Annotation of rpl/lapack/lapack/zgelsd.f, revision 1.7

1.1       bertrand    1:       SUBROUTINE ZGELSD( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK,
                      2:      $                   WORK, LWORK, RWORK, IWORK, INFO )
                      3: *
                      4: *  -- LAPACK driver routine (version 3.2) --
                      5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      7: *     November 2006
                      8: *
                      9: *     .. Scalar Arguments ..
                     10:       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
                     11:       DOUBLE PRECISION   RCOND
                     12: *     ..
                     13: *     .. Array Arguments ..
                     14:       INTEGER            IWORK( * )
                     15:       DOUBLE PRECISION   RWORK( * ), S( * )
                     16:       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * )
                     17: *     ..
                     18: *
                     19: *  Purpose
                     20: *  =======
                     21: *
                     22: *  ZGELSD computes the minimum-norm solution to a real linear least
                     23: *  squares problem:
                     24: *      minimize 2-norm(| b - A*x |)
                     25: *  using the singular value decomposition (SVD) of A. A is an M-by-N
                     26: *  matrix which may be rank-deficient.
                     27: *
                     28: *  Several right hand side vectors b and solution vectors x can be
                     29: *  handled in a single call; they are stored as the columns of the
                     30: *  M-by-NRHS right hand side matrix B and the N-by-NRHS solution
                     31: *  matrix X.
                     32: *
                     33: *  The problem is solved in three steps:
                     34: *  (1) Reduce the coefficient matrix A to bidiagonal form with
                     35: *      Householder tranformations, reducing the original problem
                     36: *      into a "bidiagonal least squares problem" (BLS)
                     37: *  (2) Solve the BLS using a divide and conquer approach.
                     38: *  (3) Apply back all the Householder tranformations to solve
                     39: *      the original least squares problem.
                     40: *
                     41: *  The effective rank of A is determined by treating as zero those
                     42: *  singular values which are less than RCOND times the largest singular
                     43: *  value.
                     44: *
                     45: *  The divide and conquer algorithm makes very mild assumptions about
                     46: *  floating point arithmetic. It will work on machines with a guard
                     47: *  digit in add/subtract, or on those binary machines without guard
                     48: *  digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
                     49: *  Cray-2. It could conceivably fail on hexadecimal or decimal machines
                     50: *  without guard digits, but we know of none.
                     51: *
                     52: *  Arguments
                     53: *  =========
                     54: *
                     55: *  M       (input) INTEGER
                     56: *          The number of rows of the matrix A. M >= 0.
                     57: *
                     58: *  N       (input) INTEGER
                     59: *          The number of columns of the matrix A. N >= 0.
                     60: *
                     61: *  NRHS    (input) INTEGER
                     62: *          The number of right hand sides, i.e., the number of columns
                     63: *          of the matrices B and X. NRHS >= 0.
                     64: *
                     65: *  A       (input) COMPLEX*16 array, dimension (LDA,N)
                     66: *          On entry, the M-by-N matrix A.
                     67: *          On exit, A has been destroyed.
                     68: *
                     69: *  LDA     (input) INTEGER
                     70: *          The leading dimension of the array A. LDA >= max(1,M).
                     71: *
                     72: *  B       (input/output) COMPLEX*16 array, dimension (LDB,NRHS)
                     73: *          On entry, the M-by-NRHS right hand side matrix B.
                     74: *          On exit, B is overwritten by the N-by-NRHS solution matrix X.
                     75: *          If m >= n and RANK = n, the residual sum-of-squares for
                     76: *          the solution in the i-th column is given by the sum of
                     77: *          squares of the modulus of elements n+1:m in that column.
                     78: *
                     79: *  LDB     (input) INTEGER
                     80: *          The leading dimension of the array B.  LDB >= max(1,M,N).
                     81: *
                     82: *  S       (output) DOUBLE PRECISION array, dimension (min(M,N))
                     83: *          The singular values of A in decreasing order.
                     84: *          The condition number of A in the 2-norm = S(1)/S(min(m,n)).
                     85: *
                     86: *  RCOND   (input) DOUBLE PRECISION
                     87: *          RCOND is used to determine the effective rank of A.
                     88: *          Singular values S(i) <= RCOND*S(1) are treated as zero.
                     89: *          If RCOND < 0, machine precision is used instead.
