Annotation of rpl/lapack/lapack/zgelsd.f, revision 1.18

1.9       bertrand    1: *> \brief <b> ZGELSD computes the minimum-norm solution to a linear least squares problem for GE matrices</b>
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.15      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.9       bertrand    7: *
                      8: *> \htmlonly
1.15      bertrand    9: *> Download ZGELSD + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgelsd.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgelsd.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgelsd.f">
1.9       bertrand   15: *> [TXT]</a>
1.15      bertrand   16: *> \endhtmlonly
1.9       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZGELSD( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK,
                     22: *                          WORK, LWORK, RWORK, IWORK, INFO )
1.15      bertrand   23: *
1.9       bertrand   24: *       .. Scalar Arguments ..
                     25: *       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
                     26: *       DOUBLE PRECISION   RCOND
                     27: *       ..
                     28: *       .. Array Arguments ..
                     29: *       INTEGER            IWORK( * )
                     30: *       DOUBLE PRECISION   RWORK( * ), S( * )
                     31: *       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * )
                     32: *       ..
1.15      bertrand   33: *
1.9       bertrand   34: *
                     35: *> \par Purpose:
                     36: *  =============
                     37: *>
                     38: *> \verbatim
                     39: *>
                     40: *> ZGELSD computes the minimum-norm solution to a real linear least
                     41: *> squares problem:
                     42: *>     minimize 2-norm(| b - A*x |)
                     43: *> using the singular value decomposition (SVD) of A. A is an M-by-N
                     44: *> matrix which may be rank-deficient.
                     45: *>
                     46: *> Several right hand side vectors b and solution vectors x can be
                     47: *> handled in a single call; they are stored as the columns of the
                     48: *> M-by-NRHS right hand side matrix B and the N-by-NRHS solution
                     49: *> matrix X.
                     50: *>
                     51: *> The problem is solved in three steps:
                     52: *> (1) Reduce the coefficient matrix A to bidiagonal form with
1.15      bertrand   53: *>     Householder transformations, reducing the original problem
1.9       bertrand   54: *>     into a "bidiagonal least squares problem" (BLS)
                     55: *> (2) Solve the BLS using a divide and conquer approach.
1.15      bertrand   56: *> (3) Apply back all the Householder transformations to solve
1.9       bertrand   57: *>     the original least squares problem.
                     58: *>
                     59: *> The effective rank of A is determined by treating as zero those
                     60: *> singular values which are less than RCOND times the largest singular
                     61: *> value.
                     62: *>
                     63: *> The divide and conquer algorithm makes very mild assumptions about
                     64: *> floating point arithmetic. It will work on machines with a guard
                     65: *> digit in add/subtract, or on those binary machines without guard
                     66: *> digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
                     67: *> Cray-2. It could conceivably fail on hexadecimal or decimal machines
                     68: *> without guard digits, but we know of none.
                     69: *> \endverbatim
                     70: *
                     71: *  Arguments:
                     72: *  ==========
                     73: *
                     74: *> \param[in] M
                     75: *> \verbatim
                     76: *>          M is INTEGER
                     77: *>          The number of rows of the matrix A. M >= 0.
                     78: *> \endverbatim
                     79: *>
                     80: *> \param[in] N
                     81: *> \verbatim
                     82: *>          N is INTEGER
                     83: *>          The number of columns of the matrix A. N >= 0.
                     84: *> \endverbatim
                     85: *>
                     86: *> \param[in] NRHS
                     87: *> \verbatim
                     88: *>          NRHS is INTEGER
                     89: *>          The number of right hand sides, i.e., the number of columns
                     90: *>          of the matrices B and X. NRHS >= 0.
                     91: *> \endverbatim
                     92: *>
1.17      bertrand   93: *> \param[in,out] A
1.9       bertrand   94: *> \verbatim
                     95: *>          A is COMPLEX*16 array, dimension (LDA,N)
                     96: *>          On entry, the M-by-N matrix A.
                     97: *>          On exit, A has been destroyed.
                     98: *> \endverbatim
                     99: *>
                    100: *> \param[in] LDA
                    101: *> \verbatim
                    102: *>          LDA is INTEGER
                    103: *>          The leading dimension of the array A. LDA >= max(1,M).
                    104: *> \endverbatim
                    105: *>
                    106: *> \param[in,out] B
                    107: *> \verbatim
                    108: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
                    109: *>          On entry, the M-by-NRHS right hand side matrix B.
                    110: *>          On exit, B is overwritten by the N-by-NRHS solution matrix X.
                    111: *>          If m >= n and RANK = n, the residual sum-of-squares for
                    112: *>          the solution in the i-th column is given by the sum of
                    113: *>          squares of the modulus of elements n+1:m in that column.
                    114: *> \endverbatim
                    115: *>
                    116: *> \param[in] LDB
                    117: *> \verbatim
                    118: *>          LDB is INTEGER
                    119: *>          The leading dimension of the array B.  LDB >= max(1,M,N).
                    120: *> \endverbatim
                    121: *>
                    122: *> \param[out] S
                    123: *> \verbatim
                    124: *>          S is DOUBLE PRECISION array, dimension (min(M,N))
                    125: *>          The singular values of A in decreasing order.
                    126: *>          The condition number of A in the 2-norm = S(1)/S(min(m,n)).
                    127: *> \endverbatim
                    128: *>
                    129: *> \param[in] RCOND
                    130: *> \verbatim
                    131: *>          RCOND is DOUBLE PRECISION
                    132: *>          RCOND is used to determine the effective rank of A.
                    133: *>          Singular values S(i) <= RCOND*S(1) are treated as zero.
                    134: *>          If RCOND < 0, machine precision is used instead.
                    135: *> \endverbatim
                    136: *>
                    137: *> \param[out] RANK
                    138: *> \verbatim
                    139: *>          RANK is INTEGER
                    140: *>          The effective rank of A, i.e., the number of singular values
                    141: *>          which are greater than RCOND*S(1).
                    142: *> \endverbatim
                    143: *>
                    144: *> \param[out] WORK
                    145: *> \verbatim
                    146: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
                    147: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    148: *> \endverbatim
                    149: *>
                    150: *> \param[in] LWORK
                    151: *> \verbatim
                    152: *>          LWORK is INTEGER
                    153: *>          The dimension of the array WORK. LWORK must be at least 1.
                    154: *>          The exact minimum amount of workspace needed depends on M,
                    155: *>          N and NRHS. As long as LWORK is at least
                    156: *>              2*N + N*NRHS
                    157: *>          if M is greater than or equal to N or
                    158: *>              2*M + M*NRHS
                    159: *>          if M is less than N, the code will execute correctly.
                    160: *>          For good performance, LWORK should generally be larger.
                    161: *>
                    162: *>          If LWORK = -1, then a workspace query is assumed; the routine
                    163: *>          only calculates the optimal size of the array WORK and the
                    164: *>          minimum sizes of the arrays RWORK and IWORK, and returns
                    165: *>          these values as the first entries of the WORK, RWORK and
                    166: *>          IWORK arrays, and no error message related to LWORK is issued
                    167: *>          by XERBLA.
                    168: *> \endverbatim
                    169: *>
                    170: *> \param[out] RWORK
                    171: *> \verbatim
                    172: *>          RWORK is DOUBLE PRECISION array, dimension (MAX(1,LRWORK))
                    173: *>          LRWORK >=
                    174: *>             10*N + 2*N*SMLSIZ + 8*N*NLVL + 3*SMLSIZ*NRHS +
                    175: *>             MAX( (SMLSIZ+1)**2, N*(1+NRHS) + 2*NRHS )
                    176: *>          if M is greater than or equal to N or
                    177: *>             10*M + 2*M*SMLSIZ + 8*M*NLVL + 3*SMLSIZ*NRHS +
                    178: *>             MAX( (SMLSIZ+1)**2, N*(1+NRHS) + 2*NRHS )
                    179: *>          if M is less than N, the code will execute correctly.
                    180: *>          SMLSIZ is returned by ILAENV and is equal to the maximum
                    181: *>          size of the subproblems at the bottom of the computation
                    182: *>          tree (usually about 25), and
                    183: *>             NLVL = MAX( 0, INT( LOG_2( MIN( M,N )/(SMLSIZ+1) ) ) + 1 )
                    184: *>          On exit, if INFO = 0, RWORK(1) returns the minimum LRWORK.
                    185: *> \endverbatim
                    186: *>
                    187: *> \param[out] IWORK
                    188: *> \verbatim
                    189: *>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
                    190: *>          LIWORK >= max(1, 3*MINMN*NLVL + 11*MINMN),
                    191: *>          where MINMN = MIN( M,N ).
                    192: *>          On exit, if INFO = 0, IWORK(1) returns the minimum LIWORK.
                    193: *> \endverbatim
                    194: *>
                    195: *> \param[out] INFO
                    196: *> \verbatim
                    197: *>          INFO is INTEGER
                    198: *>          = 0: successful exit
                    199: *>          < 0: if INFO = -i, the i-th argument had an illegal value.
                    200: *>          > 0:  the algorithm for computing the SVD failed to converge;
                    201: *>                if INFO = i, i off-diagonal elements of an intermediate
                    202: *>                bidiagonal form did not converge to zero.
                    203: *> \endverbatim
                    204: *
                    205: *  Authors:
                    206: *  ========
                    207: *
1.15      bertrand  208: *> \author Univ. of Tennessee
                    209: *> \author Univ. of California Berkeley
                    210: *> \author Univ. of Colorado Denver
                    211: *> \author NAG Ltd.
1.9       bertrand  212: *
1.17      bertrand  213: *> \date June 2017
1.9       bertrand  214: *
                    215: *> \ingroup complex16GEsolve
                    216: *
                    217: *> \par Contributors:
                    218: *  ==================
                    219: *>
                    220: *>     Ming Gu and Ren-Cang Li, Computer Science Division, University of
                    221: *>       California at Berkeley, USA \n
                    222: *>     Osni Marques, LBNL/NERSC, USA \n
                    223: *
                    224: *  =====================================================================
1.1       bertrand  225:       SUBROUTINE ZGELSD( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK,
                    226:      $                   WORK, LWORK, RWORK, IWORK, INFO )
                    227: *
1.17      bertrand  228: *  -- LAPACK driver routine (version 3.7.1) --
1.1       bertrand  229: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    230: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.17      bertrand  231: *     June 2017
1.1       bertrand  232: *
                    233: *     .. Scalar Arguments ..
                    234:       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
                    235:       DOUBLE PRECISION   RCOND
                    236: *     ..
                    237: *     .. Array Arguments ..
                    238:       INTEGER            IWORK( * )
                    239:       DOUBLE PRECISION   RWORK( * ), S( * )
                    240:       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * )
                    241: *     ..
                    242: *
                    243: *  =====================================================================
                    244: *
                    245: *     .. Parameters ..
                    246:       DOUBLE PRECISION   ZERO, ONE, TWO
                    247:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0 )
                    248:       COMPLEX*16         CZERO
                    249:       PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ) )
                    250: *     ..
                    251: *     .. Local Scalars ..
                    252:       LOGICAL            LQUERY
                    253:       INTEGER            IASCL, IBSCL, IE, IL, ITAU, ITAUP, ITAUQ,
                    254:      $                   LDWORK, LIWORK, LRWORK, MAXMN, MAXWRK, MINMN,
                    255:      $                   MINWRK, MM, MNTHR, NLVL, NRWORK, NWORK, SMLSIZ
                    256:       DOUBLE PRECISION   ANRM, BIGNUM, BNRM, EPS, SFMIN, SMLNUM
                    257: *     ..
                    258: *     .. External Subroutines ..
                    259:       EXTERNAL           DLABAD, DLASCL, DLASET, XERBLA, ZGEBRD, ZGELQF,
                    260:      $                   ZGEQRF, ZLACPY, ZLALSD, ZLASCL, ZLASET, ZUNMBR,
                    261:      $                   ZUNMLQ, ZUNMQR
                    262: *     ..
                    263: *     .. External Functions ..
                    264:       INTEGER            ILAENV
                    265:       DOUBLE PRECISION   DLAMCH, ZLANGE
                    266:       EXTERNAL           ILAENV, DLAMCH, ZLANGE
                    267: *     ..
                    268: *     .. Intrinsic Functions ..
                    269:       INTRINSIC          INT, LOG, MAX, MIN, DBLE
                    270: *     ..
                    271: *     .. Executable Statements ..
                    272: *
                    273: *     Test the input arguments.
                    274: *
                    275:       INFO = 0
                    276:       MINMN = MIN( M, N )
                    277:       MAXMN = MAX( M, N )
                    278:       LQUERY = ( LWORK.EQ.-1 )
                    279:       IF( M.LT.0 ) THEN
                    280:          INFO = -1
                    281:       ELSE IF( N.LT.0 ) THEN
                    282:          INFO = -2
                    283:       ELSE IF( NRHS.LT.0 ) THEN
                    284:          INFO = -3
                    285:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
                    286:          INFO = -5
                    287:       ELSE IF( LDB.LT.MAX( 1, MAXMN ) ) THEN
                    288:          INFO = -7
                    289:       END IF
                    290: *
                    291: *     Compute workspace.
                    292: *     (Note: Comments in the code beginning "Workspace:" describe the
                    293: *     minimal amount of workspace needed at that point in the code,
                    294: *     as well as the preferred amount for good performance.
                    295: *     NB refers to the optimal block size for the immediately
                    296: *     following subroutine, as returned by ILAENV.)
                    297: *
                    298:       IF( INFO.EQ.0 ) THEN
                    299:          MINWRK = 1
                    300:          MAXWRK = 1
                    301:          LIWORK = 1
                    302:          LRWORK = 1
                    303:          IF( MINMN.GT.0 ) THEN
                    304:             SMLSIZ = ILAENV( 9, 'ZGELSD', ' ', 0, 0, 0, 0 )
                    305:             MNTHR = ILAENV( 6, 'ZGELSD', ' ', M, N, NRHS, -1 )
                    306:             NLVL = MAX( INT( LOG( DBLE( MINMN ) / DBLE( SMLSIZ + 1 ) ) /
                    307:      $                  LOG( TWO ) ) + 1, 0 )
                    308:             LIWORK = 3*MINMN*NLVL + 11*MINMN
                    309:             MM = M
                    310:             IF( M.GE.N .AND. M.GE.MNTHR ) THEN
                    311: *
                    312: *              Path 1a - overdetermined, with many more rows than
                    313: *                        columns.
                    314: *
                    315:                MM = N
                    316:                MAXWRK = MAX( MAXWRK, N*ILAENV( 1, 'ZGEQRF', ' ', M, N,
                    317:      $                       -1, -1 ) )
                    318:                MAXWRK = MAX( MAXWRK, NRHS*ILAENV( 1, 'ZUNMQR', 'LC', M,
                    319:      $                       NRHS, N, -1 ) )
                    320:             END IF
                    321:             IF( M.GE.N ) THEN
                    322: *
                    323: *              Path 1 - overdetermined or exactly determined.
                    324: *
                    325:                LRWORK = 10*N + 2*N*SMLSIZ + 8*N*NLVL + 3*SMLSIZ*NRHS +
1.5       bertrand  326:      $                  MAX( (SMLSIZ+1)**2, N*(1+NRHS) + 2*NRHS )
1.1       bertrand  327:                MAXWRK = MAX( MAXWRK, 2*N + ( MM + N )*ILAENV( 1,
                    328:      $                       'ZGEBRD', ' ', MM, N, -1, -1 ) )
                    329:                MAXWRK = MAX( MAXWRK, 2*N + NRHS*ILAENV( 1, 'ZUNMBR',
                    330:      $                       'QLC', MM, NRHS, N, -1 ) )
                    331:                MAXWRK = MAX( MAXWRK, 2*N + ( N - 1 )*ILAENV( 1,
                    332:      $                       'ZUNMBR', 'PLN', N, NRHS, N, -1 ) )
                    333:                MAXWRK = MAX( MAXWRK, 2*N + N*NRHS )
                    334:                MINWRK = MAX( 2*N + MM, 2*N + N*NRHS )
                    335:             END IF
                    336:             IF( N.GT.M ) THEN
                    337:                LRWORK = 10*M + 2*M*SMLSIZ + 8*M*NLVL + 3*SMLSIZ*NRHS +
1.5       bertrand  338:      $                  MAX( (SMLSIZ+1)**2, N*(1+NRHS) + 2*NRHS )
1.1       bertrand  339:                IF( N.GE.MNTHR ) THEN
                    340: *
                    341: *                 Path 2a - underdetermined, with many more columns
                    342: *                           than rows.
                    343: *
                    344:                   MAXWRK = M + M*ILAENV( 1, 'ZGELQF', ' ', M, N, -1,
                    345:      $                     -1 )
                    346:                   MAXWRK = MAX( MAXWRK, M*M + 4*M + 2*M*ILAENV( 1,
                    347:      $                          'ZGEBRD', ' ', M, M, -1, -1 ) )
                    348:                   MAXWRK = MAX( MAXWRK, M*M + 4*M + NRHS*ILAENV( 1,
                    349:      $                          'ZUNMBR', 'QLC', M, NRHS, M, -1 ) )
                    350:                   MAXWRK = MAX( MAXWRK, M*M + 4*M + ( M - 1 )*ILAENV( 1,
                    351:      $                          'ZUNMLQ', 'LC', N, NRHS, M, -1 ) )
                    352:                   IF( NRHS.GT.1 ) THEN
                    353:                      MAXWRK = MAX( MAXWRK, M*M + M + M*NRHS )
                    354:                   ELSE
                    355:                      MAXWRK = MAX( MAXWRK, M*M + 2*M )
                    356:                   END IF
                    357:                   MAXWRK = MAX( MAXWRK, M*M + 4*M + M*NRHS )
                    358: !     XXX: Ensure the Path 2a case below is triggered.  The workspace
                    359: !     calculation should use queries for all routines eventually.
                    360:                   MAXWRK = MAX( MAXWRK,
                    361:      $                 4*M+M*M+MAX( M, 2*M-4, NRHS, N-3*M ) )
                    362:                ELSE
                    363: *
                    364: *                 Path 2 - underdetermined.
                    365: *
                    366:                   MAXWRK = 2*M + ( N + M )*ILAENV( 1, 'ZGEBRD', ' ', M,
                    367:      $                     N, -1, -1 )
                    368:                   MAXWRK = MAX( MAXWRK, 2*M + NRHS*ILAENV( 1, 'ZUNMBR',
                    369:      $                          'QLC', M, NRHS, M, -1 ) )
                    370:                   MAXWRK = MAX( MAXWRK, 2*M + M*ILAENV( 1, 'ZUNMBR',
                    371:      $                          'PLN', N, NRHS, M, -1 ) )
                    372:                   MAXWRK = MAX( MAXWRK, 2*M + M*NRHS )
                    373:                END IF
                    374:                MINWRK = MAX( 2*M + N, 2*M + M*NRHS )
                    375:             END IF
                    376:          END IF
                    377:          MINWRK = MIN( MINWRK, MAXWRK )
                    378:          WORK( 1 ) = MAXWRK
                    379:          IWORK( 1 ) = LIWORK
                    380:          RWORK( 1 ) = LRWORK
                    381: *
                    382:          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
                    383:             INFO = -12
                    384:          END IF
                    385:       END IF
                    386: *
                    387:       IF( INFO.NE.0 ) THEN
                    388:          CALL XERBLA( 'ZGELSD', -INFO )
                    389:          RETURN
                    390:       ELSE IF( LQUERY ) THEN
                    391:          RETURN
                    392:       END IF
                    393: *
                    394: *     Quick return if possible.
                    395: *
                    396:       IF( M.EQ.0 .OR. N.EQ.0 ) THEN
                    397:          RANK = 0
                    398:          RETURN
                    399:       END IF
                    400: *
                    401: *     Get machine parameters.
                    402: *
                    403:       EPS = DLAMCH( 'P' )
                    404:       SFMIN = DLAMCH( 'S' )
                    405:       SMLNUM = SFMIN / EPS
                    406:       BIGNUM = ONE / SMLNUM
                    407:       CALL DLABAD( SMLNUM, BIGNUM )
                    408: *
                    409: *     Scale A if max entry outside range [SMLNUM,BIGNUM].
                    410: *
                    411:       ANRM = ZLANGE( 'M', M, N, A, LDA, RWORK )
                    412:       IASCL = 0
                    413:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
                    414: *
                    415: *        Scale matrix norm up to SMLNUM
                    416: *
                    417:          CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
                    418:          IASCL = 1
                    419:       ELSE IF( ANRM.GT.BIGNUM ) THEN
                    420: *
                    421: *        Scale matrix norm down to BIGNUM.
                    422: *
                    423:          CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
                    424:          IASCL = 2
                    425:       ELSE IF( ANRM.EQ.ZERO ) THEN
                    426: *
                    427: *        Matrix all zero. Return zero solution.
                    428: *
                    429:          CALL ZLASET( 'F', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB )
                    430:          CALL DLASET( 'F', MINMN, 1, ZERO, ZERO, S, 1 )
                    431:          RANK = 0
                    432:          GO TO 10
                    433:       END IF
                    434: *
                    435: *     Scale B if max entry outside range [SMLNUM,BIGNUM].
                    436: *
                    437:       BNRM = ZLANGE( 'M', M, NRHS, B, LDB, RWORK )
                    438:       IBSCL = 0
                    439:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
                    440: *
                    441: *        Scale matrix norm up to SMLNUM.
                    442: *
                    443:          CALL ZLASCL( 'G', 0, 0, BNRM, SMLNUM, M, NRHS, B, LDB, INFO )
                    444:          IBSCL = 1
                    445:       ELSE IF( BNRM.GT.BIGNUM ) THEN
                    446: *
                    447: *        Scale matrix norm down to BIGNUM.
                    448: *
                    449:          CALL ZLASCL( 'G', 0, 0, BNRM, BIGNUM, M, NRHS, B, LDB, INFO )
                    450:          IBSCL = 2
                    451:       END IF
                    452: *
                    453: *     If M < N make sure B(M+1:N,:) = 0
                    454: *
                    455:       IF( M.LT.N )
                    456:      $   CALL ZLASET( 'F', N-M, NRHS, CZERO, CZERO, B( M+1, 1 ), LDB )
                    457: *
                    458: *     Overdetermined case.
                    459: *
                    460:       IF( M.GE.N ) THEN
                    461: *
                    462: *        Path 1 - overdetermined or exactly determined.
                    463: *
                    464:          MM = M
                    465:          IF( M.GE.MNTHR ) THEN
                    466: *
                    467: *           Path 1a - overdetermined, with many more rows than columns
                    468: *
                    469:             MM = N
                    470:             ITAU = 1
                    471:             NWORK = ITAU + N
                    472: *
                    473: *           Compute A=Q*R.
                    474: *           (RWorkspace: need N)
                    475: *           (CWorkspace: need N, prefer N*NB)
                    476: *
                    477:             CALL ZGEQRF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
                    478:      $                   LWORK-NWORK+1, INFO )
                    479: *
                    480: *           Multiply B by transpose(Q).
                    481: *           (RWorkspace: need N)
                    482: *           (CWorkspace: need NRHS, prefer NRHS*NB)
                    483: *
                    484:             CALL ZUNMQR( 'L', 'C', M, NRHS, N, A, LDA, WORK( ITAU ), B,
                    485:      $                   LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
                    486: *
                    487: *           Zero out below R.
                    488: *
                    489:             IF( N.GT.1 ) THEN
                    490:                CALL ZLASET( 'L', N-1, N-1, CZERO, CZERO, A( 2, 1 ),
                    491:      $                      LDA )
                    492:             END IF
                    493:          END IF
                    494: *
                    495:          ITAUQ = 1
                    496:          ITAUP = ITAUQ + N
                    497:          NWORK = ITAUP + N
                    498:          IE = 1
                    499:          NRWORK = IE + N
                    500: *
                    501: *        Bidiagonalize R in A.
                    502: *        (RWorkspace: need N)
                    503: *        (CWorkspace: need 2*N+MM, prefer 2*N+(MM+N)*NB)
                    504: *
                    505:          CALL ZGEBRD( MM, N, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
                    506:      $                WORK( ITAUP ), WORK( NWORK ), LWORK-NWORK+1,
                    507:      $                INFO )
                    508: *
                    509: *        Multiply B by transpose of left bidiagonalizing vectors of R.
                    510: *        (CWorkspace: need 2*N+NRHS, prefer 2*N+NRHS*NB)
                    511: *
                    512:          CALL ZUNMBR( 'Q', 'L', 'C', MM, NRHS, N, A, LDA, WORK( ITAUQ ),
                    513:      $                B, LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
                    514: *
                    515: *        Solve the bidiagonal least squares problem.
                    516: *
                    517:          CALL ZLALSD( 'U', SMLSIZ, N, NRHS, S, RWORK( IE ), B, LDB,
                    518:      $                RCOND, RANK, WORK( NWORK ), RWORK( NRWORK ),
                    519:      $                IWORK, INFO )
                    520:          IF( INFO.NE.0 ) THEN
                    521:             GO TO 10
                    522:          END IF
                    523: *
                    524: *        Multiply B by right bidiagonalizing vectors of R.
                    525: *
                    526:          CALL ZUNMBR( 'P', 'L', 'N', N, NRHS, N, A, LDA, WORK( ITAUP ),
                    527:      $                B, LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
                    528: *
                    529:       ELSE IF( N.GE.MNTHR .AND. LWORK.GE.4*M+M*M+
                    530:      $         MAX( M, 2*M-4, NRHS, N-3*M ) ) THEN
                    531: *
                    532: *        Path 2a - underdetermined, with many more columns than rows
                    533: *        and sufficient workspace for an efficient algorithm.
                    534: *
                    535:          LDWORK = M
                    536:          IF( LWORK.GE.MAX( 4*M+M*LDA+MAX( M, 2*M-4, NRHS, N-3*M ),
                    537:      $       M*LDA+M+M*NRHS ) )LDWORK = LDA
                    538:          ITAU = 1
                    539:          NWORK = M + 1
                    540: *
                    541: *        Compute A=L*Q.
                    542: *        (CWorkspace: need 2*M, prefer M+M*NB)
                    543: *
                    544:          CALL ZGELQF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
                    545:      $                LWORK-NWORK+1, INFO )
                    546:          IL = NWORK
                    547: *
                    548: *        Copy L to WORK(IL), zeroing out above its diagonal.
                    549: *
                    550:          CALL ZLACPY( 'L', M, M, A, LDA, WORK( IL ), LDWORK )
                    551:          CALL ZLASET( 'U', M-1, M-1, CZERO, CZERO, WORK( IL+LDWORK ),
                    552:      $                LDWORK )
                    553:          ITAUQ = IL + LDWORK*M
                    554:          ITAUP = ITAUQ + M
                    555:          NWORK = ITAUP + M
                    556:          IE = 1
                    557:          NRWORK = IE + M
                    558: *
                    559: *        Bidiagonalize L in WORK(IL).
                    560: *        (RWorkspace: need M)
                    561: *        (CWorkspace: need M*M+4*M, prefer M*M+4*M+2*M*NB)
                    562: *
                    563:          CALL ZGEBRD( M, M, WORK( IL ), LDWORK, S, RWORK( IE ),
                    564:      $                WORK( ITAUQ ), WORK( ITAUP ), WORK( NWORK ),
                    565:      $                LWORK-NWORK+1, INFO )
                    566: *
                    567: *        Multiply B by transpose of left bidiagonalizing vectors of L.
                    568: *        (CWorkspace: need M*M+4*M+NRHS, prefer M*M+4*M+NRHS*NB)
                    569: *
                    570:          CALL ZUNMBR( 'Q', 'L', 'C', M, NRHS, M, WORK( IL ), LDWORK,
                    571:      $                WORK( ITAUQ ), B, LDB, WORK( NWORK ),
                    572:      $                LWORK-NWORK+1, INFO )
                    573: *
                    574: *        Solve the bidiagonal least squares problem.
                    575: *
                    576:          CALL ZLALSD( 'U', SMLSIZ, M, NRHS, S, RWORK( IE ), B, LDB,
                    577:      $                RCOND, RANK, WORK( NWORK ), RWORK( NRWORK ),
                    578:      $                IWORK, INFO )
                    579:          IF( INFO.NE.0 ) THEN
                    580:             GO TO 10
                    581:          END IF
                    582: *
                    583: *        Multiply B by right bidiagonalizing vectors of L.
                    584: *
                    585:          CALL ZUNMBR( 'P', 'L', 'N', M, NRHS, M, WORK( IL ), LDWORK,
                    586:      $                WORK( ITAUP ), B, LDB, WORK( NWORK ),
                    587:      $                LWORK-NWORK+1, INFO )
                    588: *
                    589: *        Zero out below first M rows of B.
                    590: *
                    591:          CALL ZLASET( 'F', N-M, NRHS, CZERO, CZERO, B( M+1, 1 ), LDB )
                    592:          NWORK = ITAU + M
                    593: *
                    594: *        Multiply transpose(Q) by B.
                    595: *        (CWorkspace: need NRHS, prefer NRHS*NB)
                    596: *
                    597:          CALL ZUNMLQ( 'L', 'C', N, NRHS, M, A, LDA, WORK( ITAU ), B,
                    598:      $                LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
                    599: *
                    600:       ELSE
                    601: *
                    602: *        Path 2 - remaining underdetermined cases.
                    603: *
                    604:          ITAUQ = 1
                    605:          ITAUP = ITAUQ + M
                    606:          NWORK = ITAUP + M
                    607:          IE = 1
                    608:          NRWORK = IE + M
                    609: *
                    610: *        Bidiagonalize A.
                    611: *        (RWorkspace: need M)
                    612: *        (CWorkspace: need 2*M+N, prefer 2*M+(M+N)*NB)
                    613: *
                    614:          CALL ZGEBRD( M, N, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
                    615:      $                WORK( ITAUP ), WORK( NWORK ), LWORK-NWORK+1,
                    616:      $                INFO )
                    617: *
                    618: *        Multiply B by transpose of left bidiagonalizing vectors.
                    619: *        (CWorkspace: need 2*M+NRHS, prefer 2*M+NRHS*NB)
                    620: *
                    621:          CALL ZUNMBR( 'Q', 'L', 'C', M, NRHS, N, A, LDA, WORK( ITAUQ ),
                    622:      $                B, LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
                    623: *
                    624: *        Solve the bidiagonal least squares problem.
                    625: *
                    626:          CALL ZLALSD( 'L', SMLSIZ, M, NRHS, S, RWORK( IE ), B, LDB,
                    627:      $                RCOND, RANK, WORK( NWORK ), RWORK( NRWORK ),
                    628:      $                IWORK, INFO )
                    629:          IF( INFO.NE.0 ) THEN
                    630:             GO TO 10
                    631:          END IF
                    632: *
                    633: *        Multiply B by right bidiagonalizing vectors of A.
                    634: *
                    635:          CALL ZUNMBR( 'P', 'L', 'N', N, NRHS, M, A, LDA, WORK( ITAUP ),
                    636:      $                B, LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
                    637: *
                    638:       END IF
                    639: *
                    640: *     Undo scaling.
                    641: *
                    642:       IF( IASCL.EQ.1 ) THEN
                    643:          CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, N, NRHS, B, LDB, INFO )
                    644:          CALL DLASCL( 'G', 0, 0, SMLNUM, ANRM, MINMN, 1, S, MINMN,
                    645:      $                INFO )
                    646:       ELSE IF( IASCL.EQ.2 ) THEN
                    647:          CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, N, NRHS, B, LDB, INFO )
                    648:          CALL DLASCL( 'G', 0, 0, BIGNUM, ANRM, MINMN, 1, S, MINMN,
                    649:      $                INFO )
                    650:       END IF
                    651:       IF( IBSCL.EQ.1 ) THEN
                    652:          CALL ZLASCL( 'G', 0, 0, SMLNUM, BNRM, N, NRHS, B, LDB, INFO )
                    653:       ELSE IF( IBSCL.EQ.2 ) THEN
                    654:          CALL ZLASCL( 'G', 0, 0, BIGNUM, BNRM, N, NRHS, B, LDB, INFO )
                    655:       END IF
                    656: *
                    657:    10 CONTINUE
                    658:       WORK( 1 ) = MAXWRK
                    659:       IWORK( 1 ) = LIWORK
                    660:       RWORK( 1 ) = LRWORK
                    661:       RETURN
                    662: *
                    663: *     End of ZGELSD
                    664: *
                    665:       END

CVSweb interface <joel.bertrand@systella.fr>