286:          INFO = -5
  287:       ELSE IF( LDB.LT.MAX( 1, MAXMN ) ) THEN
  288:          INFO = -7
  289:       END IF
  290: *
  291: *     Compute workspace.
  292: *     (Note: Comments in the code beginning "Workspace:" describe the
  293: *     minimal amount of workspace needed at that point in the code,
  294: *     as well as the preferred amount for good performance.
  295: *     NB refers to the optimal block size for the immediately
  296: *     following subroutine, as returned by ILAENV.)
  297: *
  298:       IF( INFO.EQ.0 ) THEN
  299:          MINWRK = 1
  300:          MAXWRK = 1
  301:          LIWORK = 1
  302:          LRWORK = 1
  303:          IF( MINMN.GT.0 ) THEN
  304:             SMLSIZ = ILAENV( 9, 'ZGELSD', ' ', 0, 0, 0, 0 )
  305:             MNTHR = ILAENV( 6, 'ZGELSD', ' ', M, N, NRHS, -1 )
  306:             NLVL = MAX( INT( LOG( DBLE( MINMN ) / DBLE( SMLSIZ + 1 ) ) /
  307:      $                  LOG( TWO ) ) + 1, 0 )
  308:             LIWORK = 3*MINMN*NLVL + 11*MINMN
  309:             MM = M
  310:             IF( M.GE.N .AND. M.GE.MNTHR ) THEN
  311: *
  312: *              Path 1a - overdetermined, with many more rows than
  313: *                        columns.
  314: *
  315:                MM = N
  316:                MAXWRK = MAX( MAXWRK, N*ILAENV( 1, 'ZGEQRF', ' ', M, N,
  317:      $                       -1, -1 ) )
  318:                MAXWRK = MAX( MAXWRK, NRHS*ILAENV( 1, 'ZUNMQR', 'LC', M,
  319:      $                       NRHS, N, -1 ) )
  320:             END IF
  321:             IF( M.GE.N ) THEN
  322: *
  323: *              Path 1 - overdetermined or exactly determined.
  324: *
  325:                LRWORK = 10*N + 2*N*SMLSIZ + 8*N*NLVL + 3*SMLSIZ*NRHS +
  326:      $                  MAX( (SMLSIZ+1)**2, N*(1+NRHS) + 2*NRHS )
  327:                MAXWRK = MAX( MAXWRK, 2*N + ( MM + N )*ILAENV( 1,
  328:      $                       'ZGEBRD', ' ', MM, N, -1, -1 ) )
  329:                MAXWRK = MAX( MAXWRK, 2*N + NRHS*ILAENV( 1, 'ZUNMBR',
  330:      $                       'QLC', MM, NRHS, N, -1 ) )
  331:                MAXWRK = MAX( MAXWRK, 2*N + ( N - 1 )*ILAENV( 1,
  332:      $                       'ZUNMBR', 'PLN', N, NRHS, N, -1 ) )
  333:                MAXWRK = MAX( MAXWRK, 2*N + N*NRHS )
  334:                MINWRK = MAX( 2*N + MM, 2*N + N*NRHS )
  335:             END IF
  336:             IF( N.GT.M ) THEN
  337:                LRWORK = 10*M + 2*M*SMLSIZ + 8*M*NLVL + 3*SMLSIZ*NRHS +
  338:      $                  MAX( (SMLSIZ+1)**2, N*(1+NRHS) + 2*NRHS )
  339:                IF( N.GE.MNTHR ) THEN
  340: *
  341: *                 Path 2a - underdetermined, with many more columns
  342: *                           than rows.
  343: *
  344:                   MAXWRK = M + M*ILAENV( 1, 'ZGELQF', ' ', M, N, -1,
  345:      $                     -1 )
  346:                   MAXWRK = MAX( MAXWRK, M*M + 4*M + 2*M*ILAENV( 1,
  347:      $                          'ZGEBRD', ' ', M, M, -1, -1 ) )
  348:                   MAXWRK = MAX( MAXWRK, M*M + 4*M + NRHS*ILAENV( 1,
  349:      $                          'ZUNMBR', 'QLC', M, NRHS, M, -1 ) )
  350:                   MAXWRK = MAX( MAXWRK, M*M + 4*M + ( M - 1 )*ILAENV( 1,
  351:      $                          'ZUNMLQ', 'LC', N, NRHS, M, -1 ) )
  352:                   IF( NRHS.GT.1 ) THEN
  353:                      MAXWRK = MAX( MAXWRK, M*M + M + M*NRHS )
  354:                   ELSE
  355:                      MAXWRK = MAX( MAXWRK, M*M + 2*M )
  356:                   END IF
  357:                   MAXWRK = MAX( MAXWRK, M*M + 4*M + M*NRHS )
  358: !     XXX: Ensure the Path 2a case below is triggered.  The workspace
  359: !     calculation should use queries for all routines eventually.
  360:                   MAXWRK = MAX( MAXWRK,
  361:      $                 4*M+M*M+MAX( M, 2*M-4, NRHS, N-3*M ) )
  362:                ELSE
  363: *
  364: *                 Path 2 - underdetermined.
  365: *
  366:                   MAXWRK = 2*M + ( N + M )*ILAENV( 1, 'ZGEBRD', ' ', M,
  367:      $                     N, -1, -1 )
  368:                   MAXWRK = MAX( MAXWRK, 2*M + NRHS*ILAENV( 1, 'ZUNMBR',
  369:      $                          'QLC', M, NRHS, M, -1 ) )
  370:                   MAXWRK = MAX( MAXWRK, 2*M + M*ILAENV( 1, 'ZUNMBR',
  371:      $                          'PLN', N, NRHS, M, -1 ) )
  372:                   MAXWRK = MAX( MAXWRK, 2*M + M*NRHS )
  373:                END IF
  374:                MINWRK = MAX( 2*M + N, 2*M + M*NRHS )
  375:             END IF
  376:          END IF
  377:          MINWRK = MIN( MINWRK, MAXWRK )
  378:          WORK( 1 ) = MAXWRK
  379:          IWORK( 1 ) = LIWORK
  380:          RWORK( 1 ) = LRWORK
  381: *
  382:          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
  383:             INFO = -12
  384:          END IF
  385:       END IF
  386: *
  387:       IF( INFO.NE.0 ) THEN
  388:          CALL XERBLA( 'ZGELSD', -INFO )
  389:          RETURN
  390:       ELSE IF( LQUERY ) THEN
  391:          RETURN
  392:       END IF
  393: *
  394: *     Quick return if possible.
  395: *
  396:       IF( M.EQ.0 .OR. N.EQ.0 ) THEN
  397:          RANK = 0
  398:          RETURN
  399:       END IF
  400: *
  401: *     Get machine parameters.
  402: *
  403:       EPS = DLAMCH( 'P' )
  404:       SFMIN = DLAMCH( 'S' )
  405:       SMLNUM = SFMIN / EPS
  406:       BIGNUM = ONE / SMLNUM
  407:       CALL DLABAD( SMLNUM, BIGNUM )
  408: *
  409: *     Scale A if max entry outside range [SMLNUM,BIGNUM].
  410: *
  411:       ANRM = ZLANGE( 'M', M, N, A, LDA, RWORK )
  412:       IASCL = 0
  413:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
  414: *
  415: *        Scale matrix norm up to SMLNUM
  416: *
  417:          CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
  418:          IASCL = 1
  419:       ELSE IF( ANRM.GT.BIGNUM ) THEN
  420: *
  421: *        Scale matrix norm down to BIGNUM.
  422: *
  423:          CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
  424:          IASCL = 2
  425:       ELSE IF( ANRM.EQ.ZERO ) THEN
  426: *
  427: *        Matrix all zero. Return zero solution.
  428: *
  429:          CALL ZLASET( 'F', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB )
  430:          CALL DLASET( 'F', MINMN, 1, ZERO, ZERO, S, 1 )
  431:          RANK = 0
  432:          GO TO 10
  433:       END IF
  434: *
  435: *     Scale B if max entry outside range [SMLNUM,BIGNUM].
  436: *
  437:       BNRM = ZLANGE( 'M', M, NRHS, B, LDB, RWORK )
  438:       IBSCL = 0
  439:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
  440: *
  441: *        Scale matrix norm up to SMLNUM.
  442: *
  443:          CALL ZLASCL( 'G', 0, 0, BNRM, SMLNUM, M, NRHS, B, LDB, INFO )
  444:          IBSCL = 1
  445:       ELSE IF( BNRM.GT.BIGNUM ) THEN
  446: *
  447: *        Scale matrix norm down to BIGNUM.
  448: *
  449:          CALL ZLASCL( 'G', 0, 0, BNRM, BIGNUM, M, NRHS, B, LDB, INFO )
  450:          IBSCL = 2
  451:       END IF
  452: *
  453: *     If M < N make sure B(M+1:N,:) = 0
  454: *
  455:       IF( M.LT.N )
  456:      $   CALL ZLASET( 'F', N-M, NRHS, CZERO, CZERO, B( M+1, 1 ), LDB )
  457: *
  458: *     Overdetermined case.
  459: *
  460:       IF( M.GE.N ) THEN
  461: *
  462: *        Path 1 - overdetermined or exactly determined.
  463: *
  464:          MM = M
  465:          IF( M.GE.MNTHR ) THEN
  466: *
  467: *           Path 1a - overdetermined, with many more rows than columns
  468: *
  469:             MM = N
  470:             ITAU = 1
  471:             NWORK = ITAU + N
  472: *
  473: *           Compute A=Q*R.
  474: *           (RWorkspace: need N)
  475: *           (CWorkspace: need N, prefer N*NB)
  476: *
  477:             CALL ZGEQRF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
  478:      $                   LWORK-NWORK+1, INFO )
  479: *
  480: *           Multiply B by transpose(Q).
  481: *           (RWorkspace: need N)
  482: *           (CWorkspace: need NRHS, prefer NRHS*NB)
  483: *
  484:             CALL ZUNMQR( 'L', 'C', M, NRHS, N, A, LDA, WORK( ITAU ), B,
  485:      $                   LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
  486: *
  487: *           Zero out below R.
  488: *
  489:             IF( N.GT.1 ) THEN
  490:                CALL ZLASET( 'L', N-1, N-1, CZERO, CZERO, A( 2, 1 ),
  491:      $                      LDA )
  492:             END IF
  493:          END IF
  494: *
  495:          ITAUQ = 1
  496:          ITAUP = ITAUQ + N
  497:          NWORK = ITAUP + N
  498:          IE = 1
  499:          NRWORK = IE + N
  500: *
  501: *        Bidiagonalize R in A.
  502: *        (RWorkspace: need N)
  503: *        (CWorkspace: need 2*N+MM, prefer 2*N+(MM+N)*NB)
  504: *
  505:          CALL ZGEBRD( MM, N, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
  506:      $                WORK( ITAUP ), WORK( NWORK ), LWORK-NWORK+1,
  507:      $                INFO )
  508: *
  509: *        Multiply B by transpose of left bidiagonalizing vectors of R.
  510: *        (CWorkspace: need 2*N+NRHS, prefer 2*N+NRHS*NB)
  511: *
  512:          CALL ZUNMBR( 'Q', 'L', 'C', MM, NRHS, N, A, LDA, WORK( ITAUQ ),
  513:      $                B, LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
  514: *
  515: *        Solve the bidiagonal least squares problem.
  516: *
  517:          CALL ZLALSD( 'U', SMLSIZ, N, NRHS, S, RWORK( IE ), B, LDB,
  518:      $                RCOND, RANK, WORK( NWORK ), RWORK( NRWORK ),
  519:      $                IWORK, INFO )
  520:          IF( INFO.NE.0 ) THEN
  521:             GO TO 10
  522:          END IF
  523: *
  524: *        Multiply B by right bidiagonalizing vectors of R.
  525: *
  526:          CALL ZUNMBR( 'P', 'L', 'N', N, NRHS, N, A, LDA, WORK( ITAUP ),
  527:      $                B, LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
  528: *
  529:       ELSE IF( N.GE.MNTHR .AND. LWORK.GE.4*M+M*M+
  530:      $         MAX( M, 2*M-4, NRHS, N-3*M ) ) THEN
  531: *
  532: *        Path 2a - underdetermined, with many more columns than rows
  533: *        and sufficient workspace for an efficient algorithm.
  534: *
  535:          LDWORK = M
  536:          IF( LWORK.GE.MAX( 4*M+M*LDA+MAX( M, 2*M-4, NRHS, N-3*M ),
  537:      $       M*LDA+M+M*NRHS ) )LDWORK = LDA
  538:          ITAU = 1
  539:          NWORK = M + 1
  540: *
  541: *        Compute A=L*Q.
  542: *        (CWorkspace: need 2*M, prefer M+M*NB)
  543: *
  544:          CALL ZGELQF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
  545:      $                LWORK-NWORK+1, INFO )
  546:          IL = NWORK
  547: *
  548: *        Copy L to WORK(IL), zeroing out above its diagonal.
  549: *
  550:          CALL ZLACPY( 'L', M, M, A, LDA, WORK( IL ), LDWORK )
  551:          CALL ZLASET( 'U', M-1, M-1, CZERO, CZERO, WORK( IL+LDWORK ),
  552:      $                LDWORK )
  553:          ITAUQ = IL + LDWORK*M
  554:          ITAUP = ITAUQ + M
  555:          NWORK = ITAUP + M
  556:          IE = 1
  557:          NRWORK = IE + M
  558: *
  559: *        Bidiagonalize L in WORK(IL).
  560: *        (RWorkspace: need M)
  561: *        (CWorkspace: need M*M+4*M, prefer M*M+4*M+2*M*NB)
  562: *
  563:          CALL ZGEBRD( M, M, WORK( IL ), LDWORK, S, RWORK( IE ),
  564:      $                WORK( ITAUQ ), WORK( ITAUP ), WORK( NWORK ),
  565:      $                LWORK-NWORK+1, INFO )
  566: *
  567: *        Multiply B by transpose of left bidiagonalizing vectors of L.
  568: *        (CWorkspace: need M*M+4*M+NRHS, prefer M*M+4*M+NRHS*NB)
  569: *
  570:          CALL ZUNMBR( 'Q', 'L', 'C', M, NRHS, M, WORK( IL ), LDWORK,
  571:      $                WORK( ITAUQ ), B, LDB, WORK( NWORK ),
  572:      $                LWORK-NWORK+1, INFO )
  573: *
  574: *        Solve the bidiagonal least squares problem.
  575: *
  576:          CALL ZLALSD( 'U', SMLSIZ, M, NRHS, S, RWORK( IE ), B, LDB,
  577:      $                RCOND, RANK, WORK( NWORK ), RWORK( NRWORK ),
  578:      $                IWORK, INFO )
  579:          IF( INFO.NE.0 ) THEN
  580:             GO TO 10
  581:          END IF
  582: *
  583: *        Multiply B by right bidiagonalizing vectors of L.
  584: *
  585:          CALL ZUNMBR( 'P', 'L', 'N', M, NRHS, M, WORK( IL ), LDWORK,
  586:      $                WORK( ITAUP ), B, LDB, WORK( NWORK ),
  587:      $                LWORK-NWORK+1, INFO )
  588: *
  589: *        Zero out below first M rows of B.
  590: *
  591:          CALL ZLASET( 'F', N-M, NRHS, CZERO, CZERO, B( M+1, 1 ), LDB )
  592:          NWORK = ITAU + M
  593: *
  594: *        Multiply transpose(Q) by B.
  595: *        (CWorkspace: need NRHS, prefer NRHS*NB)
  596: *
  597:          CALL ZUNMLQ( 'L', 'C', N, NRHS, M, A, LDA, WORK( ITAU ), B,
  598:      $                LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
  599: *
  600:       ELSE
  601: *
  602: *        Path 2 - remaining underdetermined cases.
  603: *
  604:          ITAUQ = 1
  605:          ITAUP = ITAUQ + M
  606:          NWORK = ITAUP + M
  607:          IE = 1
  608:          NRWORK = IE + M
  609: *
  610: *        Bidiagonalize A.
  611: *        (RWorkspace: need M)
  612: *        (CWorkspace: need 2*M+N, prefer 2*M+(M+N)*NB)
  613: *
  614:          CALL ZGEBRD( M, N, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
  615:      $                WORK( ITAUP ), WORK( NWORK ), LWORK-NWORK+1,
  616:      $                INFO )
  617: *
  618: *        Multiply B by transpose of left bidiagonalizing vectors.
  619: *        (CWorkspace: need 2*M+NRHS, prefer 2*M+NRHS*NB)
  620: *
  621:          CALL ZUNMBR( 'Q', 'L', 'C', M, NRHS, N, A, LDA, WORK( ITAUQ ),
  622:      $                B, LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
  623: *
  624: *        Solve the bidiagonal least squares problem.
  625: *
  626:          CALL ZLALSD( 'L', SMLSIZ, M, NRHS, S, RWORK( IE ), B, LDB,
  627:      $                RCOND, RANK, WORK( NWORK ), RWORK( NRWORK ),
  628:      $                IWORK, INFO )
  629:          IF( INFO.NE.0 ) THEN
  630:             GO TO 10
  631:          END IF
  632: *
  633: *        Multiply B by right bidiagonalizing vectors of A.
  634: *
  635:          CALL ZUNMBR( 'P', 'L', 'N', N, NRHS, M, A, LDA, WORK( ITAUP ),
  636:      $                B, LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
  637: *
  638:       END IF
  639: *
  640: *     Undo scaling.
  641: *
  642:       IF( IASCL.EQ.1 ) THEN
  643:          CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, N, NRHS, B, LDB, INFO )
  644:          CALL DLASCL( 'G', 0, 0, SMLNUM, ANRM, MINMN, 1, S, MINMN,
  645:      $                INFO )
  646:       ELSE IF( IASCL.EQ.2 ) THEN
  647:          CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, N, NRHS, B, LDB, INFO )
  648:          CALL DLASCL( 'G', 0, 0, BIGNUM, ANRM, MINMN, 1, S, MINMN,
  649:      $                INFO )
  650:       END IF
  651:       IF( IBSCL.EQ.1 ) THEN
  652:          CALL ZLASCL( 'G', 0, 0, SMLNUM, BNRM, N, NRHS, B, LDB, INFO )
  653:       ELSE IF( IBSCL.EQ.2 ) THEN
  654:          CALL ZLASCL( 'G', 0, 0, BIGNUM, BNRM, N, NRHS, B, LDB, INFO )
  655:       END IF
  656: *
  657:    10 CONTINUE
  658:       WORK( 1 ) = MAXWRK
  659:       IWORK( 1 ) = LIWORK
  660:       RWORK( 1 ) = LRWORK
  661:       RETURN
  662: *
  663: *     End of ZGELSD
  664: *
  665:       END

CVSweb interface <joel.bertrand@systella.fr>