                     90: *
                     91: *  RANK    (output) INTEGER
                     92: *          The effective rank of A, i.e., the number of singular values
                     93: *          which are greater than RCOND*S(1).
                     94: *
                     95: *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
                     96: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                     97: *
                     98: *  LWORK   (input) INTEGER
                     99: *          The dimension of the array WORK. LWORK must be at least 1.
                    100: *          The exact minimum amount of workspace needed depends on M,
                    101: *          N and NRHS. As long as LWORK is at least
                    102: *              2*N + N*NRHS
                    103: *          if M is greater than or equal to N or
                    104: *              2*M + M*NRHS
                    105: *          if M is less than N, the code will execute correctly.
                    106: *          For good performance, LWORK should generally be larger.
                    107: *
                    108: *          If LWORK = -1, then a workspace query is assumed; the routine
                    109: *          only calculates the optimal size of the array WORK and the
                    110: *          minimum sizes of the arrays RWORK and IWORK, and returns
                    111: *          these values as the first entries of the WORK, RWORK and
                    112: *          IWORK arrays, and no error message related to LWORK is issued
                    113: *          by XERBLA.
                    114: *
                    115: *  RWORK   (workspace) DOUBLE PRECISION array, dimension (MAX(1,LRWORK))
                    116: *          LRWORK >=
1.5       bertrand  117: *             10*N + 2*N*SMLSIZ + 8*N*NLVL + 3*SMLSIZ*NRHS +
                    118: *             MAX( (SMLSIZ+1)**2, N*(1+NRHS) + 2*NRHS )
1.1       bertrand  119: *          if M is greater than or equal to N or
                    120: *             10*M + 2*M*SMLSIZ + 8*M*NLVL + 3*SMLSIZ*NRHS +
1.5       bertrand  121: *             MAX( (SMLSIZ+1)**2, N*(1+NRHS) + 2*NRHS )
1.1       bertrand  122: *          if M is less than N, the code will execute correctly.
                    123: *          SMLSIZ is returned by ILAENV and is equal to the maximum
                    124: *          size of the subproblems at the bottom of the computation
                    125: *          tree (usually about 25), and
                    126: *             NLVL = MAX( 0, INT( LOG_2( MIN( M,N )/(SMLSIZ+1) ) ) + 1 )
                    127: *          On exit, if INFO = 0, RWORK(1) returns the minimum LRWORK.
                    128: *
                    129: *  IWORK   (workspace) INTEGER array, dimension (MAX(1,LIWORK))
                    130: *          LIWORK >= max(1, 3*MINMN*NLVL + 11*MINMN),
                    131: *          where MINMN = MIN( M,N ).
                    132: *          On exit, if INFO = 0, IWORK(1) returns the minimum LIWORK.
                    133: *
                    134: *  INFO    (output) INTEGER
                    135: *          = 0: successful exit
                    136: *          < 0: if INFO = -i, the i-th argument had an illegal value.
                    137: *          > 0:  the algorithm for computing the SVD failed to converge;
                    138: *                if INFO = i, i off-diagonal elements of an intermediate
                    139: *                bidiagonal form did not converge to zero.
                    140: *
                    141: *  Further Details
                    142: *  ===============
                    143: *
                    144: *  Based on contributions by
                    145: *     Ming Gu and Ren-Cang Li, Computer Science Division, University of
                    146: *       California at Berkeley, USA
                    147: *     Osni Marques, LBNL/NERSC, USA
                    148: *
                    149: *  =====================================================================
                    150: *
                    151: *     .. Parameters ..
                    152:       DOUBLE PRECISION   ZERO, ONE, TWO
                    153:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0 )
                    154:       COMPLEX*16         CZERO
                    155:       PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ) )
                    156: *     ..
                    157: *     .. Local Scalars ..
                    158:       LOGICAL            LQUERY
                    159:       INTEGER            IASCL, IBSCL, IE, IL, ITAU, ITAUP, ITAUQ,
                    160:      $                   LDWORK, LIWORK, LRWORK, MAXMN, MAXWRK, MINMN,
                    161:      $                   MINWRK, MM, MNTHR, NLVL, NRWORK, NWORK, SMLSIZ
                    162:       DOUBLE PRECISION   ANRM, BIGNUM, BNRM, EPS, SFMIN, SMLNUM
                    163: *     ..
                    164: *     .. External Subroutines ..
                    165:       EXTERNAL           DLABAD, DLASCL, DLASET, XERBLA, ZGEBRD, ZGELQF,
                    166:      $                   ZGEQRF, ZLACPY, ZLALSD, ZLASCL, ZLASET, ZUNMBR,
                    167:      $                   ZUNMLQ, ZUNMQR
                    168: *     ..
                    169: *     .. External Functions ..
                    170:       INTEGER            ILAENV
                    171:       DOUBLE PRECISION   DLAMCH, ZLANGE
                    172:       EXTERNAL           ILAENV, DLAMCH, ZLANGE
                    173: *     ..
                    174: *     .. Intrinsic Functions ..
                    175:       INTRINSIC          INT, LOG, MAX, MIN, DBLE
                    176: *     ..
                    177: *     .. Executable Statements ..
                    178: *
                    179: *     Test the input arguments.
                    180: *
                    181:       INFO = 0
                    182:       MINMN = MIN( M, N )
                    183:       MAXMN = MAX( M, N )
                    184:       LQUERY = ( LWORK.EQ.-1 )
                    185:       IF( M.LT.0 ) THEN
                    186:          INFO = -1
                    187:       ELSE IF( N.LT.0 ) THEN
                    188:          INFO = -2
                    189:       ELSE IF( NRHS.LT.0 ) THEN
                    190:          INFO = -3
                    191:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
                    192:          INFO = -5
                    193:       ELSE IF( LDB.LT.MAX( 1, MAXMN ) ) THEN
                    194:          INFO = -7
                    195:       END IF
                    196: *
                    197: *     Compute workspace.
                    198: *     (Note: Comments in the code beginning "Workspace:" describe the
                    199: *     minimal amount of workspace needed at that point in the code,
                    200: *     as well as the preferred amount for good performance.
                    201: *     NB refers to the optimal block size for the immediately
                    202: *     following subroutine, as returned by ILAENV.)
                    203: *
                    204:       IF( INFO.EQ.0 ) THEN
                    205:          MINWRK = 1
                    206:          MAXWRK = 1
                    207:          LIWORK = 1
                    208:          LRWORK = 1
                    209:          IF( MINMN.GT.0 ) THEN
                    210:             SMLSIZ = ILAENV( 9, 'ZGELSD', ' ', 0, 0, 0, 0 )
                    211:             MNTHR = ILAENV( 6, 'ZGELSD', ' ', M, N, NRHS, -1 )
                    212:             NLVL = MAX( INT( LOG( DBLE( MINMN ) / DBLE( SMLSIZ + 1 ) ) /
                    213:      $                  LOG( TWO ) ) + 1, 0 )
                    214:             LIWORK = 3*MINMN*NLVL + 11*MINMN
                    215:             MM = M
                    216:             IF( M.GE.N .AND. M.GE.MNTHR ) THEN
                    217: *
                    218: *              Path 1a - overdetermined, with many more rows than
                    219: *                        columns.
                    220: *
                    221:                MM = N
                    222:                MAXWRK = MAX( MAXWRK, N*ILAENV( 1, 'ZGEQRF', ' ', M, N,
                    223:      $                       -1, -1 ) )
                    224:                MAXWRK = MAX( MAXWRK, NRHS*ILAENV( 1, 'ZUNMQR', 'LC', M,
                    225:      $                       NRHS, N, -1 ) )
                    226:             END IF
                    227:             IF( M.GE.N ) THEN
                    228: *
                    229: *              Path 1 - overdetermined or exactly determined.
                    230: *
                    231:                LRWORK = 10*N + 2*N*SMLSIZ + 8*N*NLVL + 3*SMLSIZ*NRHS +
1.5       bertrand  232:      $                  MAX( (SMLSIZ+1)**2, N*(1+NRHS) + 2*NRHS )
1.1       bertrand  233:                MAXWRK = MAX( MAXWRK, 2*N + ( MM + N )*ILAENV( 1,
                    234:      $                       'ZGEBRD', ' ', MM, N, -1, -1 ) )
                    235:                MAXWRK = MAX( MAXWRK, 2*N + NRHS*ILAENV( 1, 'ZUNMBR',
                    236:      $                       'QLC', MM, NRHS, N, -1 ) )
                    237:                MAXWRK = MAX( MAXWRK, 2*N + ( N - 1 )*ILAENV( 1,
                    238:      $                       'ZUNMBR', 'PLN', N, NRHS, N, -1 ) )
                    239:                MAXWRK = MAX( MAXWRK, 2*N + N*NRHS )
                    240:                MINWRK = MAX( 2*N + MM, 2*N + N*NRHS )
                    241:             END IF
                    242:             IF( N.GT.M ) THEN
                    243:                LRWORK = 10*M + 2*M*SMLSIZ + 8*M*NLVL + 3*SMLSIZ*NRHS +
1.5       bertrand  244:      $                  MAX( (SMLSIZ+1)**2, N*(1+NRHS) + 2*NRHS )
1.1       bertrand  245:                IF( N.GE.MNTHR ) THEN
                    246: *
                    247: *                 Path 2a - underdetermined, with many more columns
                    248: *                           than rows.
                    249: *
                    250:                   MAXWRK = M + M*ILAENV( 1, 'ZGELQF', ' ', M, N, -1,
                    251:      $                     -1 )
                    252:                   MAXWRK = MAX( MAXWRK, M*M + 4*M + 2*M*ILAENV( 1,
                    253:      $                          'ZGEBRD', ' ', M, M, -1, -1 ) )
                    254:                   MAXWRK = MAX( MAXWRK, M*M + 4*M + NRHS*ILAENV( 1,
                    255:      $                          'ZUNMBR', 'QLC', M, NRHS, M, -1 ) )
                    256:                   MAXWRK = MAX( MAXWRK, M*M + 4*M + ( M - 1 )*ILAENV( 1,
                    257:      $                          'ZUNMLQ', 'LC', N, NRHS, M, -1 ) )
                    258:                   IF( NRHS.GT.1 ) THEN
                    259:                      MAXWRK = MAX( MAXWRK, M*M + M + M*NRHS )
                    260:                   ELSE
                    261:                      MAXWRK = MAX( MAXWRK, M*M + 2*M )
                    262:                   END IF
                    263:                   MAXWRK = MAX( MAXWRK, M*M + 4*M + M*NRHS )
                    264: !     XXX: Ensure the Path 2a case below is triggered.  The workspace
                    265: !     calculation should use queries for all routines eventually.
                    266:                   MAXWRK = MAX( MAXWRK,
                    267:      $                 4*M+M*M+MAX( M, 2*M-4, NRHS, N-3*M ) )
                    268:                ELSE
                    269: *
                    270: *                 Path 2 - underdetermined.
                    271: *
                    272:                   MAXWRK = 2*M + ( N + M )*ILAENV( 1, 'ZGEBRD', ' ', M,
                    273:      $                     N, -1, -1 )
                    274:                   MAXWRK = MAX( MAXWRK, 2*M + NRHS*ILAENV( 1, 'ZUNMBR',
                    275:      $                          'QLC', M, NRHS, M, -1 ) )
                    276:                   MAXWRK = MAX( MAXWRK, 2*M + M*ILAENV( 1, 'ZUNMBR',
                    277:      $                          'PLN', N, NRHS, M, -1 ) )
                    278:                   MAXWRK = MAX( MAXWRK, 2*M + M*NRHS )
                    279:                END IF
                    280:                MINWRK = MAX( 2*M + N, 2*M + M*NRHS )
                    281:             END IF
                    282:          END IF
                    283:          MINWRK = MIN( MINWRK, MAXWRK )
                    284:          WORK( 1 ) = MAXWRK
                    285:          IWORK( 1 ) = LIWORK
                    286:          RWORK( 1 ) = LRWORK
                    287: *
                    288:          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
                    289:             INFO = -12
                    290:          END IF
                    291:       END IF
                    292: *
                    293:       IF( INFO.NE.0 ) THEN
                    294:          CALL XERBLA( 'ZGELSD', -INFO )
                    295:          RETURN
                    296:       ELSE IF( LQUERY ) THEN
                    297:          RETURN
                    298:       END IF
                    299: *
                    300: *     Quick return if possible.
                    301: *
                    302:       IF( M.EQ.0 .OR. N.EQ.0 ) THEN
                    303:          RANK = 0
                    304:          RETURN
                    305:       END IF
                    306: *
                    307: *     Get machine parameters.
                    308: *
                    309:       EPS = DLAMCH( 'P' )
                    310:       SFMIN = DLAMCH( 'S' )
                    311:       SMLNUM = SFMIN / EPS
                    312:       BIGNUM = ONE / SMLNUM
                    313:       CALL DLABAD( SMLNUM, BIGNUM )
                    314: *
                    315: *     Scale A if max entry outside range [SMLNUM,BIGNUM].
                    316: *
                    317:       ANRM = ZLANGE( 'M', M, N, A, LDA, RWORK )
                    318:       IASCL = 0
                    319:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
                    320: *
                    321: *        Scale matrix norm up to SMLNUM
                    322: *
                    323:          CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
                    324:          IASCL = 1
                    325:       ELSE IF( ANRM.GT.BIGNUM ) THEN
                    326: *
                    327: *        Scale matrix norm down to BIGNUM.
                    328: *
                    329:          CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
                    330:          IASCL = 2
                    331:       ELSE IF( ANRM.EQ.ZERO ) THEN
                    332: *
                    333: *        Matrix all zero. Return zero solution.
                    334: *
                    335:          CALL ZLASET( 'F', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB )
                    336:          CALL DLASET( 'F', MINMN, 1, ZERO, ZERO, S, 1 )
                    337:          RANK = 0
                    338:          GO TO 10
                    339:       END IF
                    340: *
                    341: *     Scale B if max entry outside range [SMLNUM,BIGNUM].
                    342: *
                    343:       BNRM = ZLANGE( 'M', M, NRHS, B, LDB, RWORK )
                    344:       IBSCL = 0
                    345:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
                    346: *
                    347: *        Scale matrix norm up to SMLNUM.
                    348: *
                    349:          CALL ZLASCL( 'G', 0, 0, BNRM, SMLNUM, M, NRHS, B, LDB, INFO )
                    350:          IBSCL = 1
                    351:       ELSE IF( BNRM.GT.BIGNUM ) THEN
                    352: *
                    353: *        Scale matrix norm down to BIGNUM.
                    354: *
                    355:          CALL ZLASCL( 'G', 0, 0, BNRM, BIGNUM, M, NRHS, B, LDB, INFO )
                    356:          IBSCL = 2
                    357:       END IF
                    358: *
                    359: *     If M < N make sure B(M+1:N,:) = 0
                    360: *
                    361:       IF( M.LT.N )
                    362:      $   CALL ZLASET( 'F', N-M, NRHS, CZERO, CZERO, B( M+1, 1 ), LDB )
                    363: *
                    364: *     Overdetermined case.
                    365: *
                    366:       IF( M.GE.N ) THEN
                    367: *
                    368: *        Path 1 - overdetermined or exactly determined.
                    369: *
                    370:          MM = M
                    371:          IF( M.GE.MNTHR ) THEN
                    372: *
                    373: *           Path 1a - overdetermined, with many more rows than columns
                    374: *
                    375:             MM = N
                    376:             ITAU = 1
                    377:             NWORK = ITAU + N
                    378: *
                    379: *           Compute A=Q*R.
                    380: *           (RWorkspace: need N)
                    381: *           (CWorkspace: need N, prefer N*NB)
                    382: *
                    383:             CALL ZGEQRF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
                    384:      $                   LWORK-NWORK+1, INFO )
                    385: *
                    386: *           Multiply B by transpose(Q).
                    387: *           (RWorkspace: need N)
                    388: *           (CWorkspace: need NRHS, prefer NRHS*NB)
                    389: *
                    390:             CALL ZUNMQR( 'L', 'C', M, NRHS, N, A, LDA, WORK( ITAU ), B,
                    391:      $                   LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
                    392: *
                    393: *           Zero out below R.
                    394: *
                    395:             IF( N.GT.1 ) THEN
                    396:                CALL ZLASET( 'L', N-1, N-1, CZERO, CZERO, A( 2, 1 ),
                    397:      $                      LDA )
                    398:             END IF
                    399:          END IF
                    400: *
                    401:          ITAUQ = 1
                    402:          ITAUP = ITAUQ + N
                    403:          NWORK = ITAUP + N
                    404:          IE = 1
                    405:          NRWORK = IE + N
                    406: *
                    407: *        Bidiagonalize R in A.
                    408: *        (RWorkspace: need N)
                    409: *        (CWorkspace: need 2*N+MM, prefer 2*N+(MM+N)*NB)
                    410: *
                    411:          CALL ZGEBRD( MM, N, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
                    412:      $                WORK( ITAUP ), WORK( NWORK ), LWORK-NWORK+1,
                    413:      $                INFO )
                    414: *
                    415: *        Multiply B by transpose of left bidiagonalizing vectors of R.
                    416: *        (CWorkspace: need 2*N+NRHS, prefer 2*N+NRHS*NB)
                    417: *
                    418:          CALL ZUNMBR( 'Q', 'L', 'C', MM, NRHS, N, A, LDA, WORK( ITAUQ ),
                    419:      $                B, LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
                    420: *
                    421: *        Solve the bidiagonal least squares problem.
                    422: *
                    423:          CALL ZLALSD( 'U', SMLSIZ, N, NRHS, S, RWORK( IE ), B, LDB,
                    424:      $                RCOND, RANK, WORK( NWORK ), RWORK( NRWORK ),
                    425:      $                IWORK, INFO )
                    426:          IF( INFO.NE.0 ) THEN
                    427:             GO TO 10
                    428:          END IF
                    429: *
                    430: *        Multiply B by right bidiagonalizing vectors of R.
                    431: *
                    432:          CALL ZUNMBR( 'P', 'L', 'N', N, NRHS, N, A, LDA, WORK( ITAUP ),
                    433:      $                B, LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
                    434: *
                    435:       ELSE IF( N.GE.MNTHR .AND. LWORK.GE.4*M+M*M+
                    436:      $         MAX( M, 2*M-4, NRHS, N-3*M ) ) THEN
                    437: *
                    438: *        Path 2a - underdetermined, with many more columns than rows
                    439: *        and sufficient workspace for an efficient algorithm.
                    440: *
                    441:          LDWORK = M
                    442:          IF( LWORK.GE.MAX( 4*M+M*LDA+MAX( M, 2*M-4, NRHS, N-3*M ),
                    443:      $       M*LDA+M+M*NRHS ) )LDWORK = LDA
                    444:          ITAU = 1
                    445:          NWORK = M + 1
                    446: *
                    447: *        Compute A=L*Q.
                    448: *        (CWorkspace: need 2*M, prefer M+M*NB)
                    449: *
                    450:          CALL ZGELQF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
                    451:      $                LWORK-NWORK+1, INFO )
                    452:          IL = NWORK
                    453: *
                    454: *        Copy L to WORK(IL), zeroing out above its diagonal.
                    455: *
                    456:          CALL ZLACPY( 'L', M, M, A, LDA, WORK( IL ), LDWORK )
                    457:          CALL ZLASET( 'U', M-1, M-1, CZERO, CZERO, WORK( IL+LDWORK ),
                    458:      $                LDWORK )
                    459:          ITAUQ = IL + LDWORK*M
                    460:          ITAUP = ITAUQ + M
                    461:          NWORK = ITAUP + M
                    462:          IE = 1
                    463:          NRWORK = IE + M
                    464: *
                    465: *        Bidiagonalize L in WORK(IL).
                    466: *        (RWorkspace: need M)
                    467: *        (CWorkspace: need M*M+4*M, prefer M*M+4*M+2*M*NB)
                    468: *
                    469:          CALL ZGEBRD( M, M, WORK( IL ), LDWORK, S, RWORK( IE ),
                    470:      $                WORK( ITAUQ ), WORK( ITAUP ), WORK( NWORK ),
                    471:      $                LWORK-NWORK+1, INFO )
                    472: *
                    473: *        Multiply B by transpose of left bidiagonalizing vectors of L.
                    474: *        (CWorkspace: need M*M+4*M+NRHS, prefer M*M+4*M+NRHS*NB)
                    475: *
                    476:          CALL ZUNMBR( 'Q', 'L', 'C', M, NRHS, M, WORK( IL ), LDWORK,
                    477:      $                WORK( ITAUQ ), B, LDB, WORK( NWORK ),
                    478:      $                LWORK-NWORK+1, INFO )
                    479: *
                    480: *        Solve the bidiagonal least squares problem.
                    481: *
                    482:          CALL ZLALSD( 'U', SMLSIZ, M, NRHS, S, RWORK( IE ), B, LDB,
                    483:      $                RCOND, RANK, WORK( NWORK ), RWORK( NRWORK ),
                    484:      $                IWORK, INFO )
                    485:          IF( INFO.NE.0 ) THEN
                    486:             GO TO 10
                    487:          END IF
                    488: *
                    489: *        Multiply B by right bidiagonalizing vectors of L.
                    490: *
                    491:          CALL ZUNMBR( 'P', 'L', 'N', M, NRHS, M, WORK( IL ), LDWORK,
                    492:      $                WORK( ITAUP ), B, LDB, WORK( NWORK ),
                    493:      $                LWORK-NWORK+1, INFO )
                    494: *
                    495: *        Zero out below first M rows of B.
                    496: *
                    497:          CALL ZLASET( 'F', N-M, NRHS, CZERO, CZERO, B( M+1, 1 ), LDB )
                    498:          NWORK = ITAU + M
                    499: *
                    500: *        Multiply transpose(Q) by B.
                    501: *        (CWorkspace: need NRHS, prefer NRHS*NB)
                    502: *
                    503:          CALL ZUNMLQ( 'L', 'C', N, NRHS, M, A, LDA, WORK( ITAU ), B,
                    504:      $                LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
                    505: *
                    506:       ELSE
                    507: *
                    508: *        Path 2 - remaining underdetermined cases.
                    509: *
                    510:          ITAUQ = 1
                    511:          ITAUP = ITAUQ + M
                    512:          NWORK = ITAUP + M
                    513:          IE = 1
                    514:          NRWORK = IE + M
                    515: *
                    516: *        Bidiagonalize A.
                    517: *        (RWorkspace: need M)
                    518: *        (CWorkspace: need 2*M+N, prefer 2*M+(M+N)*NB)
                    519: *
                    520:          CALL ZGEBRD( M, N, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
                    521:      $                WORK( ITAUP ), WORK( NWORK ), LWORK-NWORK+1,
                    522:      $                INFO )
                    523: *
                    524: *        Multiply B by transpose of left bidiagonalizing vectors.
                    525: *        (CWorkspace: need 2*M+NRHS, prefer 2*M+NRHS*NB)
                    526: *
                    527:          CALL ZUNMBR( 'Q', 'L', 'C', M, NRHS, N, A, LDA, WORK( ITAUQ ),
                    528:      $                B, LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
                    529: *
                    530: *        Solve the bidiagonal least squares problem.
                    531: *
                    532:          CALL ZLALSD( 'L', SMLSIZ, M, NRHS, S, RWORK( IE ), B, LDB,
                    533:      $                RCOND, RANK, WORK( NWORK ), RWORK( NRWORK ),
                    534:      $                IWORK, INFO )
                    535:          IF( INFO.NE.0 ) THEN
                    536:             GO TO 10
                    537:          END IF
                    538: *
                    539: *        Multiply B by right bidiagonalizing vectors of A.
                    540: *
                    541:          CALL ZUNMBR( 'P', 'L', 'N', N, NRHS, M, A, LDA, WORK( ITAUP ),
                    542:      $                B, LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
                    543: *
                    544:       END IF
                    545: *
                    546: *     Undo scaling.
                    547: *
                    548:       IF( IASCL.EQ.1 ) THEN
                    549:          CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, N, NRHS, B, LDB, INFO )
                    550:          CALL DLASCL( 'G', 0, 0, SMLNUM, ANRM, MINMN, 1, S, MINMN,
                    551:      $                INFO )
                    552:       ELSE IF( IASCL.EQ.2 ) THEN
                    553:          CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, N, NRHS, B, LDB, INFO )
                    554:          CALL DLASCL( 'G', 0, 0, BIGNUM, ANRM, MINMN, 1, S, MINMN,
                    555:      $                INFO )
                    556:       END IF
                    557:       IF( IBSCL.EQ.1 ) THEN
                    558:          CALL ZLASCL( 'G', 0, 0, SMLNUM, BNRM, N, NRHS, B, LDB, INFO )
                    559:       ELSE IF( IBSCL.EQ.2 ) THEN
                    560:          CALL ZLASCL( 'G', 0, 0, BIGNUM, BNRM, N, NRHS, B, LDB, INFO )
                    561:       END IF
                    562: *
                    563:    10 CONTINUE
                    564:       WORK( 1 ) = MAXWRK
                    565:       IWORK( 1 ) = LIWORK
                    566:       RWORK( 1 ) = LRWORK
                    567:       RETURN
                    568: *
                    569: *     End of ZGELSD
                    570: *
                    571:       END

CVSweb interface <joel.bertrand@systella.fr